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With its applicability spanning numerous data-driven fields, the implementation of graph analytics on
multicore platforms is gaining momentum. One of the most important components of a multicore chip is
its communication backbone. Due to inherent irregularities in data movements manifested by graph-based
applications, it is essential to design efficient on-chip interconnection architectures for multicore chips
performing graph analytics. In this article, we present a detailed analysis of the traffic patterns generated
by graph-based applications when mapped to multicore chips. Based on this analysis, we explore the design-
space for the Network-on-Chip (NoC) architecture to enable an efficient implementation of graph analytics.
We principally consider three types of NoC architectures, viz., traditional mesh, small-world, and high-radix
networks. We demonstrate that the small-world-network-enabled wireless NoC (WiNoC) is the most suitable
platform for executing the considered graph applications. The WiNoC achieves an average of 38% and 18%
full-system Energy Delay Product savings compared to wireline-mesh and high-radix NoCs, respectively.
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1. INTRODUCTION

The prevalence of multicore architectures opens new opportunities of running data-
parallel applications on a single chip instead of using large clusters. In an era when
power constraints and data movement are proving to be significant barriers for the
application of high-end computing, multicore architecture offers a low-power and high
bandwidth platform suitable for data-intensive applications. The Network-on-Chip
(NoC) paradigm has emerged as a revolutionary methodology for integrating a very
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(a) Community Detection (b) Graph Coloring

Fig.1. Illustrative examples for the two different graph operations addressed in this article — viz. community
detection and graph coloring. Given a graph G(V,E), (a) shows a possible community-wise partitioning of
vertices in V, and (b) shows a 1-distance coloring of vertices, with the numbers within each vertex identifying
the color assignment.

high number of embedded cores in a single die. Hence, performance of NoC-enabled
multicore chips needs to be evaluated for emerging big data applications.

There is some effort in designing multicore chips customized for emerging big-data
workloads [Schadt et al. 2010]. Many data-driven applications use complex graph
representations. Achieving parallel scalability in graph applications remains a sig-
nificant challenge due to the inherent irregularity in real-world networks that in
turn causes irregularities in computation and data movement. Consequently, map-
ping graph-theoretic applications on modern-day multicore architectures designed with
low-latency and energy-efficient NoC will be key to executing large-scale graph oper-
ations efficiently. Towards this goal, in this work, we explore state-of-the-art Wireless
NoC (WiNoC)-enabled multicore architectures for efficient implementation of advanced
graph operations. As exemplars of advanced graph analytics, we focus on two graph
operations — community detection and graph coloring. Figure 1 shows an illustrative
example for the two operations. We have chosen these not only because they encapsu-
late many of the key graph-algorithmic traits (irregular computation, data movement,
locality issues, etc.), but also because they embody two different paradigms that are
prevalent in many of the advanced parallel graph processing frameworks. The first
paradigm is that of applications that perform vertex-centric calculations followed by
synchronized updates. The second paradigm is to apply synchronization during the
vertex-centric calculation phase. These find applicability in a number of other graph
operations such as page-rank, graph matching, and clustering.

Given an undirected input graph G(V,E,w), where V is the set of vertices, E is the set
of edges, and w is a function that maps every edge to a numeric weight, the problems
underlying the two target graph operations can be stated as follows:

Community Detection. The community detection problem [Fortunato 2010] is one of
partitioning the set of vertices in V into “communities” such that the modularity of the
partitioning [Newman 2006] is maximized. Modularity is a measure, between 0 and 1,
that reflects the quality of partitioning. More specifically, it is the ratio of between the
net weights of the intra-community edges to inter-community edges. Neither the num-
ber of communities nor the size distribution of communities is known a priori. In fact,
community detection is used to reveal such natural divisions that exist in real-world
networks. It is used in a number of scientific applications including (but not limited to)
social network analysis, bioinformatics, collaboration networks, and electric power grid
[Fortunato 2010]. Despite its broad application base, executing community detection
over large real-world graphs remains to be a challenging problem despite recent de-
velopments in multicore processing. The heuristic nature of algorithms alongside the
need to access neighborhoods of vertices in an irregular fashion causes irregular data
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access and movement patterns that impede performance and scalability in traditional
multicore environments.

Balanced Coloring. The classical problem of graph coloring can be stated as follows:
Given an input graph G(V,E)!, assign colors to vertices such that no two vertices that
share an edge between them are assigned the same color [Jensen and Toft 1995]. Col-
oring is a classical graph operation that is widely used in a number of graph-based sci-
entific applications to determine compatible parallel schedules [Leighton 1979; Jones
and Plassmann 1993]. As edges in graphs typically represent vertex-to-vertex interde-
pendencies, coloring can be used to obtain a parallel schedule that guarantees no two
vertices that are interdependent on one another are processed during the same parallel
step (i.e., same “color”). However, such an approach needs to also have as few parallel
steps (or color classes) as possible, and therefore a second goal for graph coloring is
to minimize the number of colors used in assignment. In addition, since concurrency
is limited by the number of vertices within each color class, there is also a need to
ensure load-balanced color distribution and this variant has been extensively studied
under the context of equitable and balanced coloring [Furmanczyk 2004; Bodlanendrea
and Fominb 2005]. Recently, coloring implementations have been proposed to obtain
an initial coloring so as to minimize the number of colors and then redistribute the
vertices among color classes so as to obtain a balanced coloring [Lu et al. 2015a]. The
assignment of colors to vertices and their redistributions make the graph-coloring oper-
ation data movement-bound and lock-intensive in traditional multicore environments.
In addition, these characteristics heavily depend on the underlying graph structure
and connectivity.

The irregular data access patterns and memory-bound nature of community-
detection operation, and the communication-bound and lock-intensive nature of the
graph-coloring operation represent two unique challenging use-cases for multicore
parallelism. In this article, we undertake a design-space exploration of various NoC ar-
chitectures to enable efficient implementations of above-mentioned graph operations.
Specifically, we consider three NoC topologies, traditional mesh, small-world network
[Ogras and Marculescu 2006; Wettin et al. 2014] and a high-radix network-like Flat-
tened Butter-Fly [Kim et al. 2007; Sewell et al. 2012]. We analyze the computation
and on-chip traffic patterns generated by different phases of community detection and
balanced graph-coloring applications on real-world graphs and determine the most
suitable NoC architecture for these applications. Our analysis shows that, among all
the NoC architectures considered here, the small-world NoC architecture enabled by
long-range wireless shortcuts achieves the best overall Energy Delay Product (EDP).

2. RELATED WORK
2.1. Graph Analytics Algorithms and Architectures

Designing specialized computation architectures and parallel algorithms for big data
analytics has been an area of great interest in recent times. The Blue Gene architecture
[Chen et al. 2012] is one such architecture for distributed memory systems, enabling
more than 10 floating-point operations per second. Blue Gene also enables efficient
interconnection of thousands of computing nodes through its advanced 5D torus
interconnection topology. A detailed study on using micro-architectures for graph
analytics has been presented in Ediger [2013]. In Bader et al. [2005], the performance
of Symmetric Multiprocessor (SMP) systems for large-scale graph analytics has
been analyzed. There are several previous works exploring the efficiency of SMPs

IEdge weights are of no consequence to typical graph-coloring problems. Only the connectivity between
vertices matter.
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for applications with inherent irregularities [Castro et al. 2013; Francesquini et al.
2015; Frasca et al. 2012]. For the two target graph operations of community detection
and graph coloring, multithreaded implementations for traditional multicore (x86)
architectures and also many core architectures such as Tilera have been previously
developed [Lu et al. 2015b; Chavarria-Miranda et al. 2014; Catalyiirek et al. 2012;
Reidy et al. 2012; Staudt and Meyerhenke 2013]. In Wu et al. [2011], a MapReduce-
based parallel computing model for large graph analytics has been presented. The
model has been shown to be particularly efficient for two popular graph operations,
3-clique enumeration of a graph and computation of clustering coefficient.

2.2. Network-on-Chip

As stated in Section 1, NoCs have emerged as standard communication backbones for
multicore chips. Conventional NoCs employ a multi-hop, packet-switched communica-
tion where each computing core is connected to a NoC router. Today’s industry stan-
dard multicore platforms such as Tilera Gx-72 [Tilera Corporation 2015], Adapteva
Epiphany [Gwennup et al. 2011], mainly follow a wireline mesh interconnection topol-
ogy. In such systems, the network latency is usually high due to the inherent multi-hop
nature of the network. It is already shown that, by inserting long-range shortcuts in a
regular mesh architecture to induce small-world effects, it is possible to achieve signif-
icant performance gain and lowered energy dissipation compared to traditional multi-
hop mesh networks [Ogras and Marculescu 2006; Marculescu et al. 2009]. The concept
of express virtual channels is introduced in Kumar et al. [2008]. By using virtual ex-
press lanes to connect distant cores in the network, it is possible to avoid the router over-
head at intermediate nodes, and thereby improve NoC performance in terms of power,
latency and throughput. Performance is further improved by incorporating ultra low-
latency multi-drop on-chip global lines (G-lines) for flow control signals [Krishna et al.
2008]. Kalray’s MPPA architecture [De Dinechin et al. 2014] uses a modified 2D torus
NoC topology (MPPA-NoC) and is specifically designed to establish low hop data trans-
fers between processing cores and the I/O terminals located along the chip edges. Like
any folded torus topology, the MPPA-NoC uses physically long metal wires spanning be-
tween the opposite edges of a chip in order to reduce the average inter-router hop counts.

Despite significant performance gains, the long-range links in the above schemes are
designed with conventional wires. It is already shown that, beyond a certain length,
wireless links are more energy efficient than the conventional metal wires [Deb et al.
2012]. Hence, the performance improvements achieved by using long-range wireless
links will be more than that using wired links. The viability of on-chip wireless com-
munication has been already demonstrated through prototype developments [Lin et
al. 2007; Zhang et al. 2007; Seok and O 2005; Branch et al. 2005]. However, in order
to harvest its full potential, more research is required to address various challenges in
several areas including system architecture, circuit design, device fabrication, and CAD
tool development [Deb et al. 2012]. A comprehensive survey regarding various wire-
less NoC (WiNoC) architectures is presented in Deb et al. [2012], shows the possibility
of creating novel architectures by inserting on-chip wireless links. Robust, nature-
inspired, small-world network-based wireless NoC architectures are presented in Deb
et al. [2013] and Wettin et al. [2014]. These architectures employ mm-wave wireless
links operating in the 10GHz-100GHz range as long-range shortcuts and are shown
to outperform the traditional mesh NoC architecture in terms of network latency and
energy dissipation. It should be noted that photonic links could also be used as long-
range shortcuts in the small-world NoCs. However, the implementation of optical NoCs
still faces major challenges integrating with standard CMOS electronics [Bogaerts et
al. 2014]. One of the major advantages using mm-wave wireless link is that it is CMOS
compatible and no new technology is required to implement this.
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Algorithm 1: Community Detection G(V,E,»)

Algorithm 2: Balanced Coloring G(V,E),Colors

repeat »For each phase
Init: C(v) — v}, YveV
repeat »For each iteration

for each v € Vdo in parallel
/[Vertex-centric Computation
Ci(v) «—target community that
maximizes modularity gain for v

/I Synchronized Updates
Cv) — Cyv), Vv eV
C.info < Update community sizes

Cr—{c|c € Colors and sizeof (c) > 1}
for each c € Cr do
for each v € ¢ do in parallel
/I Synchronized Updates and Computation
Color(v) < select an underfull color
Colors.info «— Update source & target colors
Output final (balanced) colors

until (Net Modularity Gain < ;)

GV, E, @) « compact G(V,E,®»)) using C
until (Net Modularity Gain < z2)
Output final communitites

(a) Community detection algorithm (b) Balanced coloring algorithm

Fig. 2. Pseudocodes for graph algorithms.

The design of low-hop-count high-radix on chip networks are presented in Kim et al.
[2007], Abeyratne et al. [2013], and Sewell et al. [2012]. In these high-radix networks,
multiple computing cores are connected to a single NoC router and hence a large
number of ports are required in each router. Connecting multiple cores to a single
router leads to a lower number of NoC routers and hence enables a low-average hop-
count among the communicating nodes. The Flattened Butter-Fly (FBF) topology [Kim
et al. 2007; Sewell et al. 2012] is one such high-radix topology where the maximum
hop count between the computing cores can be limited to two. Though high-radix
topologies provide a low-hop-count network, designing efficient routers, incorporating
large number of router ports is a challenging task [Krishna et al. 2013]. In Sewell
et al. [2012], it is demonstrated that, by employing sizzle-switches, it is possible to
design four stage routers for the Flattened Butter-Fly topology operating at 3GHz
in 32nm technology node. Recently, reconfigurable asynchronous NoC architectures
incorporating wires with clockless repeaters have been proposed in Krishna et al.
[2013, 2014]. These NoC designs, referred as SMART NoCs, restrict the operating
frequency of NoC to 1GHz - 2GHz, involve high control overheads and require more
complex router designs than the traditional NoC routers.

In this work, we undertake an exhaustive design-space exploration for NoC architec-
tures on shared memory platforms, to support optimized implementation of advanced
graph analytics. To represent a wide-range of NoC architectures, we consider tradi-
tional mesh, emerging high-radix and small-world network-enabled WiNoC in this
performance evaluation and establish the relevant design tradeoffs.

3. INTRODUCTION TO COMMUNITY DETECTION AND COLORING
3.1. Community Detection: Grappolo

Recently, Lu et al. [2015b] developed a scalable parallel implementation for exe-
cuting community detection on conventional multicore architectures. This method,
called Grappolo, implements a multiple-phase, multiple-iteration heuristic to maxi-
mize the modularity of the output partitioning. Figure 2(a) presents the pseudocode
for Grappolo. In what follows, we outline the algorithmic details and data structures of
Grappolo.
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Given an input graph G(V,E,w), containing n vertices and m edges, the algorithm
executes multiple phases and multiple iterations within each phase, until convergence.
Within each phase, the following steps are carried out:

(1) Initially, each vertex is assigned to an individual community of its own.

(2) Within each iteration, the vertices are scanned in parallel, and for each vertex, a
decision is made to determine whether or not to migrate it to one of its neighboring
communities (as defined by the communities of its neighbors). To avoid locking, the
parallel implementation uses community assignments as of the previous iteration.
Other graph heuristics are used to resolve potential conflicts and in effect to ensure
that the net modularity gain achieved by the end of the iteration always remains
non-negative.

(8) The algorithm proceeds to subsequent iterations until the gain achieved in net
modularity becomes negligible. Reaching convergence by this criterion marks the
end of current phase and the algorithm constructs a compacted graph G’(V,E’,’)
by collapsing every community detected in G to a single meta-vertex in G’, and
creating edges reflecting the weights of intra- and inter-community links in G.

(4) Subsequently, the algorithm initiates the next phase on the newly compacted graph
@, until no more appreciable modularity gain is achieved.

The main data structures used in Grappolo are as follows: The graph is stored as
two arrays of size O(m +n) in the compressed sparse row (CSR) format [Saad 2003].
Each vertex entry also stores the current community assignment for that vertex. In
addition, a separate array data structure is used to keep track of the degree of each
community (i.e., sum of the degree of all vertices belonging to each community). The
orders in which the vertices and communities are stored in their respective arrays are
arbitrary as it is not possible to predetermine locality properties due to the dynamic
nature of the algorithm.

3.2. Balanced Coloring

Given an input graph G(V,E), the goal of 1-distance coloring is to determine a color
assignment to vertices such that adjacent vertices are always assigned different colors.
A classic greedy coloring heuristic used for minimizing the number of colors used can
be described as follows [Catalyiirek et al. 2012]: For each vertex veV (in some order),
assign a color that is not yet used by any of its neighboring vertices. Typically, the
first available color index is used for this purpose (assuming the colors are identified
numerically), and if all colors are used by the neighbors, a new color is introduced. This
heuristic represents a Greedy First-Fit approach and has been shown in practice to
typically create a highly skewed color size distribution.

In a recent work, Lu et al. [2015a] proposed a number of heuristics to generate
a balanced coloring — i.e., the number of vertices assigned per color class (aka color
bin) is roughly the same. They implemented a parallel approach whereby the Greedy
First Fit approach is used to first obtain an initial coloring of the graph, and a sub-
sequent balancing step redistributes the vertices among the different bins so as to
obtain a balanced coloring without increasing the overall number of colors used. Dif-
ferent balancing schemes were explored and one of the more effective schemes, namely
Greedy-CLU, works as follows (see Figure 2(b) for a pseudocode). Color classes are pro-
cessed one at a time, such that the vertices within every over-full color bin (i.e., those
containing more than the mean number of vertices) are redistributed to one or more
under-full bins until the number of vertices within the source bin reaches the target
mean or no more valid vertex moves are possible. The choice of the under-full bin is
performed greedily by selecting a smallest available bin that is also compatible with
the vertex being moved (i.e., contains no neighbors of that vertex).
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This implementation also uses the CSR format for storing the input graph, while a
separate array-based data structure is used to keep track of the color bins and their
sizes. The parallel scalability of the overall coloring process is affected by the need
to lock the coloring data structures in order to update the source and destination
bin sizes. In addition, the need to perform compatibility checks for vertices requires
access to color bins corresponding to the neighbors of every vertex. This step introduces
irregular memory access and workloads.

Thus, the balanced coloring application involves two distinct phases, an initial col-
oring phase and a redistribution phase, between which the redistribution phase is a
communication-bound phase with heavy vertex migration traffic and locking. Further-
more, the distribution phase is devoid of any complex computations. Hence, unlike
the initial coloring phase, the execution speed of the redistribution phase is highly
dependent on the speed of the data migration.

Henceforth, for ease of exposition, we will refer to the above two specific multicore
algorithms for community detection and balanced coloring as simply “Grappolo” and
“Balanced Coloring”, respectively. These two algorithms will serve as our target imple-
mentations for the WiNoC-based multicore platform.

4. NOC ARCHITECTURES FOR GRAPH ANALYTICS

Both community detection using Grappolo and Balanced Coloring applications exhibit
inherent irregularities due to data movements. As stated in Section 3, the compu-
tation within Grappolo has multiple phases with alternating parallelized (clustering)
and serialized (compaction) characteristics. In addition, Grappolo involves migration of
vertices between the communities during each clustering phase. In contrast, balanced
coloring consists of two major parallel phases, initial coloring and redistribution, with
bulk of data movement and locking-related traffic occurring during redistribution. Due
to these characteristics, the two applications generate substantial long-range traffic
patterns when run on a multicore platform (as later shown in Figure 6(a)), with signif-
icant amount of data exchanges involve physically far apart cores. Furthermore, these
applications show the presence of one or more hotspot nodes whose traffic injection
rates are much higher than that of the average traffic injection rate (as later shown
in Figure 6(b)). Due to these long-range and skewed traffic patterns, we posit that de-
signing an on-chip interconnect infrastructure that enables low-latency data exchange,
even among physically distant cores will be critical to achieve performance at scale in
these graph applications.

Considering these facts, in this work we undertake a detailed performance evalu-
ation of three NoC architectures, viz., WiNoC, mesh with long-range shortcuts, and
Flattened Butter-Fly for Grappolo and Balanced Coloring. First, we present a brief
tutorial regarding the salient features of these NoC architectures and then we will
present the experimental results comparing and contrasting performance of these ar-
chitectures for graph analytics. It should be also noted that we focus our investigation
mostly on the overall interconnection architecture aspect of the NoCs. Hence, we omit
the SMART NoC (discussed in Section 2) from this performance evaluation. The perfor-
mance advantages of SMART mainly comes from the asynchronous interconnect and
the SMART control mechanism. This principle can be applied to any NoC topology and
that is out of scope of this work.

4.1. WiNoC

In the proposed WiNoC topology, each core is connected to a router; routers are inter-
connected using wireline and wireless links. The topology of the WiNoC is a small-world
network where the links between routers are established following a power law distri-
bution. More precisely, the probability P(i,j) of establishing a link between two routers
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i and j, separated by a Euclidean distance /;;, is proportional to the distance /;; raised
to a finite power as in:
li ja ﬁj

Zw Zv j li;a fij
The frequency of traffic interactions between cores, f;;, is also factored in, so the more
frequently communicating cores have a higher probability of having a direct link in-
serted between them. This frequency is the percentage of traffic generated by core i that
is sent to core j directly. This approach implicitly optimizes the network architecture
for a non-uniform traffic scenario.

Getting into details, the parameter « governs the nature of connectivity, e.g., a larger
«a means a locally connected network with a few or even no long-range links. By the
same token, a zero value of @ generates an ideal small-world network following the
Watts-Strogatz model [Watts and Strogatz 1998] — one with long-range shortcuts that
are virtually independent of the distance between the cores. It has been shown that a
value of « less than D + 1, D being the dimension of the network, ensures the small-
world property; with « = 1.8, the average hop count is minimum with a fixed wiring cost
[Petermann and De Los Rios 2005]. Figure 3(a) shows an example Small World Network
on Chip (SWNoC) architecture designed following (1) and is constituted only of metal
wire links. As it is evident from this figure, the SWNoC uses several long metal wires.

Since the long metal wires are costly both in terms of power and latency, we propose
to use wireless links to connect the routers that are far apart in our small world based
WiNoC architecture (shown in Figure 3(b)). In practice, depending upon the available
wireless resources, we can only allow a limited number of long links in the WiNoC
to be wireless, while the others would still remain wireline. This way, we can make
the distant cores “socialize” with each other, and hence reduce the communication
costs when running real applications. We use the mm-wave wireless links operating
in the 10GHz — 100GHz range here. In Deb et al. [2013], it is demonstrated that it
is possible to create three non-overlapping wireless channels with on-chip mm-wave
wireless transceivers. Using these three channels, we overlay the wireline small-world
connectivity with the wireless links such that a few routers get an additional wireless
port. The wireless port of each router is provided with Wireless Interface (WI) tuned to
one of the three distinct frequency channels. The WI placement mechanism that is used
to overlay the power-law-based wireline connectivity with wireless nodes is explained
later in Section 4.4.

PG, j) = (1)

4.1.1 Routing Protocol. The power-law model-based WiNoC principally has an irregu-
lar network topology. Irregular networks require topology agnostic routing methods.
Hence, in this work, we use ALASH protocol [Wettin et al. 2014] for routing packets
in WiNoC. ALASH is built upon the layered shortest path (LASH) algorithm. The
LASH algorithm takes advantage of the multiple virtual channels in each port of
the NoC routers in order to route messages along the shortest physical paths. In
order to achieve a deadlock-free operation, the network is divided into a set of virtual
layers, which are created by dedicating the virtual channels from each router port
into these layers. The shortest physical path between each source-destination pair is
then assigned to a layer such that the layer’s channel-dependency graph remains free
from cycles and this ensures the deadlock freedom. ALASH protocol improves on the
LASH routing scheme, by enabling an adaptive layering function by considering the
expected traffic patterns. We follow the priority layering function explained in Wettin
et al. [2014]. The priority layering function allocates as many layers as possible to
source-destination pairs with high f;;. This improves the adaptability of messages
with higher f;; by providing them with greater routing flexibility. In ALASH, if the WI
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ﬁ L“ X = Pl
5mm R14 5 mm
(e) FBF () WiFBF

Router With WI frequency C1 =2 RO0-> R29 Data Path

. Router With WI frequency C2 == R30 - R14 Data Path
L)) Router With WI frequency C3 ++++> Wireless Data Transfer

o

= Wireline link
oA Wireless Interface

Fig. 3. Various NoC architectures showcasing data transfers. Figures 3(a)-3(d) showcase 36 NoC routers
with 2 data transfers (RO—R29 &R30—R14). Figures 3(e) and 3(f) showcase FBF topologies with 16 routers
and one data transfer (RO—R14). In wireless enabled NoCs, the color of the router indicates the wireless
channel frequency that is associated with the router.
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located in the path becomes unavailable due to lack of buffer space or due to failures,
then the packet is rerouted from the WI along wireline only paths [Wettin et al. 2014].

4.2. Mesh

As stated earlier, mesh NoC architecture is today’s industry standard due to various
advantages like simple design, regular structure, easy timing closure, and the like.
However, as stated in Section 2, standard Mesh NoCs (example in Figure 3(c)), are not
capable of handling long-range traffic efficiently, as they involve multi-hop transmis-
sions. Hence, we consider the mesh architecture with long-range shortcuts here.

4.2.1. Wireless Mesh. In Ogras and Marculescu [2006], a mechanism to enhance the
performance of the wireline mesh architecture by employing long-range shortcuts is
demonstrated. Following [Ogras and Marculescu 2006], in this work, we augment the
wireline mesh architecture with long-range wireless shortcuts and this NoC architec-
ture is called as Wireless Mesh (WiMesh) NoC. The architecture is shown in Figure
3(d). Here also we use the mm-wave wireless links as long-range shortcuts.

4.2.2. Routing in Wireless Mesh. The mesh NoC incorporating long-range wireline short-
cuts presented in Ogras and Marculescu [2006] follows a distributed routing method-
ology, referred to as South-Last Routing. In this mesh, NoC incorporating long-range
wireline shortcuts, all the wireline ports (including those used for long-range connec-
tions) are assigned with particular directions such as north, east, south-east, north-
west, and so on [Ogras and Marculescu 2006]. In South-Last Routing method, the
routers without any long-range link follow the traditional XY routing methodology
whereas the routers with long-range links follow a turn-restricted routing methodol-
ogy. In this turn-restricted routing methodology, all the deadlock-inducing turns such
as 180-degree turns are prohibited [Ogras and Marculescu 2006]. Comparing the direc-
tions assigned to the router ports identifies these restricted turns. However, in WiMesh,
it is not possible to assign a particular direction to the Wireless Interface ports. Hence,
employing the turn-restricted routing methodology for routers with WIls is not feasi-
ble. In this work, we follow a modified version of South-Last routing for the routers
with WIs. In this modified version of South-Last routing, whenever wireless traversal
is involved, we prevent deadlocks by allowing the message paths to follow a strictly
increasing (or decreasing) router IDs. It is already shown in Dally and Seitz [1987],
that a routing methodology where the message path follows a strictly increasing (or
decreasing) router IDs is deadlock-free. In the case of wireless node failure, we will
resort to standard X-Y wireline routing.

4.3. Flattened Butter-Fly (FBF)

The Flattened Butter-Fly (FBF) topology is a low-hop-count, high-radix topology. In
this work, we consider a 16 router FBF topology presented in Kim et al. [2007], Sewell
et al. [2012]. As shown in Figure 3(e), each router in FBF is connected to all other
routers in its row and to all other routers in its column. Hence, in this FBF, all the NoC
routers in the system can communicate with each other within two hops by following
a dimension ordered XY routing [Sewell et al. 2012]. As it can be noted in Figure 3(e),
the FBF topology incorporates a number of long-range wireline connections that can
be costly in terms of delay and energy. In order to efficiently handle the long-range
communication, in this work, we incorporate Wireless Interfaces in each of the NoC
routers present in FBF. In WiFBF, the overall number of routers is a small fixed number
(only 16) and hence even when each router is provided with a WI, the additional on-chip
area overhead is relatively low. This modified network is called as Wireless enabled
Flattened Butter-Fly (WiFBF) and the connectivity is shown in Figure 3(f). Similar to
the WiMesh and WiNoC, we use the mm-wave wireless channels here.
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4.3.1. Routing Protocol. In Sewell et al. [2012], to route the packets along the wireline
FBF network, a minimal XY dimension ordered routing scheme (with a maximum inter
router hop count of two) is used. In this work, we expand on this scheme to design the
routing methodology for WiFBF. The WiFBF routing protocol followed in a router R
with a WI channel frequency of Cg, is shown in Figure 4. As shown in Figure 4, in
WiFBF routing, each message is allowed a maximum of one wireless traversal and
the wireless routing for any message can be only initiated at the source router for that
message. Hence, there is no opportunity for creating cycles and thus the WiFBF routing
is deadlock-free. Under WI failures (or when a W1 is unavailable), the proposed WiFBF
routing simply follows the minimal XY-dimension-ordered routing along the wireline
links and hence the maximum hop count for any communication in WiFBF is only two.

4.4. Placement of Wireless Interfaces

As discussed earlier (Section 4.3), in the WiFBF architecture, each router is provided
with a Wireless Interface. However, in WiMesh and WiNoC, based on the allowed area
overhead, we can only incorporate a limited number of WIs and hence it is essential
to optimize the location of these WIs to ensure performance gain without paying high
area overhead. The flowchart presented in Figure 5 shows a simulated annealing-based
mechanism used for placing a set of N WIs on each wireless channel in WiMesh and
WiNoC. In the WiMesh and WiNoC creation process, the wireless interface placement
strategy focuses on minimizing the optimization metric , which is defined as:

1 = Zvi X fijhij. (2)

Here h;; denotes the minimum distance in number of hops from router i to router j
with the given network connection. The f;; value denotes the frequency of interaction
between the routers. The f;; values are determined by analyzing the traffic patterns
generated while executing the Grappolo and Balanced Coloring applications with a set

of graphs. To optimize the network for handling multiple applications, a combined f;;
metric can be used. Let L denote the number of applications considered. Then, the net
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interaction frequency is given by:
1 fijr
fi=g Y =,
YL ; 2 vi Zvj' fijh

where f;;; denotes the frequency of interaction between routers : and j for a specific
application k. As elaborated later in Section 5.1, the f;; of an application has a unique
signature with constant traffic hotspots that can be observed over all different input
graphs. Hence, any set of large real-world graphs can be used to identify the f;; patterns.
Moreover, as shown later in Figure 7, these hotspots communicate almost evenly with
all the other nodes and do not involve in any high-intensity pairwise communication.
Hence, placing Wireless Interfaces (Wls) to minimize the overall traffic weighted hop
count would ensure the following:

k=1,2...L. (3)

(1) The WIs would be placed nearer to the traffic injection hot spots
(2) The remaining WIs would be essentially distributed all across the chip such that
the overall inter-router hop count is minimized.

It has been already shown that wireless links are more energy efficient than tradi-
tional metal wires only when the link length exceeds 7.5mm in the 65nm technology
node [Deb et al. 2013]. Hence, in addition to the simulated annealing mechanism ex-
plained in Figure 5, we also impose a WI placement constraint where two WIs operating
in the same frequency channel are separated by more than 7.5mm.

Following the mechanism explained in Figure 5 and by varying N, we can find the
optimum number of wireless interfaces for a NoC and their best suitable locations. The
experimental results showcasing the optimum value of N for both WiMesh and WiNoC
are discussed later in Section 5.2.

4.5. Wireless Medium Access Control (MAC) Protocol

For all the three wireless-enabled NoCs (WiNoC, WiMesh, and WiFBF) discussed above,
we employ a distributed MAC protocol to resolve the channel access contentions among
the wireless nodes [Duraisamy et al. 2015]. The wireless channel used in our wireless
NoCs is a shared medium. Hence, each wireless node inherently knows if there is any
on-going wireless transmission. If a wireless node has messages to transmit and if
the wireless channel is free, the wireless node first broadcasts a request to acquire
the channel. The request packets follow a simple orthogonal on-off keying mechanism.
This enables multiple wireless nodes to simultaneously transmit the request packets.
Once the requests are received, all the nodes process the requests simultaneously and
one of the WIs acquires the wireless channel in the next cycle [Duraisamy et al. 2015].

4.6. Wireless Interface

The two principal wireless interface components for the WiNoC architecture are the
antenna and the transceiver. WiNoC uses a metal zigzag antenna that has been demon-
strated in Deb et al. [2013], as it provides the best power gain with the smallest area
overhead. A detailed description of the transceiver circuit is out of the scope of this
article. However, the transceiver was designed and fabricated and all the details are
provided in Wettin et al. [2014]. The wireless interface is completely CMOS compatible
and no new technology is needed for its implementation. The wireless interface has
an area overhead of 0.25mm? per transceiver in 65nm technology node. Considering a
20mm x 20mm die, the addition of wireless interfaces gives rise to 0.93%, 1.125%, and
1% silicon area overheads for WiMesh, WiNoC, and WiFBF architectures, respectively,
for a 64-core system. It should be noted that the area overhead varies depending on
the specific NoC architecture due to variation in the number of wireless interfaces (as
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explained later in Section 5.2). However, the overall additional area overhead is still
negligible. We use the three non-overlapping on-chip wireless channels demonstrated
in Deb et al. [2013], with operating frequencies of 31GHz, 57.5GHz, and 120GHz. Each
WI is tuned to one of these three frequencies. For data rates of 16Gbps, these wireless
link dissipates 1.95pd/bit for a 20mm communication range.

5. EXPERIMENTAL RESULTS AND EVALUATION

Test platforms. In this section, we evaluate the performance of a 64-core multipro-
cessor system running the Grappolo and Balanced Coloring applications. We consider
the WiMesh, WiNoC, and WiFBF as the primary NoC architectures for this perfor-
mance evaluation. Additionally, we also consider the wireline counterparts of all the
wireless architectures, viz., the traditional wireline mesh, a fully wireline small-world
NoC (SWNoC) and FBF. We use GEMS5 [Binkert et al. 2011], a full-system simulator,
to obtain detailed processor and network-level information. We consider a system of
64 x 86 processors running Linux within the GEM5 platform for all the experiments.
The application codes for Grappolo and Balanced Coloring are parallelized for multi-
core platforms using OpenMP multithreading with dynamic scheduling. The tasks are
parallelized in term of vertices without involving any optimization based on data local-
ity and hence the considered applications are highly scalable with increasing system
sizes [Lu et al. 2015a, 2015b]. In GEMS5 simulation, the parallelized tasks are mapped
to the emulated parallel threads using basic Linux scheduler. The memory system is
MOESI_CMP_directory setup with private 64KB L1 instruction and data caches and
a shared 16MB (256KB distributed per core) L2 cache. The width of all wireline links
is considered to be the same as the flit width, which is considered to be 32 bits in this
article.

The die size of the system under consideration is 20x20mm? and we consider a sys-
tem frequency of 2.5GHz (for both cores and the routers), with 656nm technology nodes.
For mesh and small-world architectures, we employ a generic three-stage router ar-
chitecture explained in Pande et al. [2005]. For high -adix architectures, we employ
four-stage router architectures as suggested in Sewell et al. [2012]. For the small-
world NoCs, we consider an average of four ports per router, which is similar to that of
the conventional wireline mesh. Also in small-world NoCs, we impose an upper bound
on the number of ports attached to a particular router so that no router becomes unreal-
istically large. The SWNoC and WiNoC achieve highest throughput with lowest energy
dissipation when the maximum port count in a router is restricted to seven [Wettin
et al. 2014]. As stated earlier, the FBF and WiFBF architectures are having 16 routers
and hence each NoC router is connected to 4 computing cores. For all the NoC archi-
tectures considered, all the router ports are provided with a buffer depth of two flits.
Energy dissipation of the NoC routers, inclusive of the routing and MAC blocks, was
obtained from the synthesized netlist by running Synopsys™ Prime Power, while the
energy dissipated by wireline links was obtained through HSPICE simulations taking
into consideration the length and layout of wired links. In all the NoC architectures,
across both wireline and wireless links, we follow wormhole routing methodology. The
processor-level statistics generated by the GEM5 simulations are incorporated into
McPAT (Multicore Power, Area, and Timing) to determine the processor-level power
values [Li et al. 2009].

Test inputs. The evaluation of Grappolo is performed with the help of DIMACS10
clustering instance graph data sets [DIMACS10 2016]. We have considered five DI-
MACS10 clustering instance graphs, Hep-th (HEP), Astro-ph (ASTRO), Comd-mat-
2003 (COND), PGPgiantcompo (PGP), and as-22july06 (ASJ), to evaluate the bene-
fits achieved by the WiNoC interconnect in execution of Grappolo applications. The
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Table I. DIMACS10 Graphs Used for Grappolo Analyses

Number of | Number of Number of WiNoC Execution
Graph Graph Size Vertices Edges Communities Time (Seconds)
ASJ 0.46 MB 22,963 48,436 31 1.588099
PGP 0.25 MB 10,680 24,316 99 0.284018
ASTRO 1.2 MB 16,706 121,251 412 1.724108
HEP 0.154 MB 8,361 15,751 636 0.292018
COND 1.3 MB 31,163 120,029 945 2.035129

Table II. DIMACS10 Graphs Used for Balanced Coloring Analyses

Number of Number of Number of WiNoC Execution
Graph Graph Size Vertices Edges Output Colors Time (Seconds)
NTH 34.9 MB 2,216,688 2,441,238 5 1.628099
BLG 21.3 MB 1,441,295 1,549,970 5 1.244078
CCR 14.6 MB 268,495 1,156,647 17 0.332021
CNR 35.1 MB 325,557 2,738,969 86 0.372023
CAC 9.8 MB 227,320 814,134 87 0.436028
CAD 12.1 MB 299,067 977,676 115 0.290009

evaluation of the Balanced Coloring application is carried out with the help of six DI-
MACS10 graphs. Two street network graphs, Belgium (BLG) and Netherlands (NTH),
three citation network graphs, citationCiteseer (CCR), coAuthorsDBLP (CAD), coAu-
thorsCiteseer (CAC), and one clustering instance graph cnr-2000 (CNR) are used for
these evaluations. Due to the shorter runtimes for the Balanced Coloring application,
we were able to test much larger data sets. Further information regarding the datasets
such as, size, vertex and edge counts, number of communities and colors and application
execution times are provided in Tables I and II.

5.1. Analysis of Traffic Patterns

In this section, we analyze the nature of the traffic patterns generated by Grappolo and
Balanced Coloring when mapped on to the 64-core system considered here. Figure 6(a)
shows the percentage of total traffic exchanged between the communicating cores
separated by certain distances for Grappolo and Balanced Coloring. From this figure,
we can observe that both Grappolo and Balanced Coloring generate a significant
amount of long-range traffic, although owing to different reasons. In case of Grappolo,
long-range traffic is largely due to shared memory access during the clustering
computation; while in the case of Balanced Coloring, it is due to locks generated
during the vertex redistribution phase. For both considered applications, it is evident
that about 70% of the total injected messages are transferred among cores that are
more than 7.5mm apart. As stated earlier, it is more energy efficient to use wireless
links than metal wires for link length exceeding 7.5mm in the 65nm technology node.
Hence, for this long-range communication, wireless links will be more beneficial.
Figure 6(b) shows the percentage of the traffic injected by each of the top six traffic
hotspots present in the system, while executing Grappolo and Balanced Coloring. It
can be observed from this plot that up to 10% of the total traffic is associated with a
single core. Moreover, the top 6 traffic hotspots in Grappolo are responsible for about
25% of the total injected traffic. In Balanced Coloring, the top 6 traffic hotspots are
responsible for up to 27% of the total system traffic. In case of Grappolo, this injection
originates mostly from the master core, which is responsible for the graph compaction
phase. Recall that the compaction step is largely serialized owing to the need to gather
vertices belonging to communities. In case of Balanced Coloring, the hotspots appear
during the redistribution phase. This can be attributed to the overheads associated
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Fig. 6. Traffic characteristics. (a) Fraction of total traffic exchanged between the communicating cores
separated by distance x for Grappolo and Balanced Coloring. The values for x are specified in the legend.
(b) Percentage in total traffic injected by the top 6 traffic hotspots for Grappolo and Balanced Coloring.
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Fig. 7. Heat Plots Representing f;; matrices (of order 64x64) for Grappolo and Balanced Coloring with
Different Input Graphs. Figure 7(f) shows the zoomed version of the top left corner in Figure 7(e) along with
the source and destination node IDs. These heat plots show the relative intensities of all the elements in a f};
matrix. The elements in a row represent the traffic intensity form a particular source to all the destination
nodes in the system and thus the hotspots are indicated with darker bars in Figures 7(a) to 7(d). It can be
noted that for an application, the hotspots remain the same across all the graphs.

with the management of locks. During the redistribution phase, the vertices processed
are themselves located randomly on the network, effectively distributing the traffic
injection rates at the sources. However, when multiple vertices located at different cores
compete to acquire locks, the lock management introduces hotspots during acquisition
and release of those locks.

The above-mentioned long-range and hotspot traffic patterns are observed consis-
tently over all the input graphs considered here. To elaborate, Figures 7(a)-(c) and
7(d)—(e) show the traffic patterns for Grappolo and Balanced Coloring considering dif-
ferent data sets respectively. Figures 7(a)—(e), indicate the relative intensities of all
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Fig. 8. Determining the Optimum Number of Wireless Interfaces.

the elements in a 64x64 f;; matrix. The arrangement of source and destination nodes
in these f;; matrices can be understood from Figure 7(f). As shown, the elements in
each row of this f;; matrix represent the intensity of the traffic from a particular source
node to all the destination nodes in the system. From Figure 7, it is evident that the
probability of data-exchange between two given cores (i.e., f;;) does not significantly
vary across datasets but only across applications.

Thus, the above discussion indicates that both Grappolo and Balanced Coloring are
characterized by significant long-range communication patterns and traffic hotspots.
Thus, both present an ideal case for benefiting from the WiNoC architecture which is
shown to efficiently handle the long-distance and hotspot traffics [Wettin et al. 2014].

5.2. Characterizing NoC Architectures

In this section, we characterize the network performance of all the NoC architectures
considered. For these characterizations, we consider the combined graph analytic
inter-core traffic pattern (f;;), obtained with Equation (3) in Section 4.1.1. Since we are
interested in both network latency and energy dissipation, we use the Energy-Delay
Product (EDP) as the relevant performance metric. Average message latency and
average message energy values are used in this message EDP computation.

5.2.1. Optimum Number of Wireless Interfaces. We first quantify the maximum number of
WIs that can be added in WiNoC and WiMesh architectures, beyond which the addition
of anymore WIs will provide no further significant improvement in performance. Fig-
ures 8(a) and 8(c) show the variation in EDPs of the WiMesh and WiNoC architectures,
respectively, with increasing number of WIs. We also show the improvement achieved
in wireless utilization (U) with increasing number of WIs. The wireless utilization
parameter represents the percentage of total messages that are using the wireless
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channels. To find the optimum number of WIs, we use a metric § which is defined
below.

UG)—UG —n) EDP(i—n)— EDPG)
UG —ny EDPG —n,)

In the above equation, n. represent the number of wireless channels available and ;
denote the number of WIs in the current system. We consider a step value of n. in the
above difference equations, since we add n, wireless node in each step (one more WI per
channel per step). The number of wireless interfaces (i) beyond which the § approaches
zero, can be considered as the optimum WI count.

Figures 8(b) and 8(d) show the (i) values for WiMesh and WiNoC architectures
respectively. From Figures 8(a) and 8(c), it can be seen that the achievable EDP and
wireless utilization improves until the WI count reaches a certain limit (18 in this case
for WiNoC and 15 for WiMesh) and then remains constant. WiNoC has a better wireline
connectivity to distribute the long-range traffic when compared to WiMesh NoC. Due to
the inherent multihop characteristics of the baseline mesh network of WiMesh, more
messages try to access the wireless paths to improve the latency. Hence, the wireless
channels in the WiMesh system saturate with a lower number of WIs. Thus, we can
conclude that the optimum number of WIs for WiNoC is 18 and the optimum number
of WIs for the WiMesh is 15, beyond which the §(i) values are near zero. Hence, from
here on, for all the following experiments, we consider a set 15 WIs for WiMesh (5 WIs
for each wireless channel) and 18 WIs for WiNoC (6 WIs operating for each wireless
channel). As already discussed in Section 4 and as shown in Figure 3(f), WiFBF follows
a fixed WI placement and channel assignment with WIs placed on all of 16 routers (Six
WIs on channel 1, five WIs on channel 2 and five WIs on channel 3).

5.2.2. Network Performance. In this section, we present the comparative analysis of
the network performances of all the NoC architectures considered in this work. As
shown in Figure 9(a), the WiFBF and FBF architectures have the two lowest average
inter-router hop count values. However, each router traversal in the FBF topology is
costlier in terms of energy and latency, compared to that in mesh and small-world NoC
topologies. This is further corroborated by the single router traversal energy values
presented in Figure 9(b). Having a much larger number of ports in each router and
requiring a hierarchal switching stage contribute to the additional router stage latency
and energy experienced by FBF and WiFBF architectures.

The average message latency and EDP values are presented in Figures 9(c) and
9(d), respectively. From these figures, it is evident that all the wireless enabled NoC
architectures perform better than the corresponding wireline only NoC following the
same topology. Among all the topologies, mesh topology achieves the best latency and
EDP improvement with the addition of wireless interfaces. This fact can be attributed to
the high reduction in average hop count achieved by the mesh NoC with the addition of
WIs (Figure 9(a)). Among all the wireline only NoCs considered, the FBF NoC achieves
the lowest message latency. Similarly, among all the wireless-enabled NoCs, WiFBF
achieves the best message latency value. However, due to their high router energy
consumptions, in terms of EDP, the WiFBF and FBF topologies perform considerably
worse than the WiNoC and SWNoC topologies (38% EDP penalty for WiFBF when
compared to WiNoC), respectively. Aside from achieving the best network EDP values,
the WiNoC exhibits only a 4.7% higher latency values when compared to WiFBF. From
these analyses, we can conclude that for efficient implementations of complex large-
scale graph analytics, the WiNoC architecture is the best suitable option.

8 (1) = (4)

5.2.3. Robustness of the NoC Architectures — Handling Runtime W/ Failures. Any good wireless
NoC architecture should be able to handle the runtime WI failures as seamlessly as
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possible. As we have already explained in Section 4, in all three wireless NoCs (WiMesh,
WiNoC and WiFBF), we handle the runtime WI failures by rerouting the packets along
the wireline only paths. Figure 10 shows the increase in the EDP of the three above-
mentioned wireless NoCs with increasing number of failed wireless nodes (WIs). From
this figure, it can be easily seen that compared to WiNoC and WiFBF, the EDP of the
WiMesh architecture increases more rapidly with the increase in number of failed W1ls.
This steeper increase can be attributed to the fact that the wireline only paths (used
for rerouting) in the WiMesh topology have much higher average hop counts than that
for the WiNoC and WiFBF topologies. In WiFBF, the maximum hop count is always
two (even under WI failures) and the small-world topology of WiNoC ensures a low-
average hop count even among the physically far apart routers. It can be seen from
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Figure 9(a), that in fact small-world architecture with no wireless interfaces (SWNoC)
has a smaller hop count than that of mesh architecture with 15 WIs (WiMesh). From
these discussions, we can conclude that the WiNoC and WiFBF architectures are better
in handling the runtime WI failures when compared to the WiMesh architecture.

5.3. Execution Time Improvements

In this section, we evaluate the overall runtime of all the NoC architectures considered
when running the two target graph applications.

5.3.1 Grappolo. Figure 11 shows Grappolo’s execution times. Among all the NoC ar-
chitectures considered, WiFBF and WiNoC achieve the lowest execution times due
to their low hop count nature. When compared to the traditional wireline mesh, FBF
achieves an average of 16.2% execution time improvement while WiNoC achieves an av-
erage of 14.2% execution time improvement. Among the five graphs considered, HEP
achieves the highest execution-time improvement by using the WiNoC (17.9%) and
WiFBF (20.5%), when compared to the wireline mesh. HEP is followed by ASTRO and
PGP (with 19.5% improvement with WiFBF and 17.2% with WiNoC), when compared
to the wireline mesh. The ASJ graph achieves the least execution time improvements
(4.6% improvement with WiFBF and 3% improvement with WiNoC, when compared to
the wireline mesh). The reason for the variations in execution-time improvement can
be understood by analyzing the runtime characteristics of Grappolo. Figure 12 shows
the varying traffic volumes and the average CPU utilizations, over the entire Grap-
polo execution period with the WiNoC architecture. Here, traffic volumes indicate the
volume of flits exchanged through the interconnection network. As discussed earlier,
the Grappolo application involves multiple executions of two distinct phases, cluster-
ing and compaction. Since all computing cores are highly active during the clustering
phase, it is identified with high-average core utilizations. However, the master core is
the only core that is active during compaction. This serialization within the compaction
phase is identified with a lower average CPU utilization.

Since all the cores are active, inter-core traffic volumes associated with the clustering
phase are much higher than that of the compaction phase. It can also be noted from
Figure 12, that the traffic volume decreases with time during the clustering phase. As
the execution of the community detection algorithm progresses, the number of clusters
reduces, and consequently the interactions between the cores also begin to reduce,
leading to the observed drop in traffic volume. Similar trends were observed with all
the other NoC architectures albeit with different execution times (Figure 11).

These variations in CPU utilization and network traffic for the above-mentioned
input graphs lead to the observed variation in runtime improvements achieved with
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different NoC architectures. By comparing Figures 11 and 12, we can note that the
graphs with longer clustering durations achieve higher execution time improvements
through the use of low hop count NoC architectures such as WiNoC, FBF and WiFBF.
When compared to wireline mesh, the low hop count NoCs enable a faster data exchange
among the computing cores, leading to a quicker executions of the traffic-intensive
clustering phase.

5.3.2 Balanced Coloring. Figure 13 shows the execution times of the Balanced Coloring
application on the multicore system interconnected with the six different NoC archi-
tectures. These execution times are broken down into the two major phases within

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 4, Article 66, Publication date: August 2016.



High-Performance and Energy-Efficient Network-on-Chip Architectures for Graph Analytics  66:21

BENTH BBLG MCCR OCNR ECAD ECAC

e
‘H
= q 08
® o
= m
He 06 s
: b
S =g piat
Qo i
N o= e
=5 04 s
< g b
g 2 e
=
= 0.2 fies
- Jeces
I s
) pict
= 0 - i

Initial Coloring Redistribution

Fig. 14. Balanced coloring: Traffic injection rates.

computation — viz. initial coloring and redistribution. Among the graphs considered,
CAC achieves the maximum improvement in execution time (38% by using the WiNoC
and 40% with WiFBF, when compared to the wireline mesh). CAD follows CAC ((32%)
by using the WiNoC and 33% with WiFBF when compared to the wireline mesh). The
two street network graphs, BLG and NTH, achieve the least execution-time variations
with varying NoC architectures. NTH achieves only a 7.5% execution-time improve-
ment by using the WiNoC and only 9.3% with execution-time improvement by using
WiFBF, when compared to using wireline Mesh.

Figure 14 compares the traffic injection rates of the initial and redistribution phases.
The average number of flits injected per cycle per core gives the traffic injection rate.
As explained in Section 3.2, the redistribution phase involves heavy data migration.
Due to their communication-intensive nature, the redistribution phases exhibit up
to 4x higher injection rates when compared to corresponding initial coloring phases.
Hence, as shown in Figure 13, redistribution phases achieve higher execution time im-
provements with improved NoC architectures when compared to the respective initial
coloring phases.

The number of colors associated with each considered graph is provided in Table II.
It can be noted from Figure 13 that the graphs with a larger number of colors (>80
colors) achieve a better execution-time improvement with better NoC architectures
when compared to graphs with low number of colors (<20 colors). This disparity in
the improvement profile can be explained as follows: The graphs with more colors
also spend more time in the redistribution phase, which, as explained above, stands
best to gain from the low-hop-count NoC architectures. Observing the trends in traffic
volumes and CPU utilizations from Figures 15 and 16 can corroborate this. More
specifically, the CPU activity drops during the redistribution phase when executed
with the mesh topology. With higher average hop count, mesh NoC forces the CPUs to
exhibit prolonged waits for the necessary data, leading to a drop in CPU activity. In
contrast, WiNoC maintains a fairly high CPU utilization throughout the redistribution
period.

5.4. System Energy

Figures 17(a) and 17(b) shows the energy consumptions of the multicore systems exe-
cuting Grappolo and Balanced Coloring, employing the six different NoC architectures
considered in this work.

The overall energy consumption of the multicore system is the sum of the ener-
gies consumed by the cores, interconnects and network router. As stated earlier in
Section 5.2, the FBF and WiFBF architectures dissipate high router energies and hence
consume higher network energies when compared to SWNoC, WiNoC, and WiMesh
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architectures. The variation in network energy consumption among the mesh and
small-world networks can be explained as follows: The average hop count of the wire-
line mesh network is higher than WiMesh and the small-world NoC architectures
(Figure 9(a)). Hence, each injected message stays longer in the wireline mesh network
than in the WiMesh, SWNoC and WiNoC architectures. This in turn leads to higher
network energy consumptions with the wireline mesh NoC. As an example, we can
consider the execution of CAD Balanced Coloring with mesh and WiNoC architectures.
By comparing Figures 15(a) and 15(b), it can be seen that the average traffic volume
associated with mesh is higher than the average traffic volume associated WiNoC.
Moreover, compared to the wireline NoCs (wireline mesh, SWNoC and FBF) architec-
tures, the WiMesh, WiNoC, and WiFBF NoCs use more energy-efficient wireless links
for long-range communication. This enables WiMesh, WiNoC, and WiFBF to achieve a
better interconnect energy consumption than their wireline counterparts. Finally, when
compared to the wireline mesh, all the other architectures enable a lesser execution
time, leading to improved CPU energy consumptions.

Overall, the WiNoC architecture achieves lowest energy dissipation. More specifi-
cally, WiNoC has the lowest network energy dissipation and the second lowest core
energy dissipation. Based on the graphs considered, Balanced Coloring achieves a
maximum of 44.3% reduction in energy consumption by using WiNoC when compared
to wireline mesh. Grappolo achieves a maximum of 35.5% energy savings. The CPU
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energy savings are more pronounced for the Balanced Coloring application due to the
communication intensive nature of redistribution phase and hence Balanced Coloring
application achieves higher full-system energy savings than Grappolo.

Figures 17(c) and (d) show the full-system EDPs of the multicore systems executing
Grappolo and Balanced Coloring, employing the six different NoC architectures
considered in this work. We use full-system execution times and full-system energy
consumptions to compute full-system EDP. Due to the tradeoffs associated with
reducing energy at the cost of the execution time performance, EDP is a suitable
metric for analyzing the full-system performance profile. To summarize, among all
the considered NoC architectures, WiNoC achieves the best full-system energy delay
product. WiNoC is followed by WiFBF. Compared to the WiFBF, the WiNoC achieves a
maximum of 12.5% EDP enhancement (an average of 9% EDP savings for WiNoC over
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WiFBF). For the graph applications considered here, when compared to the traditional
wireline mesh and the wireline FBF NoCs, the WiNoC achieves on an average of
38% and 18% EDP enhancements respectively. Moreover, it is already shown in
Section 5.2.3, that the WiNoC is also a high robust architecture that can more
efficiently handle the wireless link failures. From these discussions, we can conclude
that the small-world network-enabled WiNoC is the most suitable NoC architecture
for implementing complex large-scale graph analytics on the multicore platforms.

6. CONCLUSION

Graph analytics have become an essential part of the discovery pipeline in numerous
data-driven scientific and social computing fields. However, implementing advanced
graph operations on state-of-the-art multicore platforms requires significant redesign
of the on-chip interconnect network topologies to mask the adverse effects of irregular
data movement characteristics. In this article, we analyzed the traffic patterns
generated by two state-of-the-art parallel implementations for advanced graph
analytics — viz. Grappolo for community detection, and Balanced Coloring. The traffic
generated by these applications exhibit high long-range communication patterns
with traffic hotspots and are highly suitable for the implementation low hop count
NoC topologies. Towards this end, in this work we explore the suitability of three
different NoC topologies, mesh, small-world Network on Chip (SWNoC) and Flattened
Butter-Fly (FBF), for implementing multicore graph analytics. Incorporated with
long-range shortcuts, the small world and Flattened Butter-Fly topologies enable a fast
data exchange among the computing cores leading to improved system performance
when compared to the traditional wireline mesh. Among all the NoC architectures
considered in this work, the wireless enabled small-world Network on chip (WiNoC)
architecture achieves the best full system Energy Delay Product (EDP). When com-
pared to the traditional wireline mesh and wireline FBF networks, WiNoC achieves an
average of 38% and 18% improvement in EDP respectively for running graph analytics.
The study presented in this article represents, to the best of our knowledge, the first
detailed design-space exploration of NoC architectures for multicore graph analytics.
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