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Abstract—The field of bioinformatics and computational biol-
ogy is experiencing a data revolution — experimental techniques
to procure data have increased in throughput, improved in
accuracy and reduced in costs. This has spurred an array of high
profile sequencing and data generation projects. While the data
repositories represent untapped reservoirs of rich information
critical for scientific breakthroughs, the analytical software tools
that are needed to analyze large volumes of such sequence data
have significantly lagged behind in their capacity to scale. In
this paper, we address homology detection, which is a funda-
mental problem in large-scale sequence analysis with numerous
applications. We present a scalable framework to conduct large-
scale optimal homology detection on massively parallel super-
computing platforms. Our approach employs distributed memory
work stealing to effectively parallelize optimal pairwise alignment
computation tasks. Results on 120,000 cores of the Hopper
Cray XE6 supercomputer demonstrate strong scaling and up
to 2.42 × 107 optimal pairwise sequence alignments computed
per second (PSAPS), the highest reported in the literature.

I. INTRODUCTION

The field of bioinformatics and computational biology
is currently experiencing a data revolution — the exciting
prospect of making fundamental biological discoveries is fuel-
ing the rapid development and deployment of numerous cost-
effective, high-throughput sequencing technologies that have
cropped up in a span of three to four years e.g. Illumina [1].
The result is that the DNA and protein sequence repositories
are being bombarded with both raw sequence information (or
“reads”) and processed sequence information (which could be
in the form of DNA and amino acid/open reading frames types
of data). Traditional databases such as the NCBI GenBank are
reporting that their database sizes are following a Moore’s law-
like trajectory, roughly doubling every 18 months. In what
seems to be a significant paradigm-shift, individual projects
are now capable of generating billions of raw sequence data
that need to be analyzed in the presence of already annotated
sequence information.

An extended version of the well known sequence search
model [2] is the all-against-all sequence comparison model,
which finds direct use in a number of applications including
genome assembly [3], protein family characterization [4] and
transcriptomic clustering [5]. A variant can also be used for
incremental annotation of new batches of sequences in the
presence of already annotated sequences. Despite its broad
scope in application, there are hardly any scalable software
options for implementing the all-against-all comparison model.

Most real world applications have resorted to running heuristic
driven approaches and brute-force parallelization to tackle
the large data challenge. For instance, one of the largest
metagenomics survey projects known till date [6] parallelized
the all-against-all homology detection phase by manually
partitioning the job across 125 dual processors systems and
128 16-processor nodes each containing between 16GB-64GB
of RAM. These approaches can be at best be described ad
hoc and run the risk of being non-replicable in other settings.
Even the limited space of parallel solutions have been shown
to scale only up to few thousand cores [3], [7], taking a few
hours to solve modest sized problems (n ≈ 106 sequences).
Such solutions, given the exponential growth rates in data, are
incremental in nature.
Quantifying the scaling requirements: In a nutshell, a
recurring (and magnifying) challenge in this area of sequence
analysis has become one where the rate of processing the
data “lags significantly behind” the rate at which the data
is generated. Therefore, in this paper, we ask the following
research question: What would it mean to close the widening
gap between data generation and processing? i.e., at what rate
should the software run in order to catch up with the data
generation? Any software solution that claims to close the
gap between the two rates should at least be able to complete
processing of the data in time comparable to the time it took
to generate it (if not quicker).

Using pairwise sequence alignments (PSA) as the basic unit
of measuring the work in all-against-all homology detection,
let us consider the following calculations: The Illumina/Solexa
HiSeq 25001, which is one of the more popular sequencers
today, can sequence ×109 reads in ∼11 days [1]. A brute-
force all-against-all comparison would imply ×1018 pairwise
sequence alignments (PSAs). However most pairwise com-
parisons tend to result in poor alignments. Therefore, exact-
matching techniques are used in practice to filter out the
search space, so that PSA needs to be performed only on
the more promising pairs. While the efficacy of the filtering
technique is data-dependent, for the purpose of calculation we
will assume 99.9% savings (based on our experiences with
some of the more effective filters [3], [5], [7]). This would
still leave ×1015 PSAs to perform. While the time for each

1While there are other faster technologies, we use Illumina as a represen-
tative example.
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PSA is another variable and depends on the lengths of the
strings being aligned, on an average each PSA tends to take a
few milliseconds on state-of-the-art CPUs for reads of a few
hundred characters. This implies a total of 277M CPU hours.
To complete this scale of work in time comparable to that of
data generation (11 days), we need the software to be running
on 106 cores with close to 100% efficiency. This calculation
yields a target of 109 PSAPS to achieve, where PSAPS is
defined as the number of Pairwise Sequence Alignments Per
Second.

In addition to achieving large PSAPS counts, achieving
fast turn-around times (in minutes) for small- to mid-size
problems also become important in practice. This is true for
use-cases — in which a new batch of sequences need to be
aligned against an already annotated set of sequences, or in
analysis involving already processed information (e.g., using
open reading frames from genome assemblies to incrementally
characterize protein families) — where the number of PSAs
required to be performed could be small (when compared to
that generated in de novo assembly) but needs to be performed
multiple times due to the online/incremental nature of the
application.
Contributions: In this paper, we set out with the goal
of evaluating the feasibility of designing a scalable parallel
framework that can achieve orders of magnitude higher PSAPS
performance than contemporary software. As a result, we
present a work-stealing based parallel approach to perform
large-scale homology detection. Multiple attributes distinguish
our method from other work: i) We choose the all-against-all
model not only for its broad scope of applications, but also
because it occupies an upstream phase in most sequence anal-
ysis workflows; ii) To ensure high quality of the output, each
PSA is evaluated using the optimality-guaranteeing Smith-
Waterman algorithm [8] (as opposed to the traditional use
of faster sub-optimal heuristics); iii) We use protein/putative
open reading frame inputs from real world data sets to capture
a more challenging use-case where a skewed distribution in
sequence lengths can cause nonuniformity in PSA tasks; and
iv) To the best of our knowledge, this effort represents the first
use of work-stealing for this problem domain.

The key contributions are as follows:
1) Demonstration of homology detection at the largest scale

in number of cores ×105 cores (previous highest was 2K
cores [7]);

2) Use of distributed-memory work stealing for dynamic
load balancing (it has been evaluated using benchmarks
but not demonstrated in full applications);

3) Highest PSAPS performance (2.42 × 107 at 120,000
cores) reported for optimal homology detection —
roughly two orders of magnitudes higher than the top
PSAPS reported previously (6.59 × 105 on 2048 cores
[7]);

4) High efficiencies for small problem sizes (∼75-100%
efficiencies for turnaround time of the order of minutes;
our results also show that for a given scale larger
problem size quickly improves efficiency)

II. BACKGROUND AND RELATED WORK

Sequence homology detection is a fundamental problem in
bioinformatics with a pervasive base of applications. Broadly,
this is the task of comparing two or more biomolecular se-
quences in an effort to identify sequence-level similarities and
discrepancies. Sequence homology between two biomolecular
sequences can be evaluated either using optimal alignment
algorithms in time proportional to product of the sequence
lengths [8], [9], or using faster, approximation heuristic meth-
ods such as BLAST [2], FASTA [10], or USEARCH [11].
Several studies have shown the importance of deploying
optimality-guaranteeing methods to ensure high sensitivity
(e.g., [12], [13]). Our own study [7] of an arbitrary collection
of 320K ocean metagenomics amino acid sequences shows
that a Smith-Waterman-based optimal alignment computation
could detect 36% more similar pairs than was possible using a
BLAST-based run under similar parameter settings. Improving
sensitivity of homology detection becomes particularly im-
portant when dealing with such environmental microbial data
sets [14] due to the sparse nature of sampling in the input.
Yet, to the best of our knowledge, none of the large-scale
efforts attempted so far have deployed optimality-guaranteeing
methods in their analysis, perhaps owing to a lack of scalable
tools.

A key challenge in detecting sequence homology at a large-
scale in an all-against-all setting stems from the sheer volume
of pairs that needs to be aligned. A brute-force implementation
on n input sequences would compute

(
n
2

)
pairwise alignments.

To reduce this quadratic search space, specialized string data
structures such as the lookup table [2] and suffix trees/arrays
[15], [16] can be used. These data structures can serve as faster
exact matching filters and can be used to identify a subset
of sequence pairs based on their “promise” to exhibit high
similarity. Subsequently, alignment computation is performed
only on the short-listed pairs. While the efficacy of filtering
depends on the choice of the underlying data structure, even
with the better filters the number of pairs for alignment
could be very large. For example, even a modest size input
of 2.56×106 amino acid/protein sequences from an ocean
metagenomics database generated 5.258×109 pairs to align
using a suffix-tree based filter (∼99.839% savings relative to
an exhaustive search) [7].

The state-of-the-art of parallel tools for sequence homology
detection can be summarized as follows: Bulk of the paral-
lelization efforts in the past have targeted database search.
Most notable massively parallel tools are ScalaBLAST [17]
and mpiBLAST [18], both of which have scaled to thousands
of cores. Lin et al. [19] report linear scaling up to 32,768
BlueGene/P cores, matching 250K DNA sequences (queries)
against a set of ∼6M microbial DNA sequences (database) in
12 hours (implying ∼384K CPU hours). To the best of our
knowledge, this is the largest scale of study reported so far
using the BLAST heuristic. In principle, any database search
implementation can be made to fit the all-against-all model
(by treating each sequence as being part of both the query



set and database). However, in practice, such a solution may
not be appropriate owing to the fact that the bulk of the
developmental complexity in parallel BLAST tools originates
from the need to gather and sort the database hits per query,
and output them to I/O in a ranked fashion. In contrast, under
the all-against-all model, the output that is expected is a
homology graph (without the requirement to either sort by
vertices or by the edges’ similarity weights). In other words,
the time spent in doing complex parallel I/O operations could
be better spent on improving the quality of the alignment
computed.

Recently, we took advantage of the above observation,
and built a hierarchical master/worker parallel implementation
called pGraph to compute optimal alignments in parallel [7].
In this implementation, a producer module uses a suffix tree
index for identifying promising pairs (based on variable-length
exact matches), which are then aligned by a consumer module.
Experimental results showed linear scaling up to 2,048 cores
(on the EMSL Chinook supercomputer) on an 2.56M input
protein sequence set (derived from an ocean metagenomics
project). More specifically, the framework aligned 5.258 bil-
lion pairs using the Smith-Waterman algorithm [8] in just over
2 hours on 2,048 cores (∼4.5K CPU hours)). To the best of
our knowledge, this is the first parallel framework to scale
to such high volumes of optimal alignment computations in
parallel.

Such efforts focused on long running calculations (many
hours) which correspond to significant amounts of computa-
tion and potentially simplifying the load balancing challenge.
In this paper, we focus on obtaining large PSAPS performance
on calculations that run in minutes. The focus on scale
coupled with short turnaround times makes load balancing the
attendant calculation a particularly challenging problem. To
this end, our implementation is the first homology detection
application to employ distributed work stealing. Given the
above focus on achieving large PSAPS performance, we
explore the problem space of scalable dynamic load balancing
runtimes in this paper. While ideally these ideas should be
coupled with efficient filtering techniques to ensure that the
PSAs computed are those that are likely to result in fruitful
alignment results, such filtering approaches are not explored
here.

Work stealing is a dynamic load balancing technique with
well-studied properties in terms of space and time bounds.
While traditionally studied in the context of shared memory,
recent interest has been devoted to studying work stealing in
a distributed memory setting. This is in part to work stealing’s
ability to dynamically adapt to variations in the execution
environment due to load imbalance, faults, or power/energy
considerations. Distributed memory work stealing [20]–[22]
has been evaluated in the context of the unbalanced tree search
benchmark [23], and benchmarks from multi-resolution meth-
ods [24], self-consistent field calculations [25], and tensor con-
traction expressions arising in Coupled Cluster methods [26].
To the best of our knowledge, distributed memory work
stealing has not been employed in scaling a full application in

general, and homology detection in particular.
Optimized implementations of single-node optimal align-

ment computation have been developed for a variety of sys-
tems including vector instruction sets [27], GPUs [28], [29],
FPGAs [30], and other specialized architectures [31], [32].
Our work complements such efforts and has the capacity to
leverage them toward a scalable distributed memory parallel
homology detection implementation.

III. OPTIMAL HOMOLOGY DETECTION

Notation: Let S = {s1, s2, . . . sn} denote a set of n sequences
over a fixed input alphabet Σ. For DNA, Σ = {a, c, g, t}.
Alternatively, for amino acid/protein sequences, the alphabet
contains 20 symbols (one for each of the 20 amino acids). Let
|s| denote the length of a sequence s, and let N = Σn

i=1|si|
denote the sum of the length of all sequences in S. Let s[i . . . j]
denote the substring starting at index i and ending at j in
s. Throughout this paper, we use the terms “sequences” and
“strings” interchangeably.

An alignment between two strings is an order-preserving
way to map every character in one string to either a character
in the other string (event is called a “substitution”), or to a
blank symbol (called a “gap”). A substitution is a “match” if
the two characters are identical, and a “mismatch” otherwise.
An alignment of a character to a gap symbol is referred to
as an “indel” (for insertion/deletion). In an alignment model,
the user assigns a score for each of these events — rewarding
matches with a positive score and penalizing mismatches and
indels with a negative score. As a general practice, integer
scores are used. Also, while aligning protein sequences, the
scores are typically derived from a pre-defined table called the
“substitution matrix”, which is of size (|Σ|+1)×(|Σ|+1) [33].
The problem of computing an optimal alignment between two
strings s1 and s2 becomes one of identifying an alignment that
maximizes the alignment score. This formulation is called the
global alignment problem because the alignment is defined
to cover the entire strings. A generalized version of this
problem is called local alignment, in which the problem is
one of finding a best matching pair of substrings that yield
the maximum score when globally aligned against one another.
Local alignments are useful when only parts of the sequences
are expected to match, which is generally the case while
aligning two protein sequences.
Computing optimal alignments: Given strings s1 and s2
of lengths n1 and n2, respectively, both global [9] and lo-
cal [8] optimal alignments can be computed using dynamic
programming in O(n1 × n2) time and O(n1 + n2) space
[34]. For simplicity of exposition, let us consider the global
alignment problem. The Needleman-Wunch (“NW”) dynamic
programming algorithm [9] uses a recurrence T (i, j) which
is the optimal score for aligning the prefixes s1[1 . . . i] and
s2[1 . . . j]. It follows that T (n1, n2) is the final optimal score.
And it can be shown that T (i, j) only depends on T (i−1, j),
T (i, j − 1) and T (i − 1, j − 1). Therefore, the algorithm
initializes and computes a table T [0 . . . n1][0 . . . n2] in a row-
major (or column-major) fashion, spending constant time at



each cell (i, j). This phase is called the forward phase. Once
this phase is completed, a retrace from the cell (n1, n2) is
performed to yield the optimal path. Although the recurrence is
slightly different, the algorithm’s overall structure is identical
in the Smith-Waterman algorithm (abbreviated as “SW”) for
local alignment. It should be evident that the forward phase
of this algorithm can be implemented in O(n1×n2) time and
O(n1 +n2) space (by storing only the last two rows). It turns
out that the retrace procedure can also be implemented to run
within the same bounds [34].
Evaluating alignments: Homology refers to an expected
degree of similarity between two sequences. While there is
no one definition for homology, common practice is to infer
homology through the evaluation of an alignment result. Fol-
lowing this practice, we define homology as follows. Consider
two sequences s1 and s2 of lengths n1 and n2, respectively,
where n1 ≤ n2 without loss of generality.

Definition 1. Two sequences s1 and s2 are said to be
homologous if they share a local alignment whose score is
at least τ1% of the ideal score (with n1 matches), and the
alignment covers at least τ2% of n2 characters.

The parameters τ1 and τ2 are user-specified, with defaults
for protein sequences set as τ1 = 40% and τ2 = 80% [7].
Note, however, that neither the choice of these parameters
nor the ensuing outcome of an alignment evaluation have
any bearing on the time or space consumed in computing
that alignment. It is also to be noted that any alignment (not
necessarily the optimal) can be used for detecting the presence
of homology between two sequences. However, using a sub-
optimal alignment result runs the risk of failing the homology
criteria (even with the corresponding optimal result passing the
criteria). Therefore, it is important to use optimal alignment
computation to ensure sensitivity is not lost while detecting
homology [7], [12], [13].
The Homology Detection Problem: Given S, and parameters
{τ1, τ2}, determine all pairs of sequences that are homologous.

Henceforth, we use the term “pair” in this paper to refer to
an arbitrary pair of sequences (si, sj).
Pair generation: Recall that our goal for this paper is to
evaluate whether optimal pairwise sequence alignments can
be carried out at scale for large real world data. As noted
in Section II, there are some sophisticated ways, using string
indices such as suffix trees/arrays, to identify a subset of pairs
to undergo optimal alignment evaluation (instead of a brute-
force evaluation of all

(
n
2

)
pairs). While implementing such

filters is important from an application-scaling perspective, for
the purpose of this paper, we decided to implement a light-
weight “simulator” of such a filter, primarily to allow us to stay
focused on PSAPS performance2. The findings of this study
should still extend to cases when a real filter is applied because
filters only reduce the number of pairs from the quadratic
search space, and one can always find larger inputs that could

2The complexities of implementing a scalable filter is a different problem
that warrants a separate study.

generate filtered workload of comparable size.
We design our pair generation module to mimic the pair

selectivity of a suffix tree-based index [7]. The use of such a
filter reduces the number of alignments from the theoretical
maximum by a factor of at most 0.1%. Therefore, we designed
a pair enumerator that selects (at random) 0.1% of the

(
n
2

)
pairs.

IV. PARALLELIZATION USING WORK STEALING

In this section, we describe the execution environment and
our implementation of homology detection in parallel.

We analyzed the load imbalance for an all-against-all align-
ment of a small set of 15,000 sequences from the CAMERA
database. We observed that a significant fraction of tasks are
of the order of milliseconds or lower, with a large number
of sub-millisecond tasks. The large number of tasks together
with the wide disparity in the task processing times exacer-
bates problems associated with static load balancers due to
small errors in estimation of alignment times. The alignments
include a few large tasks taking few tenths to over one second.

Despite their counts, the smallest alignment operations
consume a negligible fraction of the total processing time. On
the other hand, alignment operations that can be processed in
a 1ms to 100ms consume almost 90% of the total processing
time. This shows that the alignment operations critical to a load
balanced execution vary by up to two orders of magnitude in
their processing time.

A computation dominated by a few large operations can
employ static scheduling focused on such large tasks. Al-
ternatively, a computation consisting of a large number of
homogeneous tasks can be effectively load balanced by equally
distributed the load across the processors. In the case of ho-
mology detection, exemplified by the characteristics discussed
above, neither approach is effective. Static load partitioning
will need to first find the tasks that meaningfully contribute
to the execution time, accurately estimate the alignment times
and then partition the large number of tasks identified.

A. Data distribution and placement

A significant challenge in the design of parallel homology
detection is the management of the sequence data. We studied
the CAMERA data set. The largest protein data set within
the CAMERA [35] portal is approximately 5.6GB in size,
representing 43M sequences. While seeming small, matching
two such data sets requires as much as 9.2× 1014 number of
alignments. Given the non-linear nature of the computation,
this is both compute intensive and data intensive.

In order to maximally utilize the available memory to
minimize data costs, we employ the multi-threaded MPI model
with one MPI process per shared memory node and one thread
per processor core. The threads share the data available in SMP
node, reducing communication. When the data set fits within
the total memory available in the shared memory node, it is
replicated on each node. When the data does not fit into one
SMP node, the data is distributed among the processes, with



one-sided communication to obtained the necessary data from
a remote process. We do not evaluate this model in this paper.

The data is read from an input file and distributed using
MPI-IO. Once the data sets are initialized they are read-only,
allowing sharing of sequence data among the threads without
conflicts.

B. Enumeration and Processing of Alignment Operations

The candidate pairs of sequences are chosen using a com-
binatorial number system of degree 2. The number system
produces lexicographically sorted binomial coefficients of
degree 2, associating each combination with a non-negative
number. In addition to providing a lexicographic ordering of
all

(
n
2

)
pairs, this allows one to compute the place within the

lexicographic ordering of a given 2-combination without the
need to explicitly compute the previous 2-combinations. [36]
We use this property to map a contiguous sequence from a
non-negative index to a given worker.

One of the drawbacks to using the original pGraph imple-
mentation was that sequences from the input set were dis-
tributed among the nodes and periodically needed to be com-
municated to the pair consumers (the processes performing
the pair alignment.) This strategy is also known as database
partitioning. Our implementation takes advantage of the multi-
threaded MPI model and stores the input data set on each MPI
rank, sharing the input data set among the worker threads. The
largest data set we tested contains 20M sequences and can be
stored in memory within 3GB, however, the largest protein
data set within the CAMERA [35] portal is approximately
5.6GB in size. We do not consider the technique of database
partitioning in this paper.

The Smith-Waterman (SW) alignment implementation re-
quires memory proportional to the size of the largest sequence
L. Specifically, it requires 40 ∗ L bytes. The largest sequence
we encountered for our data set was 32,794 characters result-
ing in a storage size of approximately 1.44MB for each thread
of execution.

C. Parallel Processing

Our focus on execution at scale and short turnaround times,
requires that we maximally exploit the available parallelism.
In accordance with this principle, we expose each individual
alignment operation as a task. A task is the basic unit of
parallel operation that can be independently migrated and
scheduled by the load balancer. In our design, a task can
be migrated to any process that holds the data required by
the task. This enables efficient evaluation of the task without
requiring data communication.

Each alignment task is uniquely identified by the pair of se-
quences to be aligned. We employ the pair generation strategy
above to organize the tasks into a one-to-one correspondence
with a sequence of integers that range from 0 through the
total number of alignments. This enumeration is then used to
equally partition the alignments to be performed among the
processor cores. Note that the sequential partitioning balances
the number of tasks and not their execution times.

Input sequences on a shared buffer:

Local
Shared

De
q
ues

Transfer of
stolen tasks

S:

. . .t0 t1 tk−2

. . .

Incoming
steal requests

tk−1 Helper thread

Steal

Worker threads

Network interconnect

Compute node with k cores/threads

s1 s2 . . . sn

Fig. 1. Schematic of the execution on a compute node.

All processor cores collectively begin execution of the
tasks that are initially seeded on them. The computation is
then dynamically load balanced in response to local detection
of load imbalance using distributed memory work stealing.
The details of the work stealing procedure are presented in
[20]. In this paper, we summarize the specifics of the design
employed for the parallelization of the homology detection
implementation.

The schematic illustration of the execution on each compute
node is shown in Figure 1. Each processor core maintains the
tasks seeded to it in a local deque. When local tasks finish
execution, the processor core turns into a thief attempting to
steal from a victim core. The stolen tasks are populated into the
thief’s local deque, and the thief goes back to executing tasks
in its local deque. This procedure is repeated until termination
is detected.

The steal operations are performed by the thief using active
messages implemented on MPI. In executing a steal operation,
the thief sends a message on a communicator and tag reserved
for incoming active messages. An incoming message on such
a communicator context and tag is interpreted as an active
message, with the corresponding function invoked with the
incoming data. The result of the function’s execution is sent
back to the source of the incoming message. Thus the active
messages are implemented in terms of non-blocking MPI two-
sided communication operations.

In order to ensure quick distribution of work to the thieves,
we dedicated one thread to handle incoming active message
requests initiated by the thieves. In the absence of such a
thread, achieving good performance required regular polling
for incoming requests as part of the executing application.
This poses a challenge in identifying the appropriate polling
granularity. Polling too often impacted application execution
times due to the increased overhead. Polling too infrequently
resulted in slow work redistribution and starvation of thieves.
More perversely, our experience indicated that the correct
polling frequency depending on the platform and the scale
for a particular execution — a prohibitive challenge when one



attempts a performance portable implementation. While ded-
icating a thread consumes processing resources, it alleviated
these challenges resulting in repeatable and consistently good
execution across platforms and processor core counts.

We employ one process per SMP node, with one thread per
core. One of the threads is dedicated to processing incoming
active messages. A steal message targeted at a victim core is
sent to the helper thread associated with the victim’s process.
The steal operation executed by the helper thread involves
locking the victim’s deque and stealing the requested number
of tasks. If no tasks are available to be stolen, the thief attempts
to steal from another victim.

The deque is organized as a split queue with a local and a
shared portion. The local operation enables quick processing of
tasks by the core owning the deque without the need for locks.
The helper thread lock the shared portion of the victim’s deque
during a steal. Each core periodically releases work from the
local to the shared portion, when the share portion is observed
to have run out of work. When the local portion is empty, tasks
are moved from the shared portion to the local portion. While
releasing work to the shared portion can be performed without
a lock, acquiring work requires the shared portion of the deque
to be locked. The deque consisting of the local and shared
portions is implemented on a bounded circular buffer. This
makes acquiring and releasing work into simple arithmetic
operations. This also enables steal operations to copy the stolen
tasks using efficient contiguous MPI communication calls.

A thief steals half of the work in the shared portion of a
victim’s deque. When only a few cores have remaining work,
this strategy leaves both the victim and the thief with work
available for other thieves enabling quick distribution of work
among idle cores. A thief selects a victim at random. Stealing
half the work coupled with random stealing approximates
broadcasting of work, when only a few core have work.

Termination detection is performed using the four-counter
method [37]. The algorithm proceeds as waves moving up and
down a binary tree of processor cores counting the number
of created and processed tasks. As proven by Francez [37],
termination is detected when these numbers are observed to
be equal in two successive waves. Thus termination is detected
two waves after all tasks have been processed. We observed in
our evaluation that only a small number of waves, often less
than five including termination detection, are executed in an
execution lasting several minutes. This is due to the fact that
a core propagates the termination detection wave only if it has
completed processing all of its local tasks.

The output of the application consists of the pairs which
passed the alignment criteria, as well as for each successful
pair the alignment optimal score, self-score ratio, and percent
identity. These values are buffered on each thread of compu-
tation until termination is detected, at which point the primary
thread on each SMP node writes these values to disk, one file
per SMP node. I/O was an insignificant fraction of the overall
computation and is not discussed further.

Sophisticated static partitioning schemes that take alignment
time estimates into account incur additional cost. We consid-

ered less intrusive approaches to deriving a good initial load
balance. We considered randomization of the sequence, round-
robin and block-cyclic mapping of sequence pairs to integers.
These can be effected with minimal space or time overhead.
Empirical evaluation showed that these optimizations did
not materially impact the observed performance. We do not
discuss them further.

V. RESULTS

Our parallel homology detection framework was tested
using an arbitrary collection of 2560K amino acid sequences
representing an ocean metagenomic data set available at the
CAMERA metagenomics data archive [35]. The sum of the
length of the sequences in this set is 390,345,021, and the
mean±σ is 152.48±167.25; the smallest sequence has 1 amino
acid residue and longest 32794 amino acid residues. Smaller
size subsets containing 1280K and 1920K were derived from
the 2560K sequence set and used for scalability tests. We use
protein/putative open reading frame inputs from metagenomic
data sets to capture a more challenging use-case where the
skewed distribution in sequence length can cause nonunifor-
mity in the PSA tasks.

Experiments were performed on the Hopper supercomputer
at the National Energy Research Scientific Computing Center
(NERSC). Hopper is a 1.28 petaflop/sec Cray XE6 consisting
of 6,384 compute nodes made up of 2 twelve-core AMD
’MagnyCours’ 2.1 GHz processors and 32GB RAM per node.
Hopper’s compute nodes are connected by the Cray Gemini
Network which is a custom high-bandwidth (8.3GB/s), low-
latency (< 1µs) network with a network topology of a 3D
torus. We compiled our application using the the Intel R© C++
64 Compiler XE, version 12.1.2.273 using the flags -O3
and -pthread. The MPI library is a custom version of mpich2
for Cray XE systems, version 5.4.4.

Our solution was tested using sequence data sets ranging
from 320K through 2.5M sequences. The smaller data sets
were derived from the largest data set by taking the first n
sequences from the largest data set. The number of alignments
was reduced from the theoretical

(
n
2

)
maximum by a factor

of 0.1% based on the discussion in Section III. For instance,
819,199,360, 1,843,199,040, and 3,276,798,720 pairs were
aligned for the 1.2M, 1.9M, and 2.5M sequence datasets,
respectively.

The sizes were chosen to stress the parallel framework in the
strong scaling setting, with anticipated execution time under
a few minutes at the maximum scale considered. For a given
degree of parallelism, larger problem sizes and the associated
execution times simplify the job of the load balancer, as
evidenced by the evaluation in this section.

The execution times on Hopper are shown in Figure 2
and tabulated in Table I. For each problem size evaluated,
in addition to observed performance, ideal anticipated per-
formance based on perfect scaling based on the execution
on the smallest core count for that problem size is also
shown. The 2560K sequence set took 134 seconds on 120000
Hopper cores. These results correspond to considerably shorter
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Fig. 2. Execution times on Hopper for varying input
sizes (n = 1280K, 1920K, and 2560K).

Number of Hopper cores (p)
(n) 2016 4032 8064 16128 32256 64512 120000
1280K 1529 752 377 189 100 - -
1920K - 1692 846 426 215 121 -
2560K - - 1518 760 386 205 134

TABLE I
TABLE SHOWING THE PARALLEL RUNTIMES (IN SEC) AS A FUNCTION OF
THE INPUT SIZE AND CORE COUNT, ON HOPPER. AN ENTRY “-” MEANS

THAT THE CORRESPONDING RUN WAS NOT PERFORMED.

turnaround times and large system scaling than considering
in prior work [7]. This is mainly attributable to the work
stealing approach because nothing changed with respect to the
alignment implementation.

We calculated efficiencies for the experiments by assuming
perfect scaling starting from the smallest core count employed
for a particular sequence set. We observe a consistently high
efficiency across problem sizes and core counts, when ignoring
the loss of a core. For each problem size, efficiency drops
the most when the execution wall clock time reduces to less
than a couple of minutes. On Hopper at 120,000 cores, we
observe 75% efficiency for 2560K sequences. We observe that
for a given core count, efficiencies significantly improve with
increased problem size. In particular, we observe efficiencies
above 90% whenever the execution time is at least 500
seconds.

We observe that the dedicated core has negligible impact on
Hopper. We expect the cost to be further reduced on future sys-
tems with larger number of cores. In addition, the helper thread
can be multiplexed with, say, the operating system thread or
other runtime threads. In particular, on BlueGene/Q, the helper
thread could be multiplexed on one of 16 cores, which support
four threads each, or on the seventeenth core dedicated for the
operating system and other supporting activities.

The PSAPS achieved on Hopper are shown in Figure 3.
Our implementation is able to achieve sustained PSAPS per-
formance across all input sizes tested. The highest PSAPS
performance obtained was 2.42×107 on 120000 Hopper cores
for the 2560K input. This is two orders of magnitude greater
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Fig. 3. PSAPS (Pairwise Sequence Alignments Per Sec) performance on
Hopper systems on various input sizes (n = 1280K, 1920K, and 2560K).

than the previous reported top PSAPS performance (6.59×105

on 2K cores [7]) for this problem on the same input.

VI. DISCUSSION AND CONCLUSIONS

All-against-all sequence homology detection is pivotal to
gaining biological understanding of the interplay among
biomolecular sequences. Although essential to guarantee qual-
ity, computation of optimal alignments toward homology de-
tection has never been used in any large-scale application till
date owing to long runtimes and a lack of scalable tools. In
this paper, we demonstrate that it is possible to scale billions
of optimal alignment computations on more than 100,000
cores. Through the use of distributed-memory work stealing,
we were able to demonstrate up to 24.2 million PSAPS and
75% efficiency on 120,000 cores3 on the Hopper Cray XE6
supercomputer for a calculation running under 2 minutes. We
demonstrate efficiencies above 90% for calculations running
for at least 200 seconds.

Several research directions have been planned for the near
future. To further improve PSAPS performance, a combination
of techniques needs to be pursued. Fine-grain parallel im-
plementations exist to accelerate Smith-Waterman alignment
computation for vector instruction sets and GPUs. As future
work, we intend to integrate these optimized kernels to further
enhance the achieved PSAPS rate. This could be essential to
effectively utilize next generation supercomputing platforms.

Recently, work stealing has been adapted to exploit the
property of persistence – repetition of execution character-
istics across calculation steps – to achieve strong scaling
for calculations lasting tens of seconds. We intend to extend
that idea to homology detection, by incrementally improving
work stealing “schedules” by partitioning an all-against-all
alignment computation into a few initial batches of alignment
operations, followed by the rest of the calculation. Rather than
dedicate a core, which imposes a severe performance penalty
on systems with few processor cores per node, multi-threaded

3relative to an execution on 8064 cores



architectures allow the helper thread to handle incoming active
messages to be multiplexed with operating system threads or
an application worker thread.

Processing large sequence databases necessarily requires
distributing the data across multiple shared memory nodes.
This problem is exacerbated by multiple disjoint memory
domains in accelerator-based systems. We intend to study
work stealing among sub-groups of processes that duplicate
a subset of the data, for load balancing homology detection
with partitioned data without incurring data movement costs.

Finally, we plan to implement and integrate a scalable and
yet effective filtering (using string indexes) for rapid identifi-
cation of promising pairs. Dynamic load balancing is required
for implementing this filtering step as well, as the underlying
data structures tend to be irregular and need to work in tandem
with alignment computation. A unified solution using work-
stealing for both pair generation and alignment could be an
interesting exploration.
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