
Empirical Analysis of Space–Filling Curves for
Scientific Computing Applications

Daryl DeFord
Department of Mathematics

Washington State University

Pullman, WA 99164

Email: daryl.deford@email.wsu.edu

Ananth Kalyanaraman
School of Electrical Engineering and Computer Science

Washington State University

Pullman, WA 99164

Email: ananth@eecs.wsu.edu

Abstract—Space-Filling Curves are frequently used in parallel
processing applications to order and distribute inputs while pre-
serving proximity. Several different metrics have been proposed
for analyzing and comparing the efficiency of different space-
filling curves, particularly in database settings. In this paper, we
introduce a general new metric, called Average Communicated
Distance, that models the average pairwise communication cost
expected to be incurred by an algorithm that makes use of an
arbitrary space–filling curve. For the purpose of empirical eval-
uation of this metric, we modeled the communications structure
of the Fast Multipole Method for n–body problems.

Using this model, we empirically address a number of in-
teresting questions pertaining to the effectiveness of space-filling
curves in reducing communication, under different combinations
of network topology and input distribution settings. We consider
these problems from the perspective of ordering the input data, as
well as using space-filling curves to assign ranks to the processors.
Our results for these varied scenarios point towards a list of
recommendations based on specific knowledge about the input
data. In addition, we present some new empirical results, relating
to proximity preservation under the average nearest neighbor
stretch metric, that are application independent.

Index Terms—Space–Filling Curves; Fast Multipole Method;
Proximity Preservation; Scientific Computing; Performance Eval-
uation; Average Communicated Distance.

I. INTRODUCTION

Many applications of parallel computing rely on distributing

codependent portions of a given problem onto multiple proces-

sors. Thus, to complete a particular step in an algorithm, data

may have to be exchanged between many pairs of processors.

This communication behavior often limits the performance

of algorithms in practice, as each processor’s computations

cannot be performed without the data, but generally all of the

processors are trying to communicate at the same time over

the same network.

A related problem exists in distributed processing and data

selection applications, where data indexed across multiple

dimensions must be ordered in such a fashion as to opti-

mize ranged searches through the data. Whether this data

is distributed among multiple processors or stored in a se-

rial database, being able to access the data in an efficient

fashion remains an important concern. This has assumed a

higher prominence in the current “Big Data” era, where data

movement is acknowledged as a serious deterrent to scalability.

Unfortunately, there are no methods to map n−dimensional

data into a 1−dimensional order without separating some

points that have some parameters in common. A preferred

approach to tackle this challenge invokes the theory of space–

filling curves. A Space–Filling Curve (SFC) is a mapping from

a multi–dimensional space to a linear ordering that allows for

unique indexing of the points in that space. A similar, basic

type of mapping occurs when the elements of a matrix are

stored linearly in an array, using the familiar row/column–

major ordering. In general, the order generated by the more

sophisticated SFCs tends to preserve proximity to a higher

degree, especially when the SFC is applied to a complex set

of multivariate data.

In the context of parallel applications, there are two ways

in which SFCs can be used. The first way, which represents

the more common use–case, is to deploy SFCs for linear

ordering the set of input points (or “particles”) from a multi-

dimensional space and subsequently, identify chunks from that

ordered data that will locally reside on individual processors.

The second way in which an SFC can be deployed under a

parallel setting is for processor rank assignment — i.e., how to

label the p processors on a given network with unique ranks

[1 . . . p]. As this rank assignment problem becomes one of

linear ordering the set of p processors from the given multi–

dimensional network, SFCs can be used here too.

Traditionally, on distributed memory computers, this task

of rank assignment is generally performed by the underlying

communication library/framework, independent of the appli-

cation layer. A recent paper of Bhatele et al. evaluates the

effects of different node selections for communication inten-

sive parallel applications [1]. In addition, with the emergence

of massively parallel on-chip network architectures (e.g., [2],

[3]), programmers have a better control over labeling the cores

(or tiles of cores). Consequently, in this paper, we study both

these types of SFCs, and henceforth refer to them as “particle–
order SFCs” and “processor–order SFCs”.

Many analytical results have been constructed and proved

for a variety of particle–order SFCs and specific applications

e.g. [4]–[10]. These results tend to be asymptotic in nature,

and there does not appear to have been a significant amount

of empirical testing comparing the efficacies of the different

SFCs for the presented models. In this paper, we will consider

2013 42nd International Conference on Parallel Processing

0190-3918/13 $26.00 © 2013 IEEE

DOI 10.1109/ICPP.2013.26

170

2013 42nd International Conference on Parallel Processing

0190-3918/13 $26.00 © 2013 IEEE

DOI 10.1109/ICPP.2013.26

170

2013 42nd International Conference on Parallel Processing

0190-3918/13 $26.00 © 2013 IEEE

DOI 10.1109/ICPP.2013.26

170

2013 42nd International Conference on Parallel Processing

0190-3918/13 $26.00 © 2013 IEEE

DOI 10.1109/ICPP.2013.26

170

2013 42nd International Conference on Parallel Processing

0190-3918/13 $26.00 © 2013 IEEE

DOI 10.1109/ICPP.2013.26

170

2013 42nd International Conference on Parallel Processing

0190-3918/13 $26.00 © 2013 IEEE

DOI 10.1109/ICPP.2013.26

170

four discrete SFCs that are commonly studied and used in a

wide variety of applications: the row/column–major order, the

Z–curve [11], the Gray order [12], and the Hilbert Curve [13]

— as candidates for particle– and processor–order SFCs.

Similarly, several different metrics have been used to eval-

uate the efficiency of SFC use. In problems with multi-

dimensional data, the most commonly used metric is the

number of “clusters” accessed, which measures the number

of times an SFC leaves and reenters a rectilinear region of

interest corresponding to a range query [10]. The better the

ordering, the smaller the average number of clusters that needs

to be accessed for any particular query. Thus, recursively

constructed, continuous curves often perform very well under

this metric. When applied to parallel processing applications,

the clustering metric can provide a way to estimate network

communications required for range queries under different

SFC settings.

In 2012, Xu and Tirthapura introduced a different metric

called the Average Nearest Neighbor Stretch (ANNS) [14].

This metric evaluates the multiplicative change in distance be-

tween points that are adjacent in the space, as they are mapped

into an SFC’s linear ordering. As opposed to the notion of

clustering, this metric is more generic and provides asymptotic

data on the relative efficiency of the curves themselves, disas-

sociated from any particular application. As such, theoretical

results describing average nearest neighbor stretch behavior

may be applied to a wide variety of situations, independent of

any particular algorithm, hardware, or application.

A. Contributions

In this paper, we propose a new metric — one that
is more relevant to parallel computing — called Average
Communicated Distance (ACD), for evaluating the efficacy
of using different SFCs in parallel scientific applications.
The metric provides a way to arrive at an estimate for the

expected communication delay as imposed by a particular

implementation of an algorithm.

Definition 1 (ACD Metric): Given a particular problem in-

stance, the Average Comunicated Distance (ACD) is defined as

the average distance for every pairwise communication made

over the course of the entire application. The communication

distance between any two communicating processors is given

by the length of the shortest path (measured in the number of

hops) between the two processors along the network intracon-

nect.

For evaluation purposes, we model an abstraction of

the communication structure of the Fast–Multipole Method

(FMM) [15], which is one of the most widely used methods in

scientific computing for solving the classical n–body problem.

This algorithm takes a set of particles in space with associated

“force” values (usually gravitational mass, or electromagnetic

charge) and computes local pairwise interactions directly,

and long range interactions collectively. A more thorough

explanation of the FMM algorithm can be found in [16].

The empirical model described in this paper represents a

new approach to analyze SFCs — by attempting to model

and quantify expected communication under three different

parameter dimensions, viz. SFCs, network topologies and

input distributions. Our empirical model covers both traditional

(particle–ordering) and emerging (processor–ordering) use–

cases of SFCs. To the best of our knowledge, this is the first

attempt at analyzing both use-cases in tandem.
More specifically, we address the following list of research

questions using our empirical model:
Q1) What is the nearest-neighborhood preservation efficacy

achieved by different particle–order SFCs?
Q2) What is the effect of different combinations of {particle-

order, processor-order} SFCs on the Average Communi-
cated Distance metric?

Q3) What is the performance of each of the particle-order
SFCs under the ACD metric, for a given network topol-
ogy? Similarly, what is the performance of each of the
network topologies under the ACD metric, for a given
input distribution?

Q4) How does the Average Communicated Distance vary
as a function of processor size, input size and input
distribution, for each SFC?

For the last two questions, we use the same SFC curve for

both particle– and processor–ordering. For simplicity, we used

2D space in all our experiments.
Our findings suggest both theoretical avenues of inquiry

for future research and practical applications of particular

SFCs, both for distributing the input data among parallel

processors, and for canonical labeling of processors on a

particular network topology, with an overall goal of mini-

mizing communication network usage under a non–contention

setting. In addition, we empirically corroborate most of the

observations made in [14] and also present some surprising

results relating to the more well-studied average nearest neigh-

bor stretch metric. Collectively taken, these findings along

with the proposed empirical methodology can be expected to

serve as a design guide for algorithm developers and parallel

programmers in scientific computing. Although the effects of

network contentions on our findings cannot be ignored, they

are not studied as part of this paper.
Our work in this paper differs from previously published

approaches in several ways.
• First, the metric that we have defined (ACD) does not

appear to have been considered previously in the lit-

erature. Also, as demonstrated in this paper using the

FMM application, the metric can be made to more closely

model the expected communication behavior of any target

parallel application — something for which currently

available metrics such as ANNS and clustering are not

suitable.

• Secondly, this appears to be the first paper that studies

the use of SFCs for both ordering and separating data

points as well as distributing the sets of points onto

the processors using a possibly independent SFC. Also,

our empirical results can serve as a design reference to

assist researchers and application scientists interested in

applying these SFCs to similar types of problems to those

171171171171171171

considered in this paper.

• Finally, our generalizations of the nearest neighbor con-

siderations introduced by Xu and Tirthapura provide an

intermediate measure of SFC performance between the

ANNS and all neighbors stretch.

B. Related Work

There exists a significant body of literature focused on the

use of SFCs for database applications under the clustering

metric [7], [8], [10], [17]. In these problems, the better the

ordering, the smaller the average number of clusters that

needs to be accessed for any particular query. Note that these

studies are concerned with particle–ordering exclusively. In

1990, Jagadish applied the Hilbert curve to this problem and

presented some analytic and empirical results showing that the

Hilbert curve outperformed both the Gray order and Z–curves

[8]. Later, by restricting attention to two–dimensional spaces,

he was able to give a closed–form expression for the clustering

number of the Hilbert curve using its recursive properties [7].

The general case of two–dimensional curves was considered

by Asano et al. [5]. They considered general combinatorial

properties of these SFCs and devised a construction of an SFC

with improved worst case performance.

These results are extended in a more recent work of Moon

et al. that extends the results on Hilbert clustering numbers

to rectilinear surfaces in n−dimensions [10]. This paper

mentions a number of applications of this particular use of

SFCs and has become an influential paper in the field, having

been cited several hundred times since its publication.

More recently, significant advances have been made on this

problem by Xu and Tirthapura [17]. This important paper

provides both a lower bound for the optimal clustering number

of any given SFC in n−space, and also shows that under

certain realistic assumptions, all continuous SFCs are optimal

with regards to clustering. This is a particularly surprising

result as it implies that for these types of problems the Hilbert

curve offers no asymptotic advantage over even the simple

“snake scan” ordering (the continuous analog of the basic

row/column order).

In another recent paper [14], Xu and Tirthapura consider an

interesting generalization of this problem defining the average

nearest neighbor stretch of a SFC to be the multiplicative

increase in distance between points that are adjacent in the

n−space after they are mapped into a linear ordering. They

define other metrics such as the all-pairs stretch and maximum

nearest neighbor stretch to provide a more complete picture

of the efficiency of any particular mapping. Besides giving a

lower bound for the efficiency of any SFC this paper provides

another surprising result; it is shown that the Z–curve and the

row major ordering are asymptotically equivalent under their

metric and that both of these SFCs are within a constant factor

of the optimal lower bound that they provide. Both papers of

Xu and Tirthapura contain excellent historical surveys of the

motivating results for their problems [14], [17].

Organization of the Paper: The rest of the paper takes the

following format. In Section II, we define the terms that we

will use throughout the paper and give explicit examples of

the SFCs, distributions, and topologies used in our analysis.

Section III contains an overview of our empirical algorithm

and describes our experimental methodology, while Section

IV describes our algorithm for calculating the ACD metric

for FMM applications. The remaining sections contain the

results of our experiments. Specifically, Section V describes

our results related to generalization of Xu and Tirthapura’s

ANNS metric and considers our research question 1. Section

VI contains our results on minimizing communication distance

in parallel FMM instances and answering research questions

2, 3 and 4. The full generality of the ACD metric is discussed

in Section VII. Finally, Section VIII concludes the paper along

with possible extensions and experiments for future study.

II. DEFINITIONS AND TERMINOLOGY

A. Space–Filling Curves

In this paper, we evaluate the efficiency of four SFCs,

the Hilbert curve, the Z–curve, the Gray order, and the

simple row–major order. Constructions of these SFCs proceed

as follows. Given a 2k × 2k universe of points, or spatial

resolution, each particle is assigned a unique natural number

from {1, 2, 3 . . . , 4k} by the particular curve’s ordering. Here

we introduce and describe the basic constructions of the SFCs

examined in this paper. All of these curves are well known and

have been frequently studied for similar purposes. Complete

constructions and definitions can be found in [5].

(a) Hilbert Curve H4 (b) Z–Curve Z4

(c) Gray Order G4 (d) Row/Column–Major

Fig. 1. An example illustration of the Space-Filling Curves considered in
our study.

1) Hilbert Curve: The Hilbert curve was originally defined

by David Hilbert [13] as a specific example of a wide class

of SFCs originally discovered by Giuseppe Peano [18]. It is a

recursively constructed SFC where each iteration of the curve

contains four copies of the previous iteration, rotated so that

the entry and exit points align.

172172172172172172

We will consider discrete iterations of the Hilbert curve,

where Hk represents the kth iterations, while the analytic,

continuous Hilbert curve is the SFC obtained by taking

limk→∞Hk. For the discrete case, Hk+1 is constructed from

four copies of Hk in a 2 × 2 grid where the individual Hk

are rotated to align their entry and exit points. Due to this

construction process, Hilbert curves have many symmetries

and combinatorial properties. Figure 1(a) shows H4.

2) Z–curve and Gray Order: The Z–curve is obtained by

taking the binary representations of the coordinates of each

point and interleaving the bits together to construct a single

integer representation. This ordering can also be constructed

recursively in a similar fashion to the Hilbert Curve, but Zk+1

is obtained without rotating the Zk. The Gray order takes the

Z–curve representations of each point and orders them by the

Gray code, where each successive binary representation differs

in exactly one place, instead of in a linearly increasing fashion.

This leads to a recursive construction where the lower two Gk
are not rotated and the upper two Gk are rotated 180◦. Figure

1(b) and Figure 1(c) show these recursively constructed SFCs

respectively.

Note that it is more computationally efficient to compute

the order of each point directly with bit operations than to

use recursive techniques for all of these curves. However,

for theoretical considerations, the combinatorial properties of

the recursive constructions are more valuable for asymptotic

analysis, especially for the clustering metric.

3) Row Major: The row major curve is the simplest of the

SFCs that we will consider. To construct a row major ordering,

simply assign the points in the first column the values from

{1, 2, 3, . . . 2k} while in general the points in the ith column

are numbered from {(i− 1)× 2k + 1, . . . i× 2k}.
B. Network Topologies

We studied the performance of six different communications

network topologies. The simplest networks are bus and ring

topologies, where each processor may only communicate with

two direct neighbors. The bulk of our experiments focused

on mesh/grid and torus topologies which are more common

on HPC architectures. We also studied the quadtree topology,

where each communication must travel up and down the tree,

and the classical hypercube topology.

C. Probability Distributions for Input

In order to model random initial particle placements for our

FMM algorithm we used three different types of probability

distributions to populate our problems. The first distribution

that we used is the uniform distribution, where each point in

the spatial resolution has an equal probability of being selected

(Figure 2(a)). To model centrally distributed problems we used

a bivariate normal distribution with symmetric axes (Figure

2(b)). Finally, in order to model asymmetric or skewed distri-

butions, we selected particles with an exponential distribution,

which clusters the selected values in a single quadrant (Figure

2(c)). Figure 3 shows an example particle–ordering achieved

for exponentially distributed points.

(a) Uniform Distribution (b) Normal Distribution

(c) Exponential Distribution

Fig. 2. A figure showing examples of the two dimensional probability
distributions considered in this paper.

(a) Hilbert Ordering (b) Gray Ordering

(c) Z Ordering (d) Row Major Ordering

Fig. 3. As an example of particle–ordering SFCs, this figure shows the
linear order of the particles displayed in Figure 2(c) by each of the SFCs
respectively.

III. MODELING COMMUNICATION FOR THE FMM

ALGORITHM

In what follows, we describe our model for the interpro-

cessor communication in the FMM algorithm borrowing the

terminology used by Hariharan et al. [19] in their work on

implementing the FMM algorithm for computational electro-

magnetics. In this algorithm, the spatial domain is represented

as a compressed quadtree for 2D (compressed octree for 3D),

where the cells with particles at the finest resolution occupy

leaf positions, and coarser cells are represented by internal

nodes [20]. For the purpose of analysis, let us assume that a

cell at the finest resolution may contain at most one particle.

The communication at every time step of the FMM al-

173173173173173173

gorithm is dictated by two types of interactions: near–field
interactions (NFI) and far–field interactions (FFI).

The near–field interaction list is computed for each particle

and requires information from all particles within radius r. For

instance, in 2D the number of nearest neighbors which share

an edge/corner with a cell is bounded by 8 (corresponding to

r = 1). These neighboring cells in the quadtree representation

corresponds to communicating with at most 8 other leaf nodes.

For particular linear orderings of particles and of processors

on the network, the number of hops to communicate for each

such near-field pairwise interaction can easily be computed.

The computation of far-field interactions results in three

different types of communications:

a) Interpolation: This maps to an upward accumulation on

the quadtree, where values from the children of an internal

node are used to calculate the value at that node.

b) Interaction list: This is a step that applies to all the

internal nodes of the quadtree. Here, each cell at coarse

resolutions interacts with all of the children of its parent’s

neighbors that are not adjacent to the cell at that resolution.

From a communication perspective, this corresponds to

a communication between the processor that holds that

internal node in the quadtree with all other processors that

hold its parent’s children’s cells’ internal nodes.

c) Anterpolation: This maps to a downward accumulation

on the quadtree, where the values at a parent node are

percolated down to its children.

In order to calculate the Average Communicated Distance

(ACD) required for the far–field interaction, we separate the

interpolation and anterpolation steps from the interaction list

connections. To compute the quadtree for the upwards and

downwards accumulation steps, we separate the processors by

the quadrants of the particles that they have been assigned.

Then, we use the linear ordering of the processors to determine

what transmissions are necessary to gather information from

each particle to the top of the tree. By convention, we assume

that for each level of resolution, the lowest ranked processor in

a quadrant will collect the data from the cells at that level. This

allows us to compute the shortest communication distances

necessary to implement the interpolation and anterpolation

interactions.

Calculating the interaction list is more complex. For each

cell at each level of resolution, we construct a list containing

the children of the cell’s parent’s neighbors that share no

common edges or corners with the original cell, and are at the

same level of resolution of the original cell (refer to Figure

4). Each cell in the list may contain multiple particles that

have been distributed across multiple processors. We again

adopt the convention that the processor that contains the

lowest indexed particle in the linear ordering is responsible for

communication of that cell. Thus, for each cell we compute

the distance between the processor representing that cell and

the processor representing each of the cells in its interaction

list.

Near–field and far–field interactions lead to significantly

different computational scenarios and place distinct burdens

(a) Coarser Resolution

(b) Finer Resolution

Fig. 4. Interaction Lists: Figure showing two partitioned spatial resolu-
tions. In the coarse resolution image (a), the interaction list of node 0 is
{2, 3, 6, 7, 8 − 16}, or every node that it not in its quadrant. However, the
interaction list of node 6 is {0, 4, 8, 12, 13, 14, 15}. At the finer resolution,
nodes in the interaction list of x are marked with y and nodes in the interaction
list of a are marked with b.

on the processor communication network. Particularly, far–

field interactions demand more resources at coarser resolutions

since the communicating pairs of processors are separated by

a larger distance across the network. On the other hand, the

demand in communication for near–field interactions increase

significantly with the number of particles n, as well as the

radius r, and the relative density of the particles, which is

determined by the distribution.

IV. ALGORITHM FOR COMPUTING THE ACD FOR FMM

APPLICATIONS

To effectively characterize the communication efficacies

of different SFCs on to the FMM model, we study and

evaluate the two interaction types — near-field and far-field

— separately. The initial operation of our method is the same

for either case and can be described as follows:

Given an initial distribution of n particles in a 2k×2k spatial

resolution:

1) Order the particles linearly with the specified particle–

order SFC;

2) Partition the particles into p consecutive chunks of size
n
p each;

3) Order the processors with the specified processor–order

SFC (applies only to mesh and torus topologies);

4) Distribute chunk i to processor i, for 1 ≤ i ≤ n.

For NFI, we compute the neighborhood of each particle

and determine the distance between each communication that

occurs. For FFI, we use a log–tree in each quadrant to

contact each processor that contains at least one particle in

the quadrant.

For the near–field interactions:

174174174174174174

5) For each particle x, construct a list of all neighbors y, of

x, such that d(x, y) ≤ r.

6) For each (x, y) pair, determine the communicated dis-

tance as the shortest path distance along the network

(possibly zero) between the processor that contains x and

the processor that contains y. Note that this manner of

calculating the distance renders our model contention-

unaware.

7) Output the sum of these communication distances for all

(x, y) as the ACD value corresponding to all near-field

interactions.

For the far–field interactions:

5) For each quadrant containing at least one particle, com-

pute an ordered list of all of the processors that contain

at least one particle in that quadrant.

6) Construct a log–tree (quadtree in 2D) connecting the

processors in each quadrant.

7) To capture the parent-child communication that happens

during interpolation and anterpolation, we compute the

shortest path distance along the network between the two

corresponding processors.

8) Construct the interaction list for each processor at each

level of resolution.

9) For each processor, compute the distance along the net-

work between that processor and each other processor in

its interaction list.

10) Output the sum over all the communication distances —

Interpolation, Anterpolation, and Interaction List — as

the ACD value corresponding to all far-field interactions.

Notice that these two abstractions can be applied in much

more general circumstances by noticing that these elements

correspond to traditional archetypes of parallel communica-

tion. Nearest neighbor queries as modeled in the NFI step

are common in parallel computing applications, and the FFI

abstraction matches parallel prefix and collective broadcast

type communications. In Section VII we describe how ACD

can be applied to applications other than FMM.

V. EXPERIMENTAL RESULTS: NEAREST NEIGHBOR

PROXIMITY PRESERVATION

In this section we address our first research question: What
is the nearest–neighborhood preservation efficacy achieved
by different particle–order SFCs? Note that this question is

oblivious to the underlying network topology. For this purpose

we consider the metric introduced by Xu and Tirthapura called

the average nearest neighbor stretch (ANNS) [14]. Given

a particular spatial resolution and an SFC, the ANNS can

be computed by summing over the distance in the linear

ordering between each pair of nearest neighbors (points that

are separated by a Manhattan distance of 1 in k–space). Thus,

this provides a measure of the efficiency of an SFC that is

application independent. The ANNS for SFCs can be easily

modeled within our method.

Instead of taking a random subset of the points in a given

spatial resolution as the input to our program, we input every

point of the resolution. Then, setting the radius equal to 1
and computing the linear distance between each point and its

neighbors, the ACD is given by the ANNS for that particular

spatial resolution and SFC, in two dimensions. In their paper,

Xu and Tirthapura gave analytic results for the Z–curve and

the row major curve. We confirmed their analytical results

and obtained empirical results for these curves as well as the

Hilbert curve and Gray order.

Figure 5(a) shows our results for the four SFCs as the

spatial resolution ranges from 4 points to 512 × 512 points

for the standard neighborhood size r = 1. Our results clearly

demonstrate that in two dimensions, the Z–curve and row

major significantly outperform the Gray code and the Hilbert

curve. This is surprising, since under most previously consid-

ered, clustering–type metrics the Hilbert curve is traditionally

assumed to give the best results, due to its greater complexity

especially in empirical evaluations [7], [8]. As the number of

points in the spatial resolution increases, the relative ordering

remains the same and the differences between SFC perfor-

mances increases.

(a) Standard ANNS

(b) Large Radius ANNS

Fig. 5. A comparison of different particle-order SFCs on Average Nearest
Neighbor Stretch.

We generalized this metric by expanding the definition

of nearest neighbors to larger Manhattan radii. Thus, we

calculated the multiplicative increase in distance from k–space

to the linear ordering for all of the points within a fixed radius,

not just the nearest neighbors. In each of the experiments we

175175175175175175

performed, irregardless the radius used, the relative ordering

of the curves was the same. Figure 5(b) shows similar results

for a larger neighborhood size with r = 6.

These results verify the theoretical and asymptotic analyses

of Xu and Tirthapura on the Z–curve and row major ordering.

Their paper focused primarily on these two SFCs and showed

that these curves were asymptotically equivalent in terms of

the ANNS metric. Moreover, they proved that both SFCs

performance is within a constant factor of the optimal lower

bound for all continuous SFCs. Our empirical data suggests

that analytical analysis of the Hilbert curve and Gray order is

likely to demonstrate that these curves do not perform as well

under this metric. From a theoretical perspective, the greater

complexity of the Hilbert and Gray curves makes proving

asymptotic results much more difficult for these curves. Sim-

ilarly, our extension of the ANNS metric to larger nearest

neighbor radii presents a broader picture of the proximity

preservation properties of the SFCs that we have studied.

VI. EXPERIMENTAL RESULTS: EVALUATION UNDER THE

AVERAGE COMMUNICATED DISTANCE METRIC

We varied the probability distribution of the particles, the

size of the problems, and the topology of the network to gain a

more complete understanding of the relative performances of

the SFCs for FMM-type applications. We report specifically

on the results of three separate experimental designs, tailored

to our research questions Q2-Q4 (in Section I). The results

presented here are averages over multiple independent trials

for each set of parameters.

A. Comparing Different Particle/Processor-Order SFC Com-
binations

We compared the effect of using different combinations

of particle/processor-order SFCs on the ACD metric. All

experiments were designed using a fixed input size of 250,000

particles, drawn from each of the three distributions (Uniform,

Normal, Exponential) separately, using a spatial resolution of

1024×1024. For the network of processors, we assumed a set

of 65,536 processors connected with a torus topology. Each

of the particle/processor–order SFCs was chosen to be one of

{Hilbert, Z–curve, Gray, Row major}. This resulted in 16 SFC

pairing combinations.

Tables I and II show the results for the near–field and

far–field interaction models, respectively. For the near–field

interactions (Table I), the results are unanimously in favor of

the Hilbert ordering for every particle distribution.

Note that although the relative performance of the curves

is unchanged as the distribution varies, the recursively defined

curves offer much better performance on uniformly distributed

points than on the bivariate normal distribution. This is because

in a bivariate normal distribution, the particles are clustered

towards the center, which is the location of the largest discon-

tinuities in each recursively constructed linear mapping, since

the central particles all belong to separate quadrants of the

SFC.

TABLE I
A COMPARISON OF DIFFERENT PARTICLE/PROCESSOR-ORDER SFC

COMBINATIONS FOR NFI UNDER VARIOUS DISTRIBUTIONS. THE LOWEST

ACD VALUE WITHIN EACH ROW IS DISPLAYED IN BOLDFACE, WHILE THE

LOWEST ACD VALUE WITHIN EACH COLUMN IS DISPLAYED IN italics.

Particle Order

Processor Order ↓ Hilbert Curve Z–Curve Gray Code Row Major
Hilbert Curve 4.008 4.308 4.939 13.117
Z–Curve 5.486 5.758 6.573 18.127
Gray Code 5.802 6.010 6.970 19.220
Row Major 9.126 9.763 11.713 70.353

(a) Uniform Distribution

Particle Order

Processor Order ↓ Hilbert Curve Z–Curve Gray Code Row Major
Hilbert Curve 8.561 9.297 10.123 20.340
Z–Curve 11.003 11.551 12.984 26.842
Gray Code 11.881 12.595 13.249 28.188
Row Major 20.143 22.221 24.053 66.719

(b) Normal Distribution

Particle Order

Processor Order ↓ Hilbert Curve Z–Curve Gray Code Row Major
Hilbert Curve 5.238 5.654 6.271 14.943
Z–Curve 6.943 7.070 8.235 20.851
Gray Code 7.276 7.663 8.760 22.269
Row Major 12.483 13.017 15.289 61.227

(c) Exponential Distribution

TABLE II
A COMPARISON OF DIFFERENT PARTICLE/PROCESSOR-ORDER SFC

COMBINATIONS FOR FFI UNDER VARIOUS DISTRIBUTIONS. THE LOWEST

ACD VALUE WITHIN EACH ROW IS DISPLAYED IN BOLDFACE, WHILE THE

LOWEST ACD VALUE WITHIN EACH COLUMN IS DISPLAYED IN italics.

Particle Order

Processor Order ↓ Hilbert Curve Z–Curve Gray Code Row Major
Hilbert Curve 19.494 20.841 22.572 31.124
Z–Curve 24.217 24.793 27.787 37.709
Gray Code 24.622 25.446 27.997 39.282
Row Major 44.513 48.762 50.118 57.880

(a) Uniform Distribution

Particle Order

Processor Order ↓ Hilbert Curve Z–Curve Gray Code Row Major
Hilbert Curve 26.336 26.824 31.963 32.542
Z–Curve 29.160 28.036 34.241 36.663
Gray Code 29.449 27.981 31.909 37.291
Row Major 43.639 44.636 49.133 45.475

(b) Normal Distribution

Particle Order

Processor Order ↓ Hilbert Curve Z–Curve Gray Code Row Major
Hilbert Curve 18.960 19.841 23.007 31.368
Z–Curve 24.672 23.316 26.315 37.576
Gray Code 23.762 24.076 27.973 37.863
Row Major 42.447 44.067 46.872 50.963

(c) Exponential Distribution

The difference in the ACD values under these two distri-

butions is approximately a factor of 2. This is a significant

variance considering the total number of communications that

must be performed in a realistic implementation. However,

since the relative performance of the curves is unchanged,

176176176176176176

(a) Near–Field Interactions (b) Far–Field Interactions

Fig. 6. The charts show the results of comparing different network topologies for a) the Near–Field; and b) Far–Field interactions, respectively. All experiments
were performed using 1, 000, 000 uniformly distributed particles on a 4096 × 4096 spatial resolution. For NNI, a radius of 4 was used. Results from the
bus and ring topologies, as well as the row-major entries for the near–field interactions have been omitted because they are significantly larger than the other
ACD values. This plot is representative of all the experiments we performed to evaluate the topologies.

there is no incentive to shift the ordering of particles between

FMM iterations to reflect the dynamically changing particle

distribution profile.

For the far–field interactions (Table II), the results are

similar, although not identical. In this case, under the non–

uniform distributions (i.e., Normal, Exponential), the Z–curve

offers slightly lower ACD values than the Hilbert curve, when

the processors are ranked either with the Gray or Z–Curves.

In all other cases, the Hilbert curve provides superior results.

Note that the difference in ACD performance between the

distributions is significantly different than in the near–field

interaction case. Particularly, particles that are distributed in

an exponential distribution give better values than when the

particles are distributed uniformly. This is because at the finer

levels of interaction, particles in the sparser quadrants have

smaller interaction lists, and fewer long–distance transmissions

are necessary with the recursive SFCs.

Overall, these results suggest that for implementations of

FMM-type algorithms, use of any recursively constructed SFC

(i.e., Hilbert, Z, and Gray) can be expected to offer significant

reduction in the overall communication. That said, the results

in Tables I and II show a clear advantage of using either the

Hilbert or Z-curve over the Gray curve under the ACD metric

— i.e., if one were to order the efficacies of the different

curves by their ACD values, then the following ordering is

expected:

{Hilbert ≈ Z} < Gray << Row-major.

The results also point to the following recommendations:

From a processor-ordering standpoint, the Hilbert curve is

the clear winner over all other curves for the torus topology,

regardless of the particle-ordering used. Although the results

are not presented, this observation also holds for the mesh

topology. On the other hand, the choice for the particle-

ordering SFC is not as obvious. If the processors are ranked

using the Hilbert/row-major scheme in the underlying mesh or

torus topology, using the Hilbert curve to order the particles

in likely to be the most communication-effective choice.

Otherwise, both Hilbert and Z-curves offer comparably best

choices.

B. Effect of the Network Topology

Next, we address the following research questions under

the ACD metric: Q3) What is the performance of each of
the particle-order SFCs under the ACD metric, for a given
network topology? Similarly, what is the performance of each
of the network topologies under the ACD metric, for a given
input distribution? In the interest of keeping the number of

studies combinatorially less-explosive, we used the same SFC

within each experiment — e.g., in an experiment involving

the Hilbert curve, both the particle and processor orderings

were achieved using Hilbert curve. Consequently, this study

generated 24 sub-cases: one for each {topology, SFC} pair. In

our experiments, we used fixed sets of inputs and computed

the ACD for each topology under each SFC.

Figure 6 shows the results for the Near–Field and Far–

Field interactions. As in the other experiments, the results

were fairly conclusive. The Hilbert curve offered the best

performance across the different topologies, while the topolo-

gies themselves show a well-defined order. Unsurprisingly,

for the near–field interactions, the hypercube gave the best

results. However, this result should be taken with some cau-

tion because our experiments do not account for potential

contention scenarios, which could degrade the performance

for the hypercube and quadtree topologies more so than for

others. The trends shown in this plot are representative of all

the experiments we performed using different input sizes and

distributions.

For far–field interactions, the quadtree topology leads to

slightly smaller values than even the hypercube. This is to be

177177177177177177

(a) NFI (b) FFI

Fig. 7. These plots show ACD values for a) near–field, and b) far–field interactions, as a function of the number of processors and the SFC used. The input
used was fixed at 1,000,000 uniformly distributed particles. Some of the row–major data has been excluded from these plots because for this SFC, the ACD
values at larger processor numbers were significantly higher than the other data–points.

expected because the quadtree’s layout mirrors the structure of

communication incurred during FFI. Again, contention needs

to be factored in before corroborating this trend. Also as

expected, the performance of the bus and ring topologies was

significantly worse than the other topologies. Similarly, the

row-major performance was very poor compared to the other

SFCs, and this data offers compelling reasons to utilize any

other SFC for FMM–type implementations.

Notice that, for the recursively-defined SFCs, the results

from the mesh and torus topologies are highly comparable for

both interaction models, despite the wrapped around connec-

tions in the torus. This observation suggests that the proximity

preserving properties of the recursively defined SFCs (viz.

Hilbert, Z-curve, Gray) provide an equally effective mapping

on to the mesh as on the torus — possibly also suggesting the

lesser utility of the wrapped links in such cases. However, this

analysis does not apply to the row–major ordering, which, as

Figure 6(b) shows, returns markedly lower ACD values on a

torus topology than on a mesh.

C. Other Parametric Studies

We also studied the effect of varying the processor size,

number of particles, and the input distribution on the ACD

metric (Q4). In all these experiments, we fixed the network

topology as a torus. For the near–field interactions, we varied

the nearest neighbor radius r for all cases, but this parameter

change did not affect the ordering of the SFCs. Obviously,

larger radii require more processor to processor communica-

tions and result in higher ACD values. However, since this

affects all curves proportionately, it does not provide any

incentive to select separate SFCs for larger radius values.

Figure 7 shows plots for both the near–field and far–field

interactions as the number of processors varies. From this data

it is easy to see that the Hilbert curve once again offers the best

performance, for both the near–field and far–field interactions,

while the Gray code and Z-order are approximately equivalent,

and the row-major curve is very poor. Although not shown,

this behavior also holds for increasing input sizes. For larger

problem sizes, the gains in efficiency by selecting a better SFC

increase significantly, especially if the original curve is the row

major, whose ACD values are significantly greater than any of

the other SFCs we tested. Our results suggest that this holds

both as the number of particles is increased for a fixed number

of processors and as the number of processors is increased for

a fixed number of particles.

As for input distribution, the ACD achieved during NFI was

observed to be the best for the uniform distribution, followed

by exponential and normal distributions (in that order). On

the other hand, for FFI, the effects of the input distributions

were generally indistinguishable. These observations can also

be inferred from Tables I and II.

VII. GENERALITY OF THE ACD METRIC

Although we have modeled the FMM algorithm in or-

der to demonstrate the efficacy of the ACD metric, any

communication bound parallel application can be evaluated

with this metric. By abstracting different primitives of com-

munications models, the ACD for most common types of

parallel communication such as all-to-all and broadcast can

be computed in advance for particular applications to allow

algorithm designers to select the appropriate SFCs for data

separation and processor ranking.

The algorithms presented in Section IV for computing the

ACD for NFI and FFI interactions imposed by FMM provide

insight into this process. For example, the calculation at each

level of resolution for the FFI is equivalent to a log–tree

broadcast communication, which is frequently used in parallel

implementations. Working at this level of abstraction, the

ACD can be calculated for any application with consistent,

significant communication demands.

Given the appropriate input parameters, like the network

topology, calculating the expected communication costs for

178178178178178178

these primitives modified for the particular application can

be done for each SFC under consideration. The curve that

gives rise to the lowest ACD value can then be selected to

minimize the losses due to communication in the full–scale

computation. For a particular instance, all that is required is

an abstraction of the communication demands and hierarchy

over the topology. Then, the ACD value can be calculated for

each type of communication, point–to–point, all–to–all, etc.,

and these can be combined to predict the performance of the

implementation.

VIII. CONCLUSIONS

In this paper, we presented a new metric called Aver-

age Communicated Distance for evaluating the efficacies of

different SFCs for parallel scientific computing applications.

Using this metric, we modeled the communication char-

acteristics of the classical FMM algorithm in its different

stages. Consequently, we performed an extensive empirical

evaluation of several standard SFCs under this model. This

empirical methodology represents a new approach to analyze

SFCs for parallel applications — by attempting to model

and quantify expected communication under three different

parameter dimensions, viz. SFCs, network topologies, and

input distributions. Notice that although this paper focuses on

the FMM model, the ACD metric may be used to evaluate

any parallel algorithm or application. Our results empirically

validate previously published results in theory. In addition,

based on our results, we provided a list of recommendations

that could serve as benchmarks for effective use of SFCs

in FMM-type applications. Our findings suggest both theo-

retical avenues of inquiry for future research and practical

applications of particular SFCs, both for distributing the input

data among parallel processors, and for canonical labeling of

processors on a particular network topology, with an overall

goal of minimizing communication network usage.

Future research directions include:

i) Study the impact of data volume and network contention

on communication efficiency, and into the modeling of

the ACD metric;

ii) Validation of the communication trends projected by the

ACD metric using real world application and using 3D;

and

iii) Theoretical investigation to study a direct mapping func-

tion from multi–dimensional space to 2D/3D intraconnect

network.

ACKNOWLEDGMENTS

The authors would like to thank Professor Nairanjana

Dasgupta and Professor Srikanta Tirthapura for their useful

discussions. This research was partially supported by NSF

grant IIS 0916463 and DOE award DE-SC-0006516.

REFERENCES

[1] A. Bhatele, T. Gamblin, S. H. Langer, P.-T. Bremer, E. W. Draeger,
B. Hamann, K. E. Isaacs, A. G. Landge, J. A. Levine, V. Pascucci,
M. Schulz, and C. H. Still, “Mapping applications with collectives
over sub-communicators on torus networks,” in Proceedings of the

International Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC ’12. Los Alamitos, CA, USA: IEEE
Computer Society Press, 2012, pp. 97:1–97:11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2388996.2389128

[2] T. G. Mattson, R. Van der Wijngaart, and M. Frumkin, “Programming
the intel 80-core network-on-a-chip terascale processor,” in Proceedings
of the 2008 ACM/IEEE conference on Supercomputing, ser. SC ’08.
Piscataway, NJ, USA: IEEE Press, 2008, pp. 38:1–38:11. [Online].
Available: http://dl.acm.org/citation.cfm?id=1413370.1413409

[3] T. Corporation, “Tilera,” Sep. 2012. [Online]. Available:
http://www.tilera.com

[4] S. Aluru and F. E. Sevilgen, “Parallel domain decomposition and load
balancing using space-filling curves,” in Proceedings of the Fourth
International Conference on High-Performance Computing, ser. HIPC
’97. Washington, DC, USA: IEEE Computer Society, 1997, pp. 230–.
[Online]. Available: http://dl.acm.org/citation.cfm?id=523991.938911

[5] T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmayer,
“Space-filling curves and their use in the design of
geometric data structures,” Theoretical Computer Science, vol.
181, no. 1, pp. 3 – 15, 1997. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0304397596002599

[6] B. Hariharan and S. Aluru, “Efficient parallel algorithms and software
for compressed octrees with applications to hierarchical methods,” in
High Performance Computing - HiPC 2001 8th International Confer-
ence. Proceedings, 2005, pp. 17–20.

[7] H. V. Jagadish, “Analysis of the hilbert curve for representing two-
dimensional space,” Information Processing Letters, vol. 62, pp. 17–22,
1997.

[8] ——, “Linear clustering of objects with multiple attributes,” SIGMOD
Rec., vol. 19, no. 2, pp. 332–342, May 1990. [Online]. Available:
http://doi.acm.org/10.1145/93605.98742

[9] I. Lashuk, A. Chandramowlishwaran, H. Langston, T.-A. Nguyen,
R. Sampath, A. Shringarpure, R. Vuduc, L. Ying, D. Zorin, and G. Biros,
“A massively parallel adaptive fast multipole method on heterogeneous
architectures,” Commun. ACM, vol. 55, no. 5, pp. 101–109, May 2012.
[Online]. Available: http://doi.acm.org/10.1145/2160718.2160740

[10] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz, “Analysis
of the clustering properties of the hilbert space-filling curve,” IEEE
Transactions on Knowledge and Data Engineering, vol. 13, no. 1, pp.
124–141, 2001.

[11] G. Morton, A Computer Oriented Geodetic Data Base
and a New Technique in File Sequencing. International
Business Machines Company, 1966. [Online]. Available:
http://books.google.com/books?id=9FFdHAAACAAJ

[12] F. Gray, “Pulse code communication,” 1953.
[13] D. Hilbert, “Ueber die stetige abbildung einer line auf ein flchenstck,”

Mathematische Annalen, vol. 38, no. 3, pp. 459–460, 1891.
[14] P. Xu and S. Tirthapura, “A lower bound on proximity preservation by

space filling curves,” in Proceedings of the 2012 IEEE 26th International
Parallel and Distributed Processing Symposium, ser. IPDPS ’12.
Washington, DC, USA: IEEE Computer Society, 2012, pp. 1295–1305.
[Online]. Available: http://dx.doi.org/10.1109/IPDPS.2012.118

[15] L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,”
J. Comput. Phys., vol. 73, no. 2, pp. 325–348, Dec. 1987. [Online].
Available: http://dx.doi.org/10.1016/0021-9991(87)90140-9

[16] R. Beatson and L. Greengard, “A short course on fast multipole
methods,” in Wavelets, Multilevel Methods and Elliptic PDEs. Oxford
University Press, 1997, pp. 1–37.

[17] P. Xu and S. Tirthapura, “On the optimality of clustering properties
of space filling curves,” in Proceedings of the 31st symposium
on Principles of Database Systems, ser. PODS ’12. New
York, NY, USA: ACM, 2012, pp. 215–224. [Online]. Available:
http://doi.acm.org/10.1145/2213556.2213587

[18] G. Peano, “Sur une courbe, qui remplit toute une aire plane,” Mathe-
matische Annalen, vol. 36, no. 1, pp. 157–160, 1890.

[19] B. Hariharan, S. Aluru, and B. Shanker, “A scalable parallel fast
multipole method for analysis of scattering from perfect electrically
conducting surfaces,” in In Proceedings of Supercomputing, The SCxy
Conference series. ACM/IEEE, 2002.

[20] H. Sundar, R. S. Sampath, and G. Biros, “Bottom-up construction
and 2:1 balance refinement of linear octrees in parallel,” SIAM J.
Sci. Comput., vol. 30, no. 5, pp. 2675–2708, Aug. 2008. [Online].
Available: http://dx.doi.org/10.1137/070681727

179179179179179179

