
On the Impact of Widening Vector Registers on
Sequence Alignment

Jeff Daily∗, Ananth Kalyanaraman†, Sriram Krishnamoorthy∗ and Bin Ren∗
∗High Performance Computing Group, Pacific Northwest National Laboratory

†School of Electrical Engineering and Computer Science, Washington State University

Abstract—Vector extensions, such as SSE, have been part of the
x86 since the 1990s, with applications in graphics, signal process-
ing, and scientific applications. Although many algorithms and
applications can naturally benefit from automatic vectorization
techniques, there are still many that are difficult to vectorize due
to their dependence on irregular data structures, dense branch
operations, or data dependencies. Sequence alignment, one of the
most widely used operations in bioinformatics workflows, has a
computational footprint that features complex data dependencies.
In this paper, we demonstrate that the trend of widening vector
registers adversely affects the state-of-the-art sequence alignment
algorithm based on striped data layouts. We present a practically
efficient SIMD implementation of a parallel scan based sequence
alignment algorithm that can better exploit wider SIMD units.
We conduct comprehensive workload and use case analyses
to characterize the relative behavior of the striped and scan
approaches and identify the best choice of algorithm based on
input length and SIMD width.

I. INTRODUCTION

Vectorization is an effective way to improve the performance
of many kinds of applications via replacing a batch of scalar
instructions by vector (SIMD) instructions. In addition, with
respect to power consumption, vectorization is considered free
because it needs relatively little extra hardware support, like
SIMD extensions.

Since the 1990s, when Streaming SIMD Extensions (SSE)
were introduced as part of the x86, they have been widely
used in many areas. Recent years have seen SIMD widths
expand. Sandy Bridge doubled the SSE SIMD width from
128-bit to 256-bit with new intrinsics called AVX. Moreover,
the latest Xeon Phi Coprocessor is equipped with a 512-bit
Vector Processing Unit (VPU) with new intrinsics called AVX-
512 that can process 16 floating point operations with the
same type concurrently. Considering the upcoming Knights
Landing CPU with an even more powerful SIMD instruction
set, vectorization will provide us more benefits for many
applications and algorithms.

There have been many efforts focusing on the vectorization
area, especially for dense matrix algorithms. In recent years,
many irregular applications have been mapped to various
SIMD architectures. However, there are few works considering
the effect of increasing SIMD widths on the design and
implementation of existing SIMD algorithms. Starting from
this viewpoint, we perform a careful study on multiple SIMD
sequence alignment algorithms.

Sequence alignment is a fundamental operation in many
bioinformatics data processing workflows, at times comprising
much of the computational workload. This is due, in part,
to the quadratic computational complexity of the dynamic
programming algorithm. Aligning two sequences of lengths m

and n requires O(mn) time. Accelerating sequence alignment
is of paramount importance in a number of bioinformatics
applications. To this end, multiple approaches have been
developed using SIMD instructions, practically one for every
new instruction set architecture (ISA) [35], [28], [27], [18],
with Striped [6] representing the current state of the art.

There are three classes of sequence alignment algorithms,
namely Needleman-Wunsch [23] (NW) global alignment, semi-
global (SG), and Smith-Waterman [30] (SW) local alignment.
SW is predominantly studied in literature, though NW and SG
are also useful in their respective contexts. To date, vectorized
implementations of NW and SG have not been studied despite
their wide use. In fact, we find that each class of sequence
alignment presents unique performance trends, especially in
light of widening vector registers on future hardware. We
also find that the Striped approach experiences diminished
performance returns as SIMD widths increase in addition to
underperforming when adapted for NW and SG.

This paper presents a new SIMD sequence alignment
implementation based on a parallel prefix scan algorithm for
the three classes of sequence alignment mentioned previously.
For the latest SIMD widths currently supported, the Scan im-
plementation outperforms Striped for many of the characteristic
inputs we study. Our comprehensive analysis shows that the
Scan approach is better able to utilize the available parallelism
of increasing SIMD widths.

The key contributions are as follows:

• New SIMD implementation of a parallel scan-based
sequence alignment algorithm.

• Comprehensive workload and use case characterization.
• Comparative analysis of Scan vs. Striped on some of the

largest workloads.
• Study of algorithm behavior across vector widths and

different classes of sequence alignment.
• Prescriptive solutions on the choice of algorithms given

different classes of sequence alignment and across SIMD
widths.

II. SEQUENCE ALIGNMENT ALGORITHMS

Sequence alignment is an order-preserving way to map
characters between two DNA or amino-acid (protein) sequences.
It is a pervasive operation in bioinformatics workflows used
to identify regions of high similarity between sequences.
Similarity is generally measured by assigning a positive score
to matches and a negative score to mismatches. For proteins,
a substitution matrix, such as BLOSUM [10] or PAM [31],
is used to score amino acid similarity for each possible
residue pair. In addition to negative scores, alignments may

2016 45th International Conference on Parallel Processing

2332-5690/16 $31.00 © 2016 IEEE

DOI 10.1109/ICPP.2016.65

506

2016 45th International Conference on Parallel Processing

2332-5690/16 $31.00 © 2016 IEEE

DOI 10.1109/ICPP.2016.65

506

2016 45th International Conference on Parallel Processing

2332-5690/16 $31.00 © 2016 IEEE

DOI 10.1109/ICPP.2016.65

506

Algorithm 1 Dynamic Programming (DP) Algorithm

Align(s1[1 . . .m], s2[1 . . . n])

1: Initialize the 0th row and 0th column of the DP table
2: for i: 1 to m do
3: for j: 1 to n do
4: Si,j ← Ti−1,j−1 +W (i, j).
5: Di,j ← max(Di−1,j , Ti−1,j +Gopen) +Gext.
6: Ii,j ← max(Ii,j−1, Ti,j−1 +Gopen) +Gext.
7: T i,j ← max(Si,j , Di,j , Ii,j).

be penalized by the insertion of gaps or deletion of characters.
Gap penalties are often linear (a fixed negative value per gap)
or affine [9], where the gap opening penalty is typically larger
than the gap extension penalty.

There are three primary classes of sequence alignment,
namely global, semi-global, and local. A global alignment
causes the alignment to span the entire length of each sequence
and is used when the two sequences are similar in length and
presumed to be related. A local alignment identifies highly
conserved regions or subsequences though the rest of the
sequence may be divergent. A semi-global alignment does
not penalize beginning or end gaps in a global alignment such
that the resulting alignment will tend to overlap one end of a
sequence with an end of the other sequence.

Sequence alignments are computed using dynamic program-
ming because it is guaranteed to find an optimal alignment
given a particular scoring function. Regardless of the class of
alignment being computed, a dynamic programming recurrence
of the following form is computed. Given two sequences
s1[1 . . .m] and s2[1 . . . n], three recurrences are defined as
follows: Let Si,j denote the optimal score for aligning the
prefixes s1[1 . . . i] and s2[1 . . . j] such that the alignment ends
by substituting s1[i] with s2[j]. Di,j denotes the optimal score
for aligning the same two prefixes such that the alignment ends
in a deletion, i.e., aligning s1[i] with a gap character. Similarly,
Ii,j denotes the optimal score for aligning the prefixes such that
the alignment ends in an insertion, i.e., aligning s2[j] with a
gap character. Given the above three ways to end an alignment,
the optimal score for aligning the prefixes corresponding to
the subproblem {i, j} is given by:

Ti,j = max(Si,j , Di,j , Ii,j) (1)

The dependencies for the individual dynamic programming
recurrences are as follows: Si,j derives its value from the
solution computed for the subproblem {i − 1, j − 1}, while
Di,j and Ii,j derive their values from the solutions computed
for subproblems {i− 1, j} and {i, j − 1}, respectively.

A typical implementation of this dynamic programming
algorithm builds a table of size O(m× n) with the characters
of each sequence laid out along one of the two dimensions. Each
cell (i, j) in the table stores three values Si,j , Di,j , and Ii,j ,
corresponding to the subproblem {i, j}. Given the dependencies
of the entries at a cell, the dynamic programming algorithms
for all three sequence alignment classes can be represented
using the pseudocode outlined in Algorithm 1. The algorithm
has a time complexity of O(mn).
An optional post-processing step retraces an optimal alignment
and can be completed in O(m+ n) time assuming the entire
table is stored. Details of that step are omitted.

The three classes of sequence alignment initialize the
dynamic programming (DP) table differently (line 1 in Al-
gorithm 1). SW and SG alignments initialize the first row and
column of the table to zero, while NW alignments initialize
the first row and column based on the gap function. The table
values for SW alignments are not allowed to become negative,
while NW and SG allow for negative scores.

Hereafter, for convenience according to common practice,
we call the sequence with characters along the rows of the
table the “query” sequence and the sequence with characters
along the columns of the table the “database” sequence.

III. CHALLENGE: MAXIMIZING VECTORIZATION

OPPORTUNITIES IN SEQUENCE ALIGNMENT

As stated previously, aligning two sequences of lengths m
and n requires O(mn) time. This computation time becomes
much more significant when computing many alignments as
done in many bioinformatics applications, such as database
search, multiple sequence alignment, genome assembly, and
short read mapping. There have been many approaches to
making this operation faster including heuristic methods such
as BLAST[1]; however such heuristic methods may generate
sub-optimal alignments.

There have been numerous efforts to parallelize optimal
sequence alignments using vector instructions [35], [28], [6],
[27], [18]. However, not all of these approaches necessarily
address the same bioinformatics application. For example,
database search may group database sequences to improve
performance [27], while protein homology graph applications
may prohibit such optimizations [5]. That said, vectorized
sequence alignments generally fall into two categories: intra-
task and inter-task. A vectorized alignment of a single query
sequence against a single database sequence is intra-task. On
the other hand, inter-task vectorization describes the alignment
of a single (query) sequence against a set of (database)
sequences [27]. Said another way, each vector lane represents a
cell of a dynamic programming table – intra-task vectorization
uses cells from the same table, whereas inter-task vectorization
uses cells from independent tables. Inter-task vectorization
is mainly limited to database search applications, though
performance of either approach is comparable depending on
the lengths of the sequences involved [4]. We focus here on
the more generally applicable intra-task pairwise alignments.

Figure 1 enumerates the ways to vectorize sequence align-
ment. Each approach operates in a series of vector epochs,
where each vector epoch signifies a timestep during execution
when all processing elements (p) of the vector processor
are concurrently working on different parts of computation,
contributing to the calculation of different cells in the dynamic
programming table.

In the Blocked approach (Figure 1 (Blocked)), proposed
by [28], a vector epoch spans a subset of p contiguous cells
along the dimension of the query sequence (i.e., columns).
Each vector initially ignores the contributions of the upward
cells. After computing a block, the new cell values are checked
for correctness and potentially recomputed. Once the values
converge, the last value of the current vector is used by the
next vector. The drawback of the Blocked approach is that the
data dependencies both within and between vectors limit the
overall performance.

507507507

Diagonal Blocked Striped

Loop at most P-1 times

Scan

Loop 2 times

��� ���� ���� ����	
�����������

Loop at most P-1 times
for each vector epoch

Fig. 1. Known ways to vectorize Smith-Waterman alignments using vectors
with four elements. The tables shown here represent a query sequence of
length 18 against a database sequence of length 6. Alignment tables are shown
with colored elements, indicating the most recently computed cells. In order
of most recently computed to least recently, the order is green, yellow, orange,
and red. Dark gray cells were computed more than four vector epochs ago.
Light gray cells indicate padded cells, which are required to properly align
the computation(s) but are otherwise ignored or discarded. The blue lines
indicate the relevant portion of the tables with the table origin in the upper
left corner. (Blocked) Vectors run parallel to the the query sequence. Each
vector may need to recompute until values converge. First described by Rognes
and Seeberg [28]. (Diagonal) Vectors run parallel to the anti-diagonal. Fist
described by Wozniak [35]. (Striped) Vectors run parallel to the query using
a striped data layout. A column may need to be recomputed at most P − 1
times until the values converge. First described by Farrar [6]. (Scan) This is
the approach taken in this paper. It is similar to (Striped) but requires exactly
two iterations over a column.

In the Diagonal approach (Figure 1 (Diagonal)), an epoch
spans a subset of p contiguous cells along a single diagonal of
the table [35]. Note that the cells along the same diagonal have
no interdependencies as their dependent values come from
the cells in the previous two diagonals. However, wasteful
computation is caused in this approach by padding the
table with cells to properly align the computation. Another
disadvantage is the irregular memory access along the diagonal.

In the Striped approach (Figure 1 (Striped)), proposed by
Farrar [6], a vector epoch spans a subset of p evenly spaced
cells along the dimension of the query sequence. This scheme
eliminates the data dependencies both within and between
vectors by striping the vector parallel to the query sequence.
Similar to Blocked, this approach also initially ignores the
contributions of the upward values and makes additional passes
over each column until the values converge. Often, the values
converge before having to compute the column entirely a second
time. This significantly improves overall performance. That
said, in the worst case, the column would be recomputed as
many times as there are elements in the vectors.

Lastly, our solution leverages the striped layout, but it uses a
prefix scan formulation of the dynamic programming recurrence.
The prefix scan recurrence is straightforward though it was
initially designed for GPUs and requires a lengthy proof to
confirm its equivalence to the original problem [14]. Compared
to Blocked and Striped, which initially ignore the upward cells,
the prefix scan calculates a temporary value and later uses
the temporary value to find the final cell value. As shown in

Algorithm 2 A generic pseudocode for a column-wise vector-
ized sequence alignment

Align(s1[1 . . .m], s2[1 . . . n])

for each character in database sequence do
for each vector epoch in column do

Load substitution scores from query profile.
Load previous column’s corresponding cell values.
Compute next cell values.

Algorithm 3 A generic pseudocode for a diagonal vectorized
sequence alignment

Align(s1[1 . . .m], s2[1 . . . n])

for every p characters in database sequence do
for each vector epoch in diagonal do

Gather substitution scores for each s1[i], s2[j] pair.
Use previous vector epoch directly.
Compute next cell values.

TABLE I
RELATIVE PERFORMANCE OF EACH VECTORIZED APPROACH,

REAFFIRMING SIMILAR RESULTS FROM FARRAR [6] FOR STRIPED.

Approach Scalar Blocked Diagonal Striped

Time (s) 70.5 10.6 9.9 4.7
Speedup 1.0 6.6 7.2 15.1

Figure 1 (Scan), our solution requires exactly two iterations
over each column.

All four vectorization schemes can be summarized using
the generic pseudocodes in Algorithm 2 and Algorithm 3,
with Blocked, Striped, and Scan mapping to Algorithm 2 and
Diagonal to Algorithm 3.

The order in which we presented the vectorized approaches
corresponds generally to their relative performance. Table I
briefly lists the relative performance improvement of each
approach. For this analysis, we compare every sequence to
each other using a small but representative protein sequence
dataset. We implemented each vectorization technique shown
here using the SSE4.1 ISA via the compiler intrinsics found
in the immintrin.h header, splitting the 128-bit vector register
into eight 16-bit integers. The results of each vector implemen-
tation were validated against the scalar result. The first two
approaches, namely Blocked and Diagonal, are improved over
the scalar implementation, while the Striped approach performs
significantly better. For this reason, we only consider Striped
and our new Scan implementation for the remainder of our
paper. These results reaffirm similar findings from Farrar [6]
for Striped.

The objective of our work is to understand the impacts
of widening vector registers on a broad class of sequence
alignment algorithms in light of their workload characteristics
and parameter ranges.

IV. ALGORITHMIC COMPARISON OF STRIPED AND SCAN

Prior to our experimental evaluation of the Striped and
Scan approaches to vectorizing sequence alignment, it is
important to understand the algorithmic differences between
these approaches. First, we look at the new recurrences for
Scan and discuss how to optimally implement them using

508508508

vectors. This is followed by an analysis of each algorithm’s
computational complexity.

There are two known formulations for linearizing the data
dependencies within the sequence alignment recurrences by
using parallel prefix (scan) computation. The approach was
first described by Aluru et al. [2], however the formulation by
Khajeh-Saeed et al. [14] is simpler though it requires a lengthy
proof to confirm its equivalence to the original problem. For
comparison with the description in Section II, equations from
[14] are repeated here in Equations 2 through 5. Note that
this recurrence, computing column by column, initially ignores
the influence of the column maximum Di,j and calculates a

temporary variable ˜Ti,j .

Ii,j = max(Ii,j−1, Ti,j−1 +Gopen) +Gext (2)

˜Ti,j = max(Ti−1,j−1 +W (i, j), Ii,j) (3)

˜Di,j = max1<k<j(˜Ti−k,j − kGext) (4)

Ti,j = max(˜Ti,j , ˜Di,j +Gopen) (5)

The parallel scan approach is the focus of our implementation.
Ideally, the parallel scan would be implemented as described in
Blelloch [3], mapping a balanced binary tree over the values and
using an upsweep followed by a downsweep and applying the
associative operator at each node. This is indeed the approach
taken by Khajeh-Saeed et al. in [14] though the implementation
is written for a GPU. The optimal time complexity of this
operation is O(n/p+ lg(n)).

Unfortunately, such operations are not efficient to implement
using SIMD vectors. Instead, the parallel scan is implemented
in two passes. The first pass has each vector element p compute
its portion of the scan in n/p iterations, where n is the number
of cells in one column of the DP table (equal to the length of
the query sequence). Next, a “horizontal” scan is performed
on the resulting vector in p− 1 operations. Though horizontal
operations were added starting in SSE3, our scan requires a
combination of addition and maximum rather than just addition
or subtraction. Further, the latency and throughput of the
horizontal operations are large relative to our approach of
shifting the vector p − 1 times. After the horizontal scan is
performed, the resulting vector is shifted to prepare it for
the second pass, where it becomes the initial conditions. The
second pass is performed in n/p iterations. Instead of the ideal
time complexity for the parallel prefix scan, we are left with a
time complexity of O(n/p+ p). The pseudocode for the Scan
implementation appears in Algorithm 4.

Comparing Algorithms 4 and 5, the Scan approach is only
superficially similar to Striped. For example, as in [6], the Scan
implementation is also striped parallel to the query sequence. In
addition, both approaches make at least one full pass over each
column in the DP table, but this is where the similarities end.
The amount of work performed by each differs in two ways.
First, the Striped approach calculates three values per cell,
while the Scan approach calculates an additional, temporary
value. Second, the Striped approach is often able to abort its
additional passes over the column if the upper cell values
within the current column no longer contribute to the current
cell value. However, in the worst case, it may recompute the
column p − 1 times. The Scan approach will iterate over a

Algorithm 4 Pseudocode for Scan

Align Scan(s1[1 . . .m], s2[1 . . . n])

1: Create striped query profile
2: L← (m+ p− 1)/p � number of vector epochs
3: for each column j along database sequence do
4: for each vector epoch i in 1 . . .L do
5: Load query profile
6: Compute and store I
7: Compute and store ˜T
8: Compute initial pass of ˜D

9: Local prefix scan of ˜D result
10: for each vector epoch i in 1 . . .L do
11: Compute second pass of ˜D
12: Compute and store T

Algorithm 5 Pseudocode for Striped

Align Striped(s1[1 . . .m], s2[1 . . . n])

1: Create striped query profile
2: L← (m+ p− 1)/p � number of vector epochs
3: for each column j along database sequence do
4: Initialize D
5: Load Tj−1[L]
6: for each vector epoch i in 1 . . .L do
7: Load query profile
8: Compute S
9: Load Ij−1

10: Compute and store T
11: Compute and store next I
12: Compute next D
13: Load previous Tj−1[i] for next iteration

14: while any D > T do
15: for each vector epoch i in 1 . . .L do
16: Recompute T
17: Recompute D
18: if not any D > T then
19: Break

column exactly twice and performs the horizontal scan of the
intermediate vector p− 1 times for each column.

Summarizing, the time complexity to compute a column of
the DP table using the Scan approach is O(2n/p+ p), where
n is the length of the query sequence and p is the number of
lanes, i.e., processing elements. The Striped approach is nearly
identical in its computational complexity with O((1+C)∗n/p),
where the additional parameter C is the corrective factor. Given
the total number of corrections made k during the processing
of a DP table with a database sequence of length m, C can
be calculated as C = k/m/�(n + p − 1)/p�. The corrective
factor C is not necessarily a whole number. For example, a
column might converge before reaching its end. For Striped
to be effective, 0 <= C << (p− 1), and ideally it would be
zero.

The detailed evaluation in Section VI shows that, due to C,
each algorithm has its respective strengths.

V. WORKLOAD CHARACTERIZATION

The performance of the sequence alignment algorithms
depends, in part, on the length of the input. Therefore, it

509509509

F
re

qu
en

cy

C
um

ul
at

iv
e

F
re

q u
en

cy

Sequence Length

histogram
cumulative

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 20000 40000 60000 80000 100000
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(a) RefSeq Homo sapiens DNA.

F
re

qu
en

cy
 (

in
 th

ou
sa

nd
s)

C
um

ul
at

iv
e

F
re

q u
en

cy

Sequence Length

histogram
cumulative

 0

 1

 2

 3

 4

 5

 6

 0 2000 4000 6000 8000 10000
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(b) RefSeq bacteria DNA.

F
re

qu
en

cy
 (

in
 th

ou
sa

nd
s)

C
um

ul
at

iv
e

F
re

q u
en

cy

Sequence Length

histogram
cumulative

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 200 400 600 800 1000 1200 1400
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(c) RefSeq bacteria proteins.

F
re

qu
en

cy
 (

in
 h

un
dr

ed
s)

C
um

ul
at

iv
e

F
re

q u
en

cy

Sequence Length

histogram
cumulative

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(d) UniProt proteins.

Fig. 2. Distribution of sequence lengths for all [5,448] RefSeq Homo sapiens
DNA (a), all [2,618,768] RefSeq bacteria DNA (b), all [33,119,142] RefSeq
bacteria proteins (c), and full [547,964] UniProt protein (d) datasets. Protein
datasets are skewed toward shorter sequences, while DNA datasets contain
significantly longer sequences. Due to the presence of long sequences, the
figures are truncated before their cumulative frequencies reach 100 percent.

is important to know the distributions of sequence lengths for
any given set of sequences. We observe that the majority of
protein sequences tend to be 300 characters or less, which will
have a direct impact on later performance studies.

Figure 2 characterizes the length distributions of DNA and
protein sequences. Genomic DNA sequences tend to vary
greatly and can be of significant length. For example, the
longest Homo sapiens sequence is 125 Mbp (million base
pairs), and the longest genomic bacteria sequence is 14.8 Mbp.
Because of such long sequences, Figures 2a and 2b are
truncated before their cumulative frequencies reach 100 percent.
Protein sequences tend to be much shorter than DNA sequences.
Figures 2c and 2d show that in two widely used datasets, half
of the sequences are length 300 or less. This observation has
significant implications for our performance analysis. These
four datasets are representative of the various datasets used in
other studies.

For many analyses involving the RefSeq bacteria protein
dataset, we used a random sampling of 2,000 protein sequences.
This dataset is hereafter “bacteria 2K”. The sequences within
this dataset have an average length of 314 with the longest
sequence being 3,206. The frequency of sequence lengths
and its cumulative distribution are similar to those found in
Figure 2c.

For some experiments, we also used the UniProt release
mentioned previously (hereafter “UniProt”). In our experiments
involving querying a database, UniProt represented our database
of sequences. The sequences within this dataset have an average
length of 356 with the longest sequence being 35,213. The
frequency of sequence lengths and its cumulative distribution
appear in Figure 2d.

Use Cases

Database Search: Many of our experimental analyses repre-
sent the problem domain of searching an annotated database of
sequences using a set of query sequences. Each query sequence
is aligned, in turn, with each database sequence, returning a
score or other data product for each alignment. For all analyses
involving database search, we use the Bacteria 2K dataset
as our query and search against the UniProt dataset as our
database. Based on the sequence distributions described for
each protein dataset, this use case is representative of most
protein database searches.
Homology Detection: The remainder of our experimental anal-
yses represent the problem of homology detection. Homology
detection often starts with a set of unknown proteins that need
to be clustered based on their similarity. Similar to database
search, homology detection can be treated as if the database
dataset was also used as the query dataset, the distinction
being that the number of alignments to perform increases more
rapidly (quadratically) as the database sizes increase.

VI. EMPIRICAL CHARACTERIZATION

To fully understand the impact of future vector widths on
sequence alignments, a number of tests were performed to
assess overall algorithm viability. We focus on single-node,
single-thread performance to precisely understand the effect of
hardware trends within this application domain.
Systems and Compilers: The following results were taken
on single nodes of two clusters within the PNNL Institutional
Computing infrastructure, namely constance and philo. Con-
stance is based on the Intel Haswell CPU architecture featuring
the AVX2 instruction set architecture (ISA). Each node has dual
12-core Intel Haswell E5-2670 v3 CPUs running at 2.3 Ghz
with 64 GB 2133 Mhz DDR4 memory per node. The compiler
used was Intel ICC 15.0.1 using level three optimization (-
O3). The philo cluster consists of nodes with dual 8-core Intel
Sandy Bridge E5-2670 CPUs running at 2.6 Ghz with 64 GB
of memory. Each philo node has one Intel Xeon Phi 7110P
accelerator with 61 cores running at 1.1 Ghz. The compiler
used was Intel ICC 13.1.1 using level three optimization (-O3)
targeting the MIC architecture (-mmic). The constance cluster
was used to test the SSE4.1 and AVX2 ISAs. This was done
intentionally to keep the compiler and hardware identical for
each of these ISAs to compare the effects of the ISAs rather
than the hardware or compiler. The philo cluster was used
exclusively to test the performance of the Xeon Phi accelerator
that uses the Knights Corner (KNC) ISA.
Scoring Scheme Defaults: As stated in Section II, sequence
alignments require a scoring scheme as input. The components
of the scoring parameters include the substitution matrix, as
well as the gap open and gap extension penalties. Unless
stated otherwise, all of our experiments use the BLOSUM62
substitution matrix and gap open and extension penalties of
-11 and -1, respectively. As with BLOSUM62 or any of the
other BLOSUM substitution matrices, we use the default gap
open and gap extension penalties as prescribed by the web
interface to the NCBI blastp program [13].
Datasets: For all analyses, we used sequence datasets from
the NCBI Reference Sequence [32] (RefSeq) database and
the Universal Protein Resource [33] (UniProt) database. The

F
re

qu
en

cy

C
um

ul
at

iv
e

F
re

q u
en

cy

Sequence Length

histogram
cumulative

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 20000 40000 60000 80000 100000
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(a) RefSeq Homo sapiens DNA.

F
re

qu
en

cy
 (

in
 th

ou
sa

nd
s)

C
um

ul
at

iv
e

F
re

q u
en

cy

Sequence Length

histogram
cumulative

 0

 1

 2

 3

 4

 5

 6

 0 2000 4000 6000 8000 10000
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(b) RefSeq bacteria DNA.

F
re

qu
en

cy
 (

in
 th

ou
sa

nd
s)

C
um

ul
at

iv
e

F
re

q u
en

cy

Sequence Length

histogram
cumulative

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 200 400 600 800 1000 1200 1400
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(c) RefSeq bacteria proteins.

F
re

qu
en

cy
 (

in
 h

un
dr

ed
s)

C
um

ul
at

iv
e

F
re

q u
en

cy

Sequence Length

histogram
cumulative

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(d) UniProt proteins.

510510510

TABLE II
CACHE ANALYSIS OF ALL-TO-ALL SEQUENCE ALIGNMENT FOR THE

BACTERIA 2K DATASET ON HASWELL.

DP Method Lanes I-refs D-refs

NW striped 4 1.3e12 3.7e11
NW striped 8 9.7e11 2.8e11
NW striped 16 8.6e11 2.3e11
NW scan 4 1.6e12 4.8e11
NW scan 8 8.6e11 2.9e11
NW scan 16 5.9e11 1.9e11
SG striped 4 1.1e12 3.5e11
SG striped 8 7.3e11 2.4e11
SG striped 16 5.9e11 1.8e11
SG scan 4 1.6e12 4.8e11
SG scan 8 8.5e11 2.9e11
SG scan 16 5.8e11 1.9e11
SW striped 4 1.3e12 3.4e11
SW striped 8 7.3e11 2.3e11
SW striped 16 6.1e11 1.8e11
SW scan 4 1.8e12 4.7e11
SW scan 8 9.0e11 2.9e11
SW scan 16 6.1e11 1.9e11

RefSeq project is an ongoing effort to provide a curated, non-
redundant collection of sequences, grouped by taxonomy, e.g.,
fungi, bacteria. UniProt is a comprehensive resource for protein
sequence and annotation data. Specifically, from RefSeq we
used release 69 which incorporates data available as of January
2, 2015. and from UniProt we used release 2015 02 from
04-Feb-15.

A. Cache Analysis
We performed a cache analysis of the homology detection

problem to examine the total instruction counts and cache
efficiencies for both Striped and Scan across lane counts, as
well as on the Xeon Phi. We used cachegrind to generate
reports for the Haswell system and Intel’s vtune amplifier for
the Xeon Phi system. We found, in general, both Striped and
Scan exhibit negligible instruction and data cache miss rates of
no more than 1 percent. All measurements, except instruction
(I-refs) and data (D-refs) references, are comparable between
Scan and Striped, which is why much of that information is
omitted from Table II and Table III.

All implementations are extremely cache efficient. This is
attributed in part to the use of the striped query profile for both
implementations which was already proven by Farrar [6] to be
efficient. The primary reason for the cache efficiencies in our
case is the size of the problems being computed. The longest
sequence in the bacteria 2K database is 3,206 and easily fits
within the cache on both the Haswell CPU and the Xeon Phi
CPU. Other cached data includes the values for the DP column
being computed. The primary factors affecting performance
are the number of instruction and data references.

As expected, the number of instruction and data references
decrease as the number of vector lanes increase. However, they
decrease more rapidly for Scan than Striped. Striped initially
has fewer instructions than Scan when using 4 lanes. By the
time 16 lanes are used, Scan has surpassed Striped. Except for
the case of NW Striped, where Scan is significantly better, it
is not clear whether Scan will continue to outperform Striped
for SG and SW.

B. Instruction Mix Analysis
Section VI-A described the cumulative instruction counts

for the homology detection problem. To understand the lane

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

SCL_
ARIT

H

SCL_
CM

P

SCL_
JU

M
P

SCL_
M

EM

VEC_A
RIT

H

VEC_C
M

P

VEC_M
ASK

VEC_M
EM

VEC_S
W

IZ
ZLE

sw_striped
sw_scan

sg_striped
sg_scan

nw_striped
nw_scan

Fig. 3. Instruction mix for the homology detection problem. For each category
of instructions, Scan rarely varies between the three classes of alignments
performed, while NW Striped executes more instructions relative to any other
case. Striped performs more scalar operations, while Scan performs more
vector operations. Scan uses more vector memory and swizzle operations,
while Striped is the only one of the two that uses vector mask creation
operations.

count trends shown in Table II and Table III, we ran the same
homology detection problem with 16 lanes using Intel’s Pin
tool [20] to capture the instruction mix as shown in Figure 3.
For space reasons, we omit similar results for the Xeon Phi
which also uses 16 lanes. We observe that for each category
of instructions, Scan rarely varies between the three classes of
alignments performed. Affirming previous results, NW Striped
executes more instructions relative to any other case. We
observe that Striped performs more scalar operations, while
Scan performs more vector operations. Scan uses more vector
memory and swizzle operations, while Striped is the only one
of the two that uses vector mask creation operations.

Many of these instruction mix differences can be explained
by the algorithmic differences noted in Section IV. The Striped
approach recomputes a column until the values converge. It
computes a vector mask and uses additional scalar jumps to
check for convergence and break out of the recompute loop.
Scan does not compute any vector masks. Assuming the best
case, Striped would not need to recompute a column. In such
a case, we would expect to see Scan perform more vector
arithmetic and comparison instructions because it computes
each column twice and computes an additional temporary
value per table cell. However, the Striped approach uses
more arithmetic and comparison instructions overall. This can
only be explained by recomputing the columns a significant
number of times. Lastly, Striped performs a few vector swizzle
operations before starting a column, while Scan performs more
vector swizzle operations because of the p− 1 horizontal scan
operations performed for each column of an alignment.

C. Query Length versus Performance

The analyses performed thus far indicate that the performance
of Striped and Scan depends on the number of vector lanes
applied to the problem. Because the vectors run parallel to
the query sequence, the number of vector lanes determines the
number of vector epochs based on the lengths of the queries.
Therefore, we present the effect of both the query length and

511511511

TABLE III
CACHE ANALYSIS OF ALL-TO-ALL SEQUENCE ALIGNMENT FOR THE BACTERIA 2K DATASET ON XEON PHI.

NW-Scan NW-Striped SG-Scan SG-Striped SW-Scan SW-Striped

Instructions-Retired 6.3e11 9.1e11 6.0e11 6.3e11 6.4e11 6.5e11
CPI-Rate 2.85 2.68 2.72 2.84 2.70 2.72
L1-Misses 2.8e09 1.8e09 2.0e09 1.8e09 2.0e09 1.9e09
L1-Hit-Ratio 0.98 0.99 0.99 0.99 0.99 0.99
Vectorization-Intensity 14.84 13.81 14.82 13.94 14.98 14.10
L1-Compute-to-Data-Access-Ratio 27.34 29.14 29.79 26.00 32.02 30.39
L2-Compute-to-Data-Access-Ratio 1731.86 3375.18 2539.59 2324.74 2761.39 2582.76

number of vector lanes on the relative performance of Striped
and Scan.

To that end, we used the bacteria 2K dataset as our query
set and performed a database search against the UniProt
database. Figures 4a through 4c show the relative speedup
of the Scan approach over the Striped approach as the query
lengths increase.

The relative performance of Scan versus Striped shows that
both approaches have their merits in light of increasing the
number of lanes. Shorter queries perform better for NW Striped,
SG Scan, and SW Scan; longer queries perform better for NW
Scan, SG Striped, and SW Striped.

The different classes of sequence alignments cross over the
relative performance threshold (1.0 on the y-axis) at different
points. For NW, the cross over points are for query lengths of
149, 149, and 149 for lane counts of 4, 8, and 16, respectively.
For SG, the cross overs occur at 121, 188, and 253. For SW,
the cross overs occur at 77, 77, and 152. The performance
peak at the top of the bubble for SW occurs at 30, 40, and 87.
In general, for SG and SW, the cross over points increase with
lane counts. For SW, the cross over appears to be jumping
dramatically from 8 to 16 lanes. Whether such a dramatic
change occurs at 32 lanes needs to be carefully evaluated as
new hardware emerges. As for NW, it appears consistently to
cross over at query lengths around 150.

The cross over points are particularly concerning in light of
many protein datasets being skewed toward shorter sequences.
As shown in Figures 2c and 2d, the majority of protein
sequences are 300 amino acids in length or shorter. Therefore,
when used as query sequences for database search applications,
the point at which SW performance crosses over becomes
extremely relevant. Our analysis used, at most, 16 lanes, though
32 lanes will be available in the next wave of CPUs supporting
the AVX-512 ISA. Future CPUs and GPUs may continue to
adopt even wider vector registers, which, based on these results,
is expected to further diminish the return of widening vector
registers for this problem domain.

D. Query Length versus Number of Striped Corrections
Combining the results from the previous analyses, the

primary factor influencing Striped performance is the number
of corrections that must be made until the column values
converge. The number of corrections is further impacted by the
number of vector lanes utilized for the Striped computation.
This validates the complexity analysis in Section IV.

For the Striped approach, combining the results from the
previous analyses, the primary factor limiting the performance
gains afforded by increasing the number of vector lanes is the
total number of corrections. Using the same database search

application as in Section VI-C, Figures 4d through 4f confirm
this observation by showing the plots of query length versus
total number of corrections.

The Striped approach, for each column, initializes its D
values to zero in the case of SW and to a large negative number
in the cases of NW and SG. These are, of course, incorrect
values that are later corrected as part of the corrective loop.
There is one incorrect value introduced for each vector lane
utilized. As the lanes increase, so do the number of incorrect
values that can propagate across vector epochs.

The trends displayed show that query length has a direct
impact on the number of Striped corrections. For NW, query
length is proportional to the number of corrections. In addition,
the number of corrections is increasing as lane counts increase.
For SG, the number of corrections also increases as lane counts
increase, though query length has less of an effect. At shorter
query lengths, the number of corrections is less predictable.
For SW, there is a clear trend, forming a bubble in the number
of corrections relative to the number of lanes. The bubble
consistently plateaus when the query length reaches ten times
the number of lanes. The peak of the bubbles for SW start at
5E9 for 4 lanes, then 8E9 for 8 lanes, and 16E9 for 16 lanes—
roughly doubling as the number of lanes double. Coupled with
the computational complexity discussion in Section IV, this
trend will have a severe impact on SW performance as lanes
continue to widen. The total number of corrections increases
as the number of lanes p increase. This implies a correlation
between the number of lanes and worst-case performance for
the Striped approach.

E. Scoring Criteria Analysis
Having performed a detailed, low-level analysis of Striped

and Scan, it remains to be seen whether the observations hold
for a user-level analysis. The next experiment is a typical eval-
uation of the effect that the gap and substitution matrix scoring
criteria has on the various implementations. We used the ho-
mology detection application with the Bacteria 2K dataset. The
substitution matrices used were BLOSUM{45,50,62,80,90}
with their corresponding default gap open and extension
penalties of −15 − 2k, −13 − 2k, −11 − k, −10 − k, and
−10− k, respectively. The scoring criteria analysis appears in
Figure 5.

Because the convergence criteria for the column computation
in Striped depends on the values of T and D, different
substitution matrices and gap penalties affect how quickly
the values of T and D diverge—the more divergent, the more
corrections must be made. A similar analysis was done by
Farrar [6], though it did not consider NW or SG. Because the
Scan approach does not conditionally compute any of its values,

512512512

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500

R
el

at
iv

e
P

er
fo

rm
an

ce

Query Length

NW 4 Lanes
NW 8 Lanes

NW 16 Lanes

(a) NW: Query Length vs. Relative Performance
of Scan over Striped

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500

R
el

at
iv

e
P

er
fo

rm
an

ce

Query Length

SG 4 Lanes
SG 8 Lanes

SG 16 Lanes

(b) SG: Query Length vs. Relative Performance
of Scan over Striped

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500

R
el

at
iv

e
P

er
fo

rm
an

ce

Query Length

SW 4 Lanes
SW 8 Lanes

SW 16 Lanes

(c) SW: Query Length vs. Relative Performance
of Scan over Striped

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 1.4e+10

 1.6e+10

 1.8e+10

 2e+10

 0 100 200 300 400 500

C
or

re
ct

io
ns

Query Length

NW 4 Lanes
NW 8 Lanes

NW 16 Lanes

(d) NW: Query Length vs. Total Corrections

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 8e+09

 0 100 200 300 400 500

C
or

re
ct

io
ns

Query Length

SG 4 Lanes
SG 8 Lanes

SG 16 Lanes

(e) SG: Query Length vs. Total Corrections

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 1.4e+10

 1.6e+10

 1.8e+10

 0 100 200 300 400 500

C
or

re
ct

io
ns

Query Length

SW 4 Lanes
SW 8 Lanes

SW 16 Lanes

(f) SW: Query Length vs. Total Corrections

Fig. 4. The relative performance of Scan versus Striped (a-c) shows that both approaches have their merits in light of increasing the number of vector lanes.
Shorter queries perform better for NW Striped, SG Scan, and SW Scan. Longer queries perform better for NW Scan, SG Striped, and SW Striped. The
reasons for the relative performance differences can be attributed to the number of times the Striped approach must correct the column values before reaching
convergence (d-f).

TABLE IV
DECISION TABLE SHOWING WHICH ALGORITHM SHOULD BE USED GIVEN A

PARTICULAR CLASS OF SEQUENCE ALIGNMENT AND QUERY LENGTH.

Short Crossover Point Long
< Cross 4 Lanes 8 Lanes 16 Lanes > Cross

NW Striped 149 149 149 Scan
SG Scan 121 188 253 Striped
SW Scan 77 77 152 Striped

the runtimes are stable regardless of the selected substitution
matrix or gap penalties.

The Scan approach has stable performance relative to the
scoring scheme because it unconditionally makes two passes
over each DP table column. The Striped approach varies a
moderate amount between selected scoring schemes, generally
performing better for smaller gap penalties. As the lane counts
increase, the Scan approach eventually overtakes the Striped
approach, confirming the results in Section VI-C.

F. Prescriptive Solutions on Choice of Algorithm

For the particular input datasets we studied, the choice of
algorithm to use given a particular class of sequence alignment
and query length is summarized in Table IV.

We observe that the three algorithms, despite their similari-
ties, exhibit distinct characteristics. Specifically, NW requires
a different choice of schemes as compared to SG and SW.
In addition, the choice of the schemes is clearly dictated by
the input size. Whereas NW performs better with the Striped
implementations for short sequences, SG and SW are faster
when using the Scan implementation. The choices are reversed
for the long sequences, with NW performing better with Scan
and SG/SW performing better with the Striped implementation.

The cross-over between what is classified as a short vs a long
sequence depended on the SIMD lane width. These widths
are shown in columns 3–5 in Table IV. In general, the cross-
over points are less than 300, falling within the first half of
length distributions in Figure 2. Therefore, for longer sequences
toward the right of the length distributions in Figure 2, the
choice of schemes is clear. The cross-over point increased with
SIMD lane width for SG and SW. The number of corrections
for NW does not vary significantly with lane width, explaining
the stability of the cross-over point across SIMD width for NW.
In all the cases, widening vector registers makes the parallel
scan implementation of the sequence alignment algorithms
more attractive.

G. Multi-Threaded Performance

Single-node, multi-threaded performace was measured but
is not presented due to space limitations. Cache behavior,
instruction mix, relative performance of Scan over Striped, as
well as the user-level performance analysis did not exhibit any
statistically significant change.

VII. RELATED WORK

Vector extensions, such as SSE, have been part of the x86
since the 1990s, with applications in graphics [11], signal
processing [7], and scientific applications [8]. Based on such
vector extensions, auto-vectorization has also been a widely
studied topic for many years [24], [25], [34]. Recently, Maleki
et al. [21] provided a comprehensive evaluation of modern
vectorizing compilers and discussed the limitations of auto-
vectorization performed by these compilers.

513513513

 0

 2

 4

 6

 8

 10

 12

B45 B50 B62 B80 B90

Scan Striped

(a) NW 4 Lanes SSE41

 0

 2

 4

 6

 8

 10

 12

B45 B50 B62 B80 B90

Scan Striped

(b) SG 4 Lanes SSE41

 0

 2

 4

 6

 8

 10

 12

B45 B50 B62 B80 B90

Scan Striped

(c) SW 4 Lanes SSE41

 0

 2

 4

 6

 8

 10

 12

B45 B50 B62 B80 B90

Scan Striped

(d) NW 8 Lanes AVX2

 0

 2

 4

 6

 8

 10

 12

B45 B50 B62 B80 B90

Scan Striped

(e) SG 8 Lanes AVX2

 0

 2

 4

 6

 8

 10

 12

B45 B50 B62 B80 B90

Scan Striped

(f) SW 8 Lanes AVX2

 0

 2

 4

 6

 8

 10

 12

B45 B50 B62 B80 B90

Scan Striped

(g) NW 16 Lanes AVX2

 0

 2

 4

 6

 8

 10

 12

B45 B50 B62 B80 B90

Scan Striped

(h) SG 16 Lanes AVX2

 0

 2

 4

 6

 8

 10

 12

B45 B50 B62 B80 B90

Scan Striped

(i) SW 16 Lanes AVX2

 0

 2

 4

 6

 8

 10

 12

B45 B50 B62 B80 B90

Scan Striped

(j) NW 16 Lanes KNC

 0

 2

 4

 6

 8

 10

 12

B45 B50 B62 B80 B90

Scan Striped

(k) SG 16 Lanes KNC

 0

 2

 4

 6

 8

 10

 12

B45 B50 B62 B80 B90

Scan Striped

(l) SW 16 Lanes KNC

Fig. 5. Total compute times in seconds (Y-axis) for global (NW, left column), semi-global (SG, center column), and local (SW, right column) alignments using
the bacteria 2K dataset for a homology detection application. The lane counts increase moving from the first row to the third row, increasing from 4 to 8 and
lastly to 16. The fourth row consists of the results for KNC which is also 16 lanes. For each BLOSUM matrix analyzed, the default gap open and extension
penalties from NCBI were used as in Section VI-E. By the time 8 lanes are used, NW Scan consistently outperforms NW Striped. At 16 lanes, Scan begins to
outperform Striped for many of the selected scoring schemes.

Although many algorithms and applications can naturally
benefit from the auto-vectorization techniques, there are still
many that are difficult to vectorize due to their dependence on
irregular data structures, dense branch operations such as trees
or graph traversals, or data dependencies.

Recently, there were many efforts focusing on handling this
challenge. For example, featuring many query inputs, both
Kim et al. [15] and Jo et al. [12] proposed a set of techniques
to vectorize binary tree search and tree traversal operations,
respectively. Ren et al. [26] vectorized decision tree forests and
regular expression matching algorithms on SSE. Liu et al. [17]
parallelized sparse matrix-vector multiplication on the Xeon Phi

architecture. All of these works emphasize carefully laying out
the irregular data structures to improve the cache performance
and exploring the potential of fine-grained parallelism among
multiple tasks.

Within the context of sequence alignment, a very important
algorithm in the bioinformatics domain, our work considers
the vectorization problem from a totally new perspective. We
carefully study the impact of increasing SIMD widths on
various classes of this algorithm and propose some useful
predictions for researchers to choose which implementations to
use in the future. More closely related to our work, Schaub et
al. [29] carefully studied the impact of varying the SIMD

514514514

width on control-flow and memory divergence, while our
work focuses on the impact on different SIMD algorithms
for sequence alignment.

In the past few years, sequence alignment has been studied
comprehensively. There are numerous implementations of the
SW algorithm across varied hardware technologies, including
SIMD microprocessors [35], [28], [6], [27], GPU accelera-
tors [22], [19], Xeon Phi accelerators [18], and FPGAs [16].
Here, we focused on SIMD microprocessors. None of these
aforementioned efforts consider the impact of increasing SIMD
widths as ours does.

VIII. CONCLUSIONS AND FUTURE WORK

Current and future CPU architectures are trending toward
wider vector registers. Therefore, it is imperative that vectorized
codes are not adversely affected by these widening trends.
This paper selected one of the fundamental algorithms from
bioinformatics to analyze against these trends. The results were
clear: the state-of-the-art implementations based on a striped
data layout were inadequate when it comes to realizing the
full potential of wider vector registers. At 8 lanes, NW Scan
consistently outperforms NW Striped. At 16 lanes, SG and
SW Scan outperform Striped for many of the selected scoring
schemes. We expect Scan to fully surpass Striped in the next
generation of SIMD widths.

We presented a novel SIMD implementation of a parallel
scan based algorithm and demonstrate that it overcomes
the limitations of the striped scheme. Experimental evalua-
tion demonstrates the three classes of sequence alignment—
Needleman-Wunsch, semi-global, Smith Waterman—though
very similar in their algorithmic structures, differ widely in their
execution times with the Striped and Scan implementations,
and in their effective use of wide vector units. We identify
the input lengths and vector widths for which one scheme is
preferable to the other.

Since the Scan approach is favorable to smaller query lengths,
it would be amenable to partitioning the SW problem into
smaller tiles. Such tiling approaches are being studied currently
in other domains in order to improve cache utilization. This
would be one strategy for the efficient alignment of much
longer sequences, i.e., DNA.

ACKNOWLEDGMENT

The research was performed using PNNL Institutional
Computing at Pacific Northwest National Laboratory. The
research was supported, in part, by the DOE award DE-SC-
0006516.

REFERENCES

[1] S. F. Altschul, T. L. Madden, A. A. Schffer, J. Zhang, Z. Zhang, W. Miller,
and D. J. Lipman. Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Research, 25(17):3389
3402, 1997.

[2] S. Aluru, N. Futamura, and K. Mehrotra. Parallel biological sequence
comparison using prefix computations. JPDC, 63(3):264–272, 2003.

[3] G. E. Blelloch. Prefix sums and their applications. 1990.
[4] J. Daily. Parasail: Simd c library for global, semi-global, and local

pairwise sequence alignments. BMC Bioinformatics, 17(1):1–11, 2016.
[5] J. Daily, A. Kalyanaraman, S. Krishnamoorthy, and A. Vishnu. A work

stealing based approach for enabling scalable optimal sequence homology
detection. JPDC, 7980:132 – 142, 2015.

[6] M. Farrar. Striped smith–waterman speeds database searches six times
over other simd implementations. Bioinformatics, 23(2):156–161, 2007.

[7] F. Franchetti and M. Puschel. A SIMD vectorizing compiler for digital
signal processing algorithms. In IPDPS, pages 7–pp, 2002.

[8] C. Garcı́a, R. Lario, M. Prieto, L. Piñuel, and F. Tirado. Vectorization
of multigrid codes using SIMD ISA extensions. In IPDPS, 2003.

[9] O. Gotoh. An improved algorithm for matching biological sequences.
Journal of Molecular Biology, 162(3):705–708, Dec. 1982.

[10] S. Henikoff and J. G. Henikoff. Amino acid substitution matrices
from protein blocks. Proceedings of the National Academy of Sciences,
89(22):10915–10919, 1992.

[11] N. Ide, M. Hirano, Y. Endo, S. Yoshioka, H. Murakami, A. Kunimatsu,
T. Sato, T. Kamei, T. Okada, and M. Suzuoki. 2.44-GFLOPS 300-MHz
floating-point vector-processing unit for high-performance 3D graphics
computing. volume 35, pages 1025–1033, 2000.

[12] Y. Jo, M. Goldfarb, and M. Kulkarni. Automatic vectorization of tree
traversals. In PACT, pages 363–374, 2013.

[13] M. Johnson, I. Zaretskaya, Y. Raytselis, Y. Merezhuk, S. McGinnis, and
T. L. Madden. Ncbi blast: a better web interface. Nucleic Acids Research,
36(suppl 2):W5–W9, 2008.

[14] A. Khajeh-Saeed, S. Poole, and J. Blair Perot. Acceleration of the
smith-waterman algorithm using single and multiple graphics processors.
J. Comput. Phys., 229(11):4247–4258, June 2010.

[15] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey,
V. W. Lee, S. A. Brandt, and P. Dubey. FAST: fast architecture sensitive
tree search on modern CPUs and GPUs. In ACM SIGMOD/PODS, pages
339–350, 2010.

[16] I. Li, W. Shum, and K. Truong. 160-fold acceleration of the smith-
waterman algorithm using a field programmable gate array (fpga). BMC
bioinformatics, 8(1):185, 2007.

[17] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey. Efficient sparse matrix-
vector multiplication on x86-based many-core processors. In ICS’13,
pages 273–282, 2013.

[18] Y. Liu and B. Schmidt. Swaphi: Smith-waterman protein database search
on xeon phi coprocessors. In ASAP’14, pages 184–185, June 2014.

[19] Y. Liu, A. Wirawan, and B. Schmidt. Cudasw++ 3.0: accelerating
smith-waterman protein database search by coupling cpu and gpu simd
instructions. BMC Bioinformatics, 14(1):117, 2013.

[20] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood. Pin: Building customized program
analysis tools with dynamic instrumentation. PLDI ’05, pages 190–200,
New York, NY, USA, 2005. ACM.

[21] S. Maleki, Y. Gao, M. J. Garzaran, T. Wong, and D. A. Padua. An
evaluation of vectorizing compilers. In PACT, pages 372–382, 2011.

[22] S. Manavski and G. Valle. Cuda compatible gpu cards as efficient
hardware accelerators for smith-waterman sequence alignment. BMC
bioinformatics, 9(Suppl 2):S10, 2008.

[23] S. Needleman and C. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of
Molecular Biology, 48(3):443–453, Mar. 1970.

[24] D. Nuzman, I. Rosen, and A. Zaks. Auto-vectorization of interleaved
data for SIMD. In PLDI, volume 41, pages 132–143. ACM, 2006.

[25] D. Nuzman and A. Zaks. Outer-loop vectorization: revisited for short
SIMD architectures. In PACT, pages 2–11, 2008.

[26] B. Ren, G. Agrawal, J. R. Larus, T. Mytkowicz, T. Poutanen, and
W. Schulte. SIMD parallelization of applications that traverse irregular
data structures. In CGO, pages 1–10, 2013.

[27] T. Rognes. Faster Smith-Waterman database searches with inter-sequence
SIMD parallelisation. BMC Bioinformatics, 12(1):221, 2011.

[28] T. Rognes and E. Seeberg. Six-fold speed-up of smithwaterman sequence
database searches using parallel processing on common microprocessors.
Bioinformatics, 16(8):699–706, 2000.

[29] T. Schaub, S. Moll, R. Karrenberg, and S. Hack. The impact of the
SIMD width on control-flow and memory divergence. ACM Transactions
on Architecture and Code Optimization (TACO), 11(4):54, 2015.

[30] T. Smith and M. Waterman. Identification of common molecular
subsequences. Journal of Molecular Biology, 147(1):195 – 197, 1981.

[31] D. J. States, W. Gish, and S. F. Altschul. Improved sensitivity of
nucleic acid database searches using application-specific scoring matrices.
Methods, 3(1):66 – 70, 1991.

[32] T. Tatusova, S. Ciufo, B. Fedorov, K. ONeill, and I. Tolstoy. Refseq
microbial genomes database: new representation and annotation strategy.
Nucleic Acids Research, 42(D1):D553–D559, 2014.

[33] The UniProt Consortium. UniProt: a hub for protein information. Nucleic
Acids Research, 43(D1):D204–D212, 2015.

[34] K. Trifunovic, D. Nuzman, A. Cohen, A. Zaks, and I. Rosen. Polyhedral-
model guided loop-nest auto-vectorization. In PACT, pages 327–337,
2009.

[35] A. Wozniak. Using video-oriented instructions to speed up sequence
comparison. CABIOS, 13(2):145–150, 1997.

515515515

