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Recent advances in GPU-based manycore accelerators provide the opportunity to efficiently process large-

scale graphs on chip. However, real world graphs have a diverse range of topology and connectivity pat-

terns (e.g., degree distributions) that make the design of input-agnostic hardware architectures a challenge.

Network-on-Chip (NoC)-based architectures provide a way to overcome this challenge as the architectural

topology can be used to approximately model the expected traffic patterns that emerge from graph application

workloads. In this paper, we first study the mix of long- and short-range traffic patterns generated on-chip

using graph workloads, and subsequently use the findings to adapt the design of an optimal NoC-based archi-

tecture. In particular, by leveraging emerging three-dimensional (3D) integration technology, we propose

design of a small-world NoC (SWNoC)-enabled manycore GPU architecture, where the placement of the

links connecting the streaming multiprocessors (SM) and the memory controllers (MC) follow a power-

law distribution. The proposed 3D manycore GPU architecture outperforms the traditional planar (2D) coun-

terparts in both performance and energy consumption. Moreover, by adopting a joint performance-thermal

optimization strategy, we address the thermal concerns in a 3D design without noticeably compromising the

achievable performance. The 3D integration technology is also leveraged to incorporate Near Data Pro-

cessing (NDP) to complement the performance benefits introduced by the SWNoC architecture. As graph

applications are inherently memory intensive, off-chip data movement gives rise to latency and energy over-

heads in the presence of external DRAM. In conventional GPU architectures, as the main memory layer is

not integrated with the logic, off-chip data movement negatively impacts overall performance and energy

consumption. We demonstrate that NDP significantly reduces the overheads associated with such frequent

and irregular memory accesses in graph-based applications. The proposed SWNoC-enabled NDP framework

that integrates 3D memory (like Micron’s HMC) with a massive number of GPU cores achieves 29.5% per-

formance improvement and 30.03% less energy consumption on average compared to a conventional planar

Mesh-based design with external DRAM.
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1 INTRODUCTION

Graph analytics has become a mainstay in many scientific and industrial applications. With ad-
vances in high-throughput data generation techniques in various domains, it has now become
possible to not just collect raw data but also observe interactions between them at scale. A natural
way to represent such relational data is as graphs, where vertices represent the individual enti-
ties and edges represent pairwise interactions (or relationships). For instance, in social networks,
users are represented as vertices and their interactions represented as edges. Despite their broad
application base and the concomitant rise of manycore computing platforms, scalable processing
of large-scale graphs on emerging manycore platforms remains a challenge. The large sizes of
real-world graphs (with millions of vertices and billions of edges) coupled with irregular graph
topologies (scale-free characteristics [1]) create significant challenges associated with data move-
ment that impacts performance. In particular, the power law distributions of vertex degrees (i.e.,
number of neighbors of a vertex) that characterize scale-free graphs, make it nearly impossible to
guarantee locality preservation while storing these graphs in memory. Therefore, even a single
update of a vertex that has a large degree could trigger significant on-chip traffic at each step of
a graph computation. Furthermore, the mixture of high and low degree vertices could generate
an on-chip traffic pattern that is comprised of long- and short-range data movements. GPU-based
manycore computing offers a promising direction toward accelerating graph applications. How-
ever, such platforms have deep memory hierarchies which could exacerbate the costs in moving
data for graph applications [2]. Hence, it is essential to design efficient interconnection networks
for manycore chips performing graph analytics. The on-chip memory access patterns associated
with graph algorithms give rise to two specific challenges: a) handling the high volume of the mem-
ory access requests arise from the data migration, and b) efficiently transferring the long-range
on-chip memory access requests that can require multiple hops in a traditional network-on-chip

(NoC).

In conventional GPU architectures, the main memory is not integrated with the processing
(logic) layer and off-chip data movement degrade overall performance and increases energy con-
sumption. In such cases, Processing-In Memory (PIM) or Near Data Processing (NDP) can
present an effective paradigm to reduce data movement overheads by moving the computations
closer to the data stored in memory [3, 4]. It enables faster transfer of the data to/from memory
to the logic layer. Hence, it reduces both latency and energy consumption. NDP has the ability to
take advantage of the emerging 3D-stacked memory and logic devices (such as Micron’s Hybrid

Memory Cube or HMC), to enable high-bandwidth, low latency, and low energy memory ac-
cesses. In data-intensive applications, a GPU-based manycore architecture with NDP is capable of
breaking the barrier between memory access and computational efficiency, but its potential is yet
to be adequately demonstrated through careful design and performance evaluation.

The NDP-enabled 3D stacked manycore design needs to be complemented with a suitable NoC
architecture that can efficiently handle the long-range and irregular traffic pattern. In this re-
gard, we envision a small-world (SW) network-enabled 3D NoC (SWNoC) to interconnect
the streaming multiprocessor (SM) and memory controllers (MC) of a GPU-based many-
core platform will be suitable. Given that irregular data movement is the primary factor that limits
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graph applications’ performance, we posit that reducing the cost and/or the volume of on-chip data
movement is critical in scaling up graph applications. Towards this goal, in this work, we present
the design of a 3D NoC enabled GPU-based manycore architectures with NDP for accelerating
graph analytics. The main contributions of this work are:

(1) We present the design of a new 3D SWNoC architecture that follows a power-law based
link distribution as a communication backbone for a GPU-based manycore system. This
SWNoC architecture achieves high-performance and energy efficiency for real world
graphs with different degree distributions.

(2) The SWNoC is complemented with NDP to further enhance the performance and energy
efficiency. The NDP architecture reduces the memory access latency in presence of inher-
ently high cache miss rate.

(3) By adopting a joint performance-thermal optimization, we achieve high performance
without creating a thermal bottleneck.

The rest of the paper is organized as follows. Section 2 presents the related work. In Section 3, we
discuss the overall architecture designed for graph analytics. Section 4 presents our experimental
results and evaluation. Finally, in Section 5, we conclude the paper by summarizing the salient
features of this work.

2 RELATED WORK

There is a growing body of work in the implementation of graph algorithms on GPUs. Pannotia
[5] is one such collection that implements a diverse range of graph applications for GPU plat-
forms. In CuSha [6] the advantage of parallel-sliding-window (PSW) graph representation has
been utilized on the GPU to avoid non-coalesced memory access. Mapgraph [7] presents a high-
performance parallel graph programming framework where it dynamically selects the strategy to
reduce the architectural limits of the GPU. Gunrock [8] allows programmers to implement graph
primitives using a high level of abstraction while delivering high performance. As these graph
application suites are widely used, designing suitable manycore architectures accelerating these
applications is extremely important and that is the focus of this work.

While these works have sufficiently demonstrated the utility of GPU architectures for accelerat-
ing graph applications, conventional GPU architectures are predominantly planar (2D) and hence
are ill-equipped to efficiently handle long-range and irregular traffic patterns inherent in graph
workloads. 3D integration enables performance enhancement of conventional GPU architectures.
It is possible to modify the organization of caches and partition these caches into multiple planar
layers in a 3D structure to improve the cache hit rate while maintaining low access time [9]. Hard-
ware architectures can also be customized for different vertex-centric applications by inserting
application-level data structures and functions [10]. However, due to poor data locality and high
memory bandwidth requirement, significant amount of data movements degrade the performance
and energy consumption for graph-based applications in conventional architectures with external
DRAM. Hence, current graph accelerators choose to focus mainly on optimizing memory accesses.
For example, Graphicionado [11] improves memory throughput by replacing random accesses with
sequential accesses to scratchpad memory, whereas Tunao [12] devotes a dedicated on-chip buffer
to store high degree vertices. The re-configurable architecture in [10] allows us to customize mem-
ory to improve temporal and spatial locality. Graph accelerators [14, 15] are designed using the
DRAM-based Hybrid Memory Cube (HMC). Resistive Random-Access Memory (ReRAM)

can be used as memory and also to perform in situ MAC (multiply-and-accumulate) opera-
tions [16] . ReRAM based graph accelerators have been shown to significantly outperform CPU-
or GPU-based systems both in terms of execution time and energy [17–19]. However, it should
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be noted that ReRAMs have an unreliable substrate and therefore placing the burden on the al-
gorithms to be error tolerant. It should be noted that existing ReRAM-based graph accelerators
assume ideal (error-free) ReRAM behavior, which is not realistic yet.

In contrast, manycore architectures with NDP where memory is closely integrated with logic
layers, achieve significant improvement in performance of graph-based applications without re-
liability issues. 3D-stacked memory and logic devices (such as Micron’s HMC) enable high-
bandwidth, low latency, and low energy memory access [20]. However, conventional 3D archi-
tectures are restricted by thermal constraints as temperature impacts both memory retention and
overall performance [21, 22]. In [23] the authors demonstrated that proper core placement reduces
the peak temperature in a 3D architecture by preventing high power consuming cores from being
placed on top of each other. Suitable floor planning [24] and temperature-aware task scheduling
[25] are some of the popular techniques for temperature reduction in 3D ICs.

In this paper, we propose a GPU-based manycore architecture where power law-based link dis-
tribution in 3D SWNoC enables high performance and energy efficiency for different real-world
graphs with varying degree distribution. As graph-based applications are inherently memory in-
tensive, NDP complements the 3D SWNoC in reducing memory access latency and further im-
proves the achievable performance and energy efficiency.

3 OVERALL ARCHITECTURE

3.1 Traffic Characteristics of Graph Workloads

The degree of a vertex in an undirected graph is the number of edges incident on that vertex. The
degree distribution of a graph is the distribution of the degrees of all the vertices in the graph. Real-
world graphs are known to have a wide range of degree distributions – for instance, the vertices of
planar graphs (such as a road network) may have a degree-bounding property thereby leading to a
more uniform (or normal) distribution; whereas social networks could have a skewed distribution
where only a small fraction of vertices have high degrees. The latter class is typically referred to as
“scale-free”, and such graphs are expected to follow a power law distribution – where the proba-
bility of finding a vertex with degree k is given by P (k ) ∝ k−λ , where λ is a constant. The scale-free
property of real-world networks was discovered in the late ‘90s [26] while recent empirical studies
[27, 28] have pointed to a wide variety and rich diversity of such scale-free networks.

As examples, Figure 1(a), (b), (c), (d) and (e) show the degree distribution of Web, Facebook,
GitHub, Deezer and Road map dataset, respectively. We can observe that the degree distributions
for Web, Facebook, GitHub, and Deezer follow power law distribution whereas the Road map
follows a normal distribution. For graphs following power law distribution, a small percentage of
vertices contribute to the majority of edges. In contrast, most of the vertices in Road map have
connectivity close to the average value of the degree. The degree distribution of graph datasets
influences the overall on-chip traffic patterns when inputs are mapped on manycore hardware
architecture.

In a manycore GPU architecture, data is exchanged between streaming multi processors

(SMs) and memory controllers (MCs). Also, the number of SMs is generally larger than that
of MCs. Hence, irregular application workloads such as graph operations are expected to predom-
inantly give rise to many-to-few and/or few-to-many traffic patterns. Henceforth for convenience,
we simply refer to this pattern as “many-to-few”. This is owing to fact that the SMs process ver-
tices in parallel. Consequently, SMs assigned to process high degree vertices will generate more
traffic to MCs than the others. The many-to-few type of data exchange gives rise to long-range
traffic patterns as it will be impractical to assume all communicating SMs and MCs can be placed
in close proximity on-chip.
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Fig. 1. Degree distribution of (a) Web, (b) Facebook, (c) GitHub, (d) Deezer and (e) Road map datasets.

Fig. 2. Hop count distribution in 2D Mesh NoC for PageRank with (a) Web, (b) Facebook, (c) GitHub,

(d) Deezer, and (e) Road map (hop counts are given by h in the legend).

To analyze the on-chip traffic patterns, we study the hop count distributions of three graph
applications: PageRank, graph coloring (“Color”), and single source shortest path (SSSP) taken
from the Pannotia suite. We consider three different graph datasets, viz., Web [13], Facebook [41],
GitHub [43], Deezer [44] and Road map [42], respectively and map the graph applications on to a
traditional 2D Mesh NoC architecture. To create the best baseline for 2D Mesh NoC, we optimized
the placements of the SMs and MCs to maximize the achievable throughput. Figure 2 shows the
traffic distribution using the PageRank application as an example; similar patterns (not shown)
were observed with the other two graph applications. It is evident from Figure 2 that for all the
datasets, there is a significant amount of traffic exchange between SMs and MCs separated by
more than two hops. We refer to the traffic with more than two hops as a “long-range” traffic. The
long-range traffic for Web, Facebook, GitHub, Deezer and Road Map account for 37.58%, 38.66%,
40.08%, 41.26%, and 48.96% of their total traffic, respectively. In other words, all the graph inputs
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considered here generated a significant amount of long-range traffic. For graphs following power
law degree distribution like Web and Facebook the hop count distribution is more skewed (short-
range traffic is more than long-range counterpart). For the Road map, which has a normal degree
distribution, the traffic is almost evenly distributed between short- and long-range. Analyzing
these traffic distributions, we conclude that designing small world NoC (SWNoC) is suitable for
the graph applications under consideration. It has been already shown that either by inserting
long-range shortcuts in a regular Mesh to induce small-world effects or by adopting power-law
based small-world connectivity, we can achieve significant performance gain and lower energy
dissipation compared to traditional multi-hop Mesh networks [29]. Hence, we advocate that this
concept of small-worldness should be adopted while designing the NoC architecture tailor made
for graph analytics.

3.2 NoC Optimization

Our objective is to design an NoC based on the hop count distributions in graph application work-
loads. Hence, in the proposed NoC architecture, SMs and MCs are connected using a small-world
interconnection network, where the links are established following the power law distribution.
More precisely, if Euclidean distance between core (SM/MC) i and j is dij, the probability P(i, j)
of establishing a link between these two cores is proportional to the distance dij raised to a finite
power. We can represent the probability P(i, j ) as follows:

P (i, j ) =
d−α

i j∑
∀k

∑
∀l d
−α
kl

(1)

The parameter α governs the nature of connectivity [32]. A larger α means a locally connected
network with a few or even no long-range links. On the other hand, a zero value of α generates an
ideal small-world network following the Watts-Strogatz model [30] - one with long-range short-
cuts that are virtually independent of the distance between the cores. It has been shown that the
average hop count is minimum with a fixed wiring cost for the value α of 1.8 [31]. It should be
noted that when a small-world network is implemented in a planar (2D) structure, there will be
multiple physically long wires connecting the largely separated cores. Ultimately, this will give
rise to high timing and energy overheads. However, when a small-world NoC is implemented us-
ing 3D integration, the largely separated cores in a 2D structure can be placed in different planar
dies and connected using vertical links. As the vertical links are much smaller in length, the 3D
SWNoC reduces the timing and energy costs [32]. Therefore, in this work, we use the manycore
GPU architecture interconnected via the 3D SWNoC designed using the power law model of (1)
as the computing substrate for the graph applications under consideration. In the 3D SWNoC
architecture, we need to consider the placements of the SMs, MCs and the links (both vertical
and horizontal) to optimize the overall performance. Due to massive data parallelism, GPU-based
manycore architectures are typically optimized to achieve high throughput (Tput ) [33]. Reducing
the average hop count reduces latency, making cores available for more computation and thereby
improving the throughput of computation. Additionally, load balancing across the NoC is used
to further enhance throughput [34]. Minimizing the standard deviation of hop count will achieve
load balancing by reducing the congestion along various paths. Hence, we compare designs (θ )
with different core and link placements via the degree of achievable load balancing in the NoC,
i.e., using mean M(θ ) and standard deviation SD(θ ) of the hop count, as given by:

M (θ ) =
1

L
∗

C∑
i=1

C∑
j=1

hi j (2)
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Fig. 3. Normalized throughput with respect to mean (M (θ )) and standard deviation (SD (θ )) for PageRank

with Facebook dataset where maximum throughput is considered as one.

SD (θ ) =

√√√
1

L

C∑
i=1

C∑
j=1

(
hi j − M (θ )

)2
(3)

where C and L represents the number of cores (SMs+MCs) and the number of links respectively,
in the overall architecture, hi j is the number of hops from core i to core j.

Model Validation: In this work, we have modeled maximizing throughput as minimizing M(θ )
and SD(θ ) [34]. We validate this throughput model using detailed cycle accurate NoC simulations.
Figure 3 shows the trend of normalized throughput with respect to M(θ ) and SD(θ ) for PageRank
with Facebook dataset. A similar trend is observed for all other applications and datasets con-
sidered here. It is clear from Figure 3 that throughput is inversely proportional with M(θ ) and
SD(θ ). Hence, reducing M(θ ) and SD(θ ) simultaneously leads to increasing the throughput. There-
fore, increasing throughput can alternatively be expressed as minimizing M(θ ) and SD(θ ), validat-
ing our throughput model.

Overall Multi objective Optimization (MOO) Formulation: As the weighted sum is one of
many ways to combine the two parameters: M (θ ) and SD (θ ), we estimate throughput (Tput ) by
combining the effects of both (2) and (3) using weighted-sum function (F ). Overall, the throughput
of a design θ can be expressed as:

Tput (θ ) = F (M (θ ), SD (θ )) (4)

In addition to performance, temperature considerations also become an important design con-
sideration. Consequently, we consider the peak temperature (Tpeak) during the optimization of
the SWNoC architecture and predict the maximum on-chip temperature of a design θ using the
following equation [33].

Tpeak (θ ) = max
s,k

⎧⎪⎪⎨⎪⎪⎩

k∑
n=1

��
	
Ps,n

n∑
y=1

Ty

�
�
+Tb

k∑
n=1

Ps,n

⎫⎪⎪⎬⎪⎪⎭
∗ TH (5)
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Here, Ps,n is the power consumption of a core n planar layers away from the sink in a vertical
stack s ,Ty is the vertical thermal resistance,Tb is the thermal resistance of the base layer on which
the dies are placed, and k represents the kth planar layer where the core is located. We also consider
the effects of lateral heat flowTH , which represents the maximum temperature difference among all
layers, to make the prediction accurate. The values ofTy andTb depend on the material properties.
We obtain these values from [34] and calibrate using 3D-ICE simulations [35].

Therefore, the designing of the optimized SWNoC boils down to a multi-objective (Tput and
Tpeak) optimization (MOO) problem. The multi-objective optimization is aimed to mitigate ther-
mal hotspots while optimizing for throughput. We can represent the MOO-formulation as follows:

P∗ =

{
θ ∗ | θ ∗ ∈ arд max

θ
f

(
Tput (θ )

Tpeak (θ )

) }
(6)

where, P∗ is the set of Pareto optimal designs. We solve this optimization problem by using the
popular simulated annealing (SA)-based multi-objective optimization heuristic, AMOSA [36]
as it is capable of finding out high quality solutions in a reasonable amount of time. We focus on
both core and link perturbation in the 3D SWNoC architecture and utilize two moves for solution
perturbation namely the swapping of cores (C(i, j )) and the new link placement (L(l )) as discussed
below:

(1) Swapping cores: C(i, j ) selects two cores i and j randomly, and swaps their locations. By
swapping the placement of two cores, the communication pattern in the network changes
and hence, the NoC configuration is changed as well. Consequently, it results in a different
numerical value for the parameters mentioned in Equations (4) and (5) before and after the
“swapping” function is invoked. It is to be noted that the swapping perturbation function
ensures that similar network constraints are maintained before and after the function is
invoked.

(2) New Link Placement: L(l ) Selects and removes a link of length l between two randomly
selected routers. If the link is a planar link, this function creates a new link of the same
length between two other routers in the same layer so that overall link distribution re-
mains the same.

The L(l ) move preserves the number of length l links, which is required to maintain the power
law and the small-worldness of the 3D SWNoC architecture during and after the optimization.
Alternating between these two perturbations, we avoid the possibility of getting stuck at a local
minimum in the solution space and thereby reaching a (near-) global optimum [47]. In this work
we design SWNoC architectures following the two optimization strategies: (a) Performance op-

timized (PO): These architectures have the highest throughput, and (b) Performance-Thermal

joint optimized (PT): Architectures where throughput is maximized while minimizing the peak
temperature. For PO, we maximize the throughput (Tput(θ )) by minimizing the mean M(θ ) and
standard deviation SD(θ ) of the hop count simultaneously. Therefore, we choose the design (θ ∗PO )
for which Tput(θ ) is maximum. Hence, θ ∗PO can be expressed as:

θ ∗PO = arд max
θ

(Tput (θ )) (7)

For PT, throughput (Tput(θ )) is maximized while minimizing the peak temperature (Tpeak(θ )).
Therefore, we have selected the design (θ ∗PT ) where, the function of the ratio between Tput(θ ) and
Tpeak(θ ) is maximized. We can represent θ ∗PT as follows:

θ ∗PT = arд max
θ

f

(
Tput (θ )

Tpeak (θ )

)
(8)
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Fig. 4. Illustration of Pareto fronts for (a) PO and (b) PT.

Figure 4(a) and (b) illustrate the Pareto fronts for PO- and PT-based designs. We choose the
design (θ ∗PO ) for PO from the set of Pareto optimal designs (as shown in Figure 4(a)) by following
Equation (7). It implies that, for any other design θ , the throughput is lower than that of θ ∗PO .
Similarly, θ ∗PT is selected for PT by following Equation (8) where the function of the ratio between
Tput(θ ) and Tpeak(θ ) is maximum among all Pareto optimal designs. Therefore, throughput of
θ ∗PT is maximum while minimizing the peak temperature.

We have followed the same optimization process for placement of cores (SM/MC) in a 2D Mesh
NoC to maximize the achievable throughput. We utilize AMOSA for joint optimization of M(θ ) and
SD(θ ). However, we have not included Tpeak (θ ) in the optimization for 2D Mesh as temperature
is not a concern in a planar system.

3.3 Necessity for NDP

As graph operations are inherently memory intensive, there is significant amount of off-chip data
movement between logic layer and external DRAM. We observe that there is high L2 cache miss
rate for the graph applications (86% for PageRank, 83% for Color and 88% for SSSP) considered
here. In the presence of high cache miss rate, external DRAM access can quickly become a perfor-
mance bottleneck, as high data movement increases energy and latency overheads. In this context,
3D near data processing (NDP) becomes more desirable as the memory is mounted on top of
the 3D stacked logic layers. The NDP paradigm is better suited to take advantage of emerging 3D-
stacked memory and logic devices to enable high-bandwidth, low latency and low energy memory
access. As the memory is closely integrated with the logic layer, main memory access latency and
energy consumption for data movement can be significantly reduced. The NDP-based manycore
GPU architecture consists of multiple NDP blocks. Each NDP block has a portion of logic layers and
the memory bank connected through TSV-based vertical links. Memory unit in each NDP block is
connected to one MC. Here, each block is analogous to an HMC vault [46]. It uses a packet-based
interface to transfer data over TSV links. Packet-based memories utilize the NoC by connecting
their internal structural elements to enable scalability. HMC interface employs high-speed seri-

alization/deserialization (SerDes) circuits which achieve higher raw link bandwidths than tra-
ditional, synchronous, bus-based interfaces [46]. However, unlike conventional HMC vaults, we
consider GPUs as part of the logic layer in NDP blocks. Each block is connected to one MC, as
shown in Figure 5. All the layers are virtually divided into multiple equal 3D cubes and each cube
contains equal number of resources (two cores per logic layer and the portion of memory directly
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Fig. 5. Proposed Near Data Processing (NDP)-based manycore GPU architecture.

above it). The SWNoC connects different NDP blocks in such a way that the overall throughput
of the system is maximized.

4 EXPERIMENTAL RESULTS

4.1 Experimental Setup

Experimental platform: We used GPGPU-Sim [37] to simulate the performance of the proposed
NDP based 3D manycore GPU architecture. We use Booksim [38] for implementing the intercon-
nection network to connect the SMs and MCs via different NoC architectures considered in this
work. The GPUs are based on the NVIDIA Volta architecture and here we have considered 56 SMs
and 8 MCs to give rise to a system with 64 cores where SMs and MCs, both are described as cores.
In this work, 2D Mesh is considered as the baseline architecture where 64 cores are arranged in an
8 × 8 grid pattern. Considering a 20mmx20mm die, the length of each inter-router link is 2.5mm.
The overall system runs at the clock frequency of 1.2 GHz. Considering this clock frequency, a
2.5 mm link can be traversed in one cycle. In our proposed 3D SWNoC architecture, 64 cores are
equally partitioned into four planar layers. Each layer is of size 10 mm × 10 mm (considering same
area as the 2D system). Within each layer, 16 cores are placed in a 4 × 4 grid pattern. In the SWNoC
architecture, there are planar links longer than 2.5 mm. The longer links are divided into multiple
pipelined stages where each stage is of length 2.5 mm. Hence, multiple cycles are necessary to
traverse these links. All the vertical links connecting the planar layers are traversed in one cycle.
We use the length of each link (in term of cycles) along with core, router and memory charac-
teristics in GPUWattch [39] to determine the overall energy consumption. The width of all links
is equal to the flit width of 32 bits. Each core (SM/MC) is connected to one router. Following our
previous work, the number of intra-router stages is considered to be three [45]. Dijkstra’s algo-
rithm is adopted as the routing algorithm for finding the shortest paths between the cores. Each
GPU/SM has a SIMD width of 8 and 64KB of L1 cache. Threads are scheduled to the SIMD pipeline
in a group of 32 threads called a warp where all threads in a warp execute the same instruction
[37]. For all experiments, we have considered DRAM-based memory. For simulating DRAM, we
have used GPGPU-Sim [37]. GPGPU-Sim models GDDR3 DRAM where it employs a FIFO (First

in First out)-based scheduler. In this work, DRAM is equally divided into eight memory banks
and each of them is connected to one MC. The area of an MC is same as that of an SM. Following
prior works, the memory is modeled as a multi-layer stack in the proposed NDP design. All layers
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Table 1. Characteristics of the Graph Datasets used

in our Experiments

Graph Number of vertices Number of edges

Facebook [41] 4,039 88,234
GitHub [43] 37,699 289,003
Deezer [44] 41,773 125,826

Road map [42] 129,164 165,435
Web [13] 862,664 38,470,280

in the same vertical stack have equal area i.e., the memory die area is assumed to be same as the
logic die area in the proposed 3D NDP architecture. For thermal evaluation, we model the overall
architecture in Hotspot based on various parameters e.g., layer thickness, thermal conductivity,
etc. as listed in [40].

Graph applications and input datasets: For full-system performance evaluation in this work,
we consider Pannotia benchmark [5] as it offers a diverse set of graph applications. For this study,
we considered three of these applications, viz. PageRank, Color, and SSSP. These three were chosen
due to their varying algorithmic properties. PageRank is a classical case of iterative vertex-centric
graph computation where each vertex’ state is affected by its neighbors iteratively until conver-
gence. “Color” implements graph coloring, which is also vertex-centric albeit an exemplar of a
greedy class of approaches that are typical of independent set problems. SSSP is single source

shortest path, which performs a sweep of the full graph (much like a BFS). Five different datasets
as shown in Table 1 were considered:

4.2 Hop Count Distribution for Different NoC Architectures

In this section, we analyze the hop count distribution of 3D SWNoC and compare that with a
2D Mesh-based design when the graph inputs are mapped on to the 64-core system. We obtained
the traffic characteristics of graph applications considered here, using full-system simulations on
GPGPU-Sim. Due to many-to-few-to-many type of data exchange between cores, the communi-
cation between two distantly placed SM and MC gives rise to long range traffic. As mentioned
above, the SWNoC was designed and optimized following a power-law based link distribution.
Figure 6 shows the hop count distribution of both the 2D Mesh and 3D SWNoC for the PageRank
application with all the datasets considered in this work. It is evident that for the 2D Mesh, all
the datasets have significant amount of traffic beyond two hops. Noticeably, Mesh has traffic up
to seven hops.

We have observed similar characteristics for the other graph applications (Color, SSSP) consid-
ered here. Even after placing the cores optimally in 2D Mesh, we have high amount of multi-hop
communication from SM to MC or vice-versa. We can see the contrasting situation with the 3D
SWNoC architecture, where SWNoC is able to move the hop peaks to the left in Figure 6. As men-
tioned earlier the SMs and MCs that are separated by long distance on a 2D Mesh can be placed in
different planar layers and connected through vertical links. As vertical links are smaller in length
compared to their planar counterparts, they can establish single-hop data exchange. Hence, it
is evident from Figure 6 that the traffic within two hops has been increased and the amount of
long-range traffic has been reduced. We see from Figure 6(a), (b), (c), (d) and (e) that the long-
range traffic for SWNoC is 19%, 19.77%, 20.7%, 21.5% and 27.66% of total traffic for Web, Facebook,
GitHub, Deezer and Road map respectively – which are significantly less than the long-range traffic
observed in 2D Mesh.
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Fig. 6. Hop count distribution of PageRank with (a) Web, (b) Facebook, (c) GitHub, (d) Deezer and (e) Road

map for 2D Mesh and 3D SWNoC.

Fig. 7. Normalized execution time of 3D Mesh, 3D SWNoC with PO and PT compared to 2D Mesh for the

three test graph applications.

4.3 Performance Evaluation

In Section 4.2, we showed that 3D SWNoC is able to reduce long-range traffic significantly by
leveraging vertical links to enhance the overall performance. However, as thermal feasibility is a
major concern for any 3D architecture, we need to consider both performance and thermal as-
pects while designing the 3D SWNoC. Therefore, we design SWNoC architectures following the
two optimization strategies mentioned in Equations (4) and (6) above: (a) Performance opti-

mized (PO): These architectures have the highest throughput, and (b) Performance-Thermal

joint optimized (PT): Architectures where throughput is maximized while minimizing the peak
temperature. We evaluate the performance of PO and PT using full-system simulations on GPGPU-
Sim. Figures 7(a), (b) and (c) illustrate the normalized execution time of PO and PT for PageRank,
Color and SSSP, respectively, compared to a 2D Mesh. For completeness, we also show the ex-
ecution time of a 3D Mesh. We can see from Figure 7 that 3D Mesh achieves 7.8% performance
improvement over a 2D Mesh. However, 3D SWNoC improves the overall performance by 13.1%
and 12% for PO and PT, respectively, compared to 2D Mesh. This also clearly demonstrates the
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Fig. 8. Maximum temperature of 3D SWNoC with PO and PT for the three test graph applications.

Fig. 9. Temperature distribution of proposed 3D SWNoC with (a) PO, (b) PT and (c) PT+RDS for PageRank

with Web dataset.

superiority of 3D SWNoC over a 3D Mesh. Hence, we use the 3D SWNoC as the architecture of
choice in this work.

We can see that the performance loss in PT compared to PO is insignificant. However, a detailed
thermal analysis will bring out the difference between these two configurations. For thermal evalu-
ation of PO and PT, each logic layer has been modeled following [40] in HotSpot. In the considered
3D architecture, the bottom layer is the closest to the heat sink while the topmost layer is the fur-
thest. Figures 8(a), (b) and (c) show the maximum temperature of PO and PT for PageRank, Color
and SSSP, respectively. We can see from Figure 8 that peak temperature of PO for different appli-
cations considered here varies from 94.9°C to 97°C. In contrast, the range of peak temperature for
PT is 84.6°C to 87.1°C. To investigate the thermal distribution over 3D SWNoC, Figures 9(a) and
(b) illustrate the temperature of all the cores for PO and PT, respectively. The temperature profile
in Figure 9 is demonstrated for PageRank with Web dataset as an example. We observe the same
trend for other applications as well. Figures 9(a) and (b) show that for both PO and PT, the bottom
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two layers (layer 1 and layer 2) are generating more temperature than other layers. We can also
observe from Figure 9(a) that, for PO, the highest temperatures (97°C and 96.8°C) are generated by
two MCs in layer 1. It is well known that, in manycore architectures, thermal hotspots are resulting
from high-power densities [40]. On the other hand, the traffic associated with each core contributes
to the power consumption. Therefore, temperature is correlated with traffic concentration on the
core. Hence, we show the traffic concentrations in the bottom two layers in Figures 9(a) and (b)
along with their temperature distributions. The bottom two layers are mainly responsible for cre-
ating thermal bottleneck. Due to many-to-few traffic pattern in a GPU manycore architecture, the
traffic distribution is skewed. Hence, a few of the cores handle substantially more traffic than the
rest. We can see from Figure 9(a) that the MCs generating peak temperature (97°C and 96.8°C)
have highest traffic concentration (4.7 times and 4.66 times of the average traffic concentration
respectively). In contrast, traffic associated with SMs is varying from 0.13 times to 1.87 times of
average traffic concentration, which is significantly smaller than the traffic associated with MCs
due to many-to-few traffic. Therefore, placement of core should be done in such a way that traffic
associated with MCs is reduced to lower the peak temperature. In Figure 9(b), we see the thermal
behavior of PT configuration where both performance and thermal aspects were considered. We
see from the comparative study of Figures 9(a) and (b) that traffic associated with MCs is reduced
in PT where the highest traffic associated with SMs has been increased from 1.87 to 2.78 times of
average traffic in PT compared to PO. However, the highest traffic concentration in SMs is signif-
icantly less than MCs for both the cases. Therefore, SMs are not creating temperature bottleneck
even after increment of traffic associated with SMs from PO to PT. Moreover, traffic associated
with MCs in PT is distributed more evenly than PO so that very high traffic associated with only
a few MC is reduced from PO to PT. We can see from Figure 9(b) that the peak temperature is
reduced to 87°C. Therefore, PT is able to reduce the peak temperature with insignificant degrada-
tion in performance compared to PO due to joint performance-thermal optimization. Hence, we
consider PT as more suitable architecture for graph-based applications than PO by considering
both thermal and performance aspects.

To evaluate the characteristics of the PT-based design compared to a state-of-the-art technique,
we consider the Reciprocal Design Symmetry (RDS)-based counterpart [45]. Stacking high
power consuming cores directly on top of each other increases the power density and consequently
creates thermal hotspots. Therefore, in RDS-based NoC design, two cores those are prone to gen-
erate thermal hotspot cannot be placed on top each other. Therefore, we present the performance-
thermal trade-off of PT-based design with respect to RDS [45]. For comparative performance eval-
uation, we incorporate RDS-based design in our PT configuration. We can see from Figure 9(b)
that the cores with higher temperature are indicated by red and orange colors. Therefore, along
with optimizing the SWNoC based on Tput(θ ) and Tpeak(θ ) (as mentioned in Equations (4) and (5))
in PT, we include RDS by avoiding the placement of red and orange cores on top of each other.
We avoid the red-red, orange-orange and red-orange and orange-red configurations. We can see
from Figure 9 that RDS is able to reduce the maximum temperature by 14.1°C from PT. To ana-
lyze the performance of PT with RDS, Figures 10(a), (b) and (c) illustrate the normalized execution
time of PT and PT with RDS for PageRank, Color and SSSP, respectively, compared to a 2D Mesh.
We can see from Figure 10 that the performance improvement for PT with RDS is 9.9% on average
whereas performance improvement for PT is 12%. Hence, we can conclude that incorporating RDS
in PT reduces the maximum temperature significantly with relatively modest degradation in per-
formance. Therefore, PT based design can be further enhanced by incorporating RDS as it achieves
better trade-off between performance and temperature.

The other important parameter to consider while designing the 3D SWNoC architecture is the
significant amount of off-chip DRAM transaction as the graph applications are inherently memory
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Fig. 10. Normalized execution time of 3D SWNoC with PT and PT+RDS compared to 2D Mesh for the three

test graph applications.

Fig. 11 Normalized execution time of 3D SWNoC with PT and PT+NDP compared to 2D Mesh for the three

test graph applications.

intensive. Due to high L2 cache miss rate for the graph applications (86% for PageRank, 83% for
Color and 88% for SSSP), accessing external DRAM gives rise to latency and energy overheads. In
contrast, by bringing memory unit physically closer to the logic layers, NDP unit reduces memory
access latency and energy during L2 cache misses. Figures 11(a), (b) and (c) illustrate the normal-
ized full-system execution time of 3D SWNoC for PT and PT with NDP compared to the baseline
(2D Mesh) for PageRank, Color and SSSP respectively. We see from Figure 11 that PT with NDP
achieves 29.5% performance improvement compared to the baseline. Along with the performance
evaluation, energy consumption of the overall architecture needs to be analyzed. As 3D SWNoC is
able to reduce long-range traffic compared to 2D Mesh, energy associated with multi-hop commu-
nication is reduced. However, due to the high cache miss rates which are typical in graph based
applications, overall energy consumption is dominated by off-chip data movement for external
DRAM. Therefore, NDP reduces the energy overhead associated with off-chip data movement by
bringing the memory unit physically closer to the 3D logic layers. Figures 12(a), (b) and (c) illustrate
the normalized full-system energy consumption of 3D SWNoC for PT & PT with NDP compared
to 2D Mesh for PageRank, Color and SSSP, respectively. Careful observation from Figure 12 tells
that 3D SWNoC for PT reduces 13.5% whereas PT with NDP reduces 33.03% of overall energy con-
sumption compared to 2D Mesh. Therefore, the savings in energy and execution time prove the
effectiveness of NDP for graph-based applications.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 1, Article 18. Pub. date: October 2021.



18:16 D. Choudhury et al.

Fig. 12. Normalized energy of 3D SWNoC with PT and PT+NDP compared to 2D Mesh for the three test

graph applications.

Fig. 13. Normalized execution time of application specific 3D SWNoC and our proposed 3D SWNoC com-

pared to 2D Mesh for the three test graph applications.

It should be noted that, our proposed 3D SWNoC is an application agnostic design where the
links are established following the power law distribution. However, we could have designed ap-
plication specific 3D SWNoC by incorporating individual traffic pattern of different graph applica-
tions. Therefore, we design application specific SWNoC architectures by taking into account the
frequency of traffic interactions between cores (fi j ) in Equation (1). Hence, for application spe-
cific 3D SWNoC, the probability P(i, j ) of establishing a link between these two cores (i and j ) is
represented as follows:

P (i, j ) =
d−α

i j fi j∑
∀k

∑
∀l d
−α
kl

fkl
(7)

We analyzed the performance of proposed architecture along with the application specific de-
sign compared to 2D Mesh. Figures 13(a), (b) and (c) illustrate the normalized execution time of
application specific architecture and our proposed architecture compared to 2D Mesh for PageR-
ank, Color and SSSP respectively. Careful observation from Figures 13 shows that there is 2.63%
performance degradation on average from application specific architecture to the proposed archi-
tecture. Therefore, our proposed 3D architecture is robust to different graph applications.
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5 CONCLUSION

In this paper, we propose a 3D manycore GPU architecture design targeted for graph analytics
applications. We leverage the benefits introduced by emerging 3D integration to design the pro-
posed manycore architecture that incorporates a small-world network-based NoC (SWNoC)

to interconnect the SMs and MCs. The 3D SWNoC reduces the long-range traffic by 43.5%–49.7%
depending on the data sets considered in this work compared to a 2D Mesh-based design. We com-
plement the advantages introduced by the SWNoC with a joint performance-thermal optimization
strategy to place the cores (SMs and MCs) and an NDP framework that integrates 3D memory (like
Micron’s HMC) with the massive number of GPU cores. The joint optimization strategy preserves
the performance benefit introduced by the 3D SWNoC architecture without introducing unneces-
sary thermal bottlenecks. On the other hand, the NDP framework significantly reduces the per-
formance and energy overheads associated with external DRAM access. Due to high L2 cache
miss rate for the graph applications, accessing external DRAM gives rise to latency and energy
overhead. In contrast, the NDP unit reduces memory access latency and energy in the presence
of high L2 cache miss rate by bringing the memory unit closer to the computation. Putting ev-
erything together, the 3D SWNoC-enabled manycore GPU architecture with NDP achieves 29.5%
performance improvement and 30.03% less energy consumption compared to the 2D Mesh-based
architecture with external DRAM.
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