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Abstract

Expressed Sequence Tag (EST) sequencing is a highly
efficient technique that samples expressed genes re-
quired for most cellular functions. While this is a
well-studied problem and many software tools have
been developed, large-scale EST clustering has previ-
ously been pursued through incremental approaches,
a pipeline of programs and manual efforts to achieve a
modest degree of parallelism. Here, we present the first
method that can directly cluster millions of ESTs on
thousands of processors. This approach requires only
linear space and uses rigorous alignment-based tech-
niques to ensure biological accuracy. Further, we min-
imize computationally intensive alignments with sin-
gle linkage clustering and develop a method to limit
the formation of large spurious clusters. The compu-
tational scalability and biological validity of this ap-
proach is demonstrated by clustering mouse EST data,
one of the two largest EST collections, on a 1,024 node
BlueGene/L supercomputer.

1 Introduction

Unlike bacterial genome sequences that are highly
compact archives of genetic information, the genomes
of plants and animals are typically large and cluttered.
In addition to genes that encode the information
required to produce proteins, which perform most
cellular functions, complex genomes often contain
remnants of ancient evolutionary experiments that
have generated families of related genes and now
defunct versions called psuedogenes. Self-replicating
sequences called transposons have further compli-
cated matters by generating thousands of copies of
themselves. Combined, these processes have led to
a preponderance of so-called “junk” DNA in many
genomes including our own; nearly 98% of the human
genome does not encode proteins [1].

A fundamental goal of computational biology is to
characterize the genomic contents of as many organ-
isms as possible. Such information will help build the
“Tree of Life” and provide fundamental insight into
processes such as evolution. Current approaches ei-
ther sample an entire genome or perform various filters
that preferentially sample its gene-rich fraction. Ob-
taining a complete genome sequence is always the most
comprehensive (but expensive) solution as it captures
all protein-coding genes and additional functional se-
quences. The degree by which gene enrichment is im-
portant is directly correlated with the clutter of a large
genome. For example, it is now commonplace to char-
acterize a compact bacterial genome composed of a
few million bases in a single afternoon, while billions
of nucleotides of mammalian and many plant genomes
still require significant resources. Given that only 2%
of a mammalian genome is the most interesting, biol-
ogists have developed a compromise based on the ob-
servation that the genome acts as a template for mes-
senger molecules that are expressed at specific times
or under certain conditions. By capturing these in-
termediates from different tissues and developmental
stages the protein-coding minority was preferentially
sampled, greatly accelerating biological discovery [2].

In this paper, we address a grand challenge in com-
putational genomics: analyzing millions of expressed
sequences captured by a technique called Expressed
Sequence Tag (EST) sequencing. There are currently
almost 43 million EST sequences in the dbEST divi-
sion of GenBank [3] led by the mammalian species of
human (Homo sapiens ; 7.9 million) and mouse (Mus
musculus ; 4.8 million). The primary de novo mech-
anism to detect ESTs derived from the same gene is
the overlap between them. The quality of such an over-
lap is best detected using an alignment algorithm [4].
Unlike traditional genome sequencing, EST sequence
data are nonuniformly sampled because genes are ex-
pressed at different levels at different times. This cre-
ates a quadratic number of genuinely overlapping pairs
of ESTs, making large-scale EST analysis difficult.
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Although many methodologies and programs have
been developed over the past decade for analyzing
ESTs [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], most are
only applicable for a few hundred thousand and do
not scale well to larger problem sizes. At present, two
approaches are often used: One technique is to take
every pair of ESTs and detect if there is an overlap be-
tween them. Though this is computationally wasteful,
this approach is trivially parallelizable and inherently
incremental. This was especially useful several years
ago when sequences used to arrive in small batches, al-
lowing clusters to be built and refined over a period of
time. A second method is to first break the problem
into multiple independent subproblems by clustering
using metrics such as approximate matches [5, 6] or
single linkage clustering [9, 11]. Each cluster is then
independently re-clustered well using any serial algo-
rithm, easily providing parallelism across the initial
clusters. The problem with this approach, however, is
the size of the largest initial cluster tends be a signifi-
cant fraction of the original problem size. This limits
the overall utility of the preprocessing even if the ini-
tial steps are parallelized.

Previously, we developed a parallel EST clustering
framework called PaCE [9]. This algorithm effectively
handled a few hundred thousand ESTs, but when ap-
plied to larger collections it too suffered from the “one
large cluster” problem. Here, we present a technique to
significantly reduce the largest initial cluster size such
that post-processing of initial clusters is both feasi-
ble and does not overwhelm the overall computational
time. In addition, we have successfully applied the
PaCE framework on an IBM BlueGene/L supercom-
puter. To demonstrate scalability to the largest-scale
EST collections and test its biological validity, we clus-
tered 3.7 million mouse ESTs obtained from Genbank.

Our paper is structured as follows. First, we define
ESTs and draw comparisons to related work in Sec-
tion 2. In Section 3 we summarize the key features of
the PaCE framework. A novel approach to limit the
size of the largest initial cluster is presented in Section
4. Section 5 contains results on mouse EST cluster-
ing that validate this method from a biological stand-
point. In Section 6 we provide performance results and
demonstrate scaling to over a thousand processors. In
section 7, we present additional biological insight that
can be drawn from massively parallel EST cluster-
ing and discuss the applicability of our framework for
pyrosequencing-based EST sampling approaches [16].
Because these techniques are generating about 200,000
sequences in a 4 hr. experiment, they are creating a
situation where the speed of analysis tools is falling
behind the rate at which data can be generated. The
contribution made in this paper resolves this problem.

2 Problem Description

EST sequencing is the most common technique used to
selectively sample genes from large genomes. In a cell,
information stored in a gene is copied into a messenger
RNA molecules (mRNA). Biologists have taken advan-
tage of this process to selectively isolate active genes
from specific tissues or developmental stages. These
are then placed into a bacterium called a vector that
collectively comprise a library, in which each member
contains a single messenger. After library construc-
tion, known sequences in the vector are used to se-
quence terminal ends of a DNA version of the original
mRNA. These ends are the Expressed Sequence Tags.

Given that ESTs comprise a majority of the se-
quence data for many organisms, multiple research
groups have developed software for EST analysis using
clustering-based solutions. Some of the earliest clus-
tering approaches were derived by adapting software
developed for the related genome assembly problem
[7, 8, 12], as both approaches rely on finding overlaps
between sequences. Their chief disadvantage is that,
given n ESTs the non-uniform nature of EST sam-
pling can generate Θ(n2) overlaps while random shot-
gun assembly is expected to generate only O(n) over-
laps. The Θ(n2) time and memory requirements limit
these approaches to a few hundred thousands ESTs.

To enable clustering of larger-scale EST data, sev-
eral groups developed a two-stage clustering approach:
First, the sequences are partitioned into an initial set
of clusters such that ESTs from the same gene are
never split across clusters but each cluster may con-
tain ESTs from several genes. This breaks the problem
into several independent subproblems, each of which
is small enough to be refined through assembly. The
initial clustering stage can be performed using a less
rigorous metric. For example, the TGICL pipeline
performs an all-vs.-all search using a customized ver-
sion of megablast [11]. Each pairwise overlap can be
computed by trivially partitioning the input file into p
pieces, although because each overlap would be stored
on disk and sorted prior to clustering implies a Θ(n2)
space complexity and limited scalability. Subsequent
assembly is carried out using CAP3 [8]. The STACK
algorithm [13] performs all-vs.-all pairwise compar-
isons using d2-measure, a distance measure to assess
sequence dissimilarities. Subsequence assembly is car-
ried out by the Phrap assembler [7]. The PaCE soft-
ware [9] performs single-linkage clustering using a rig-
orous alignment metric followed by CAP3 assembly.
None of these programs, however, can be directly used
if the largest EST cluster is on the order of hundreds
of thousands of ESTs. Such large clusters are too large
to post-process using assembly.
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An alternative approach to EST clustering is to di-
rectly align the ESTs to the organism’s genome. This
method is currently utilized for human and mouse
ESTs at Unigene [14], and other programs have been
developed [15]. Obviously, these techniques are only
applicable for organisms with known genomes.

3 The PaCE Framework

PaCE [9], which stands for “Parallel Clustering of
ESTs”, was developed to cluster large-scale EST data
on distributed memory machines in the absence of a
complete genome. Unlike other methods that require
running multiple programs, e.g., manual partitioning
of input files and running multiple instances of a se-
rial program if parallelism is desired, PaCE is a direct
parallel method. The framework uses a single linkage
clustering strategy: when a pair of ESTs from differ-
ent clusters exhibits a strong alignment, the clusters
are combined into one. This allows sequences that do
not directly overlap to be part of the same cluster if
they are connected via a chain of overlaps. It has been
applied to hundreds of thousands of ESTs [17].

Given an input of n ESTs, the algorithm initially
places each sequence in a cluster of its own. Generated
pairs are aligned only if they currently belong to differ-
ent clusters. Successful alignments are used to merge
clusters while failed ones are ignored. Note that a lin-
ear number of pairwise alignments would be enough
to compute the clustering result because there can be
no more than n − 1 merges irrespective of the data.
As these pairs cannot be predicted in advance, we in-
crease the odds by generating pairs with longer shared
exact matches first. This heuristic reduces the total
number of alignment computations without affecting
the clustering result. An on-demand pair generation
algorithm completely eliminates the need for storing
pairs making PaCE the only framework with worst-
case linear space complexity; all other programs have
worst-case quadratic space complexity. Thus, PaCE
is inherently scalable to very large problem sizes and
does not need slow intermediate disk storage like other
methods. PaCE is in use by over 50 organizations.

4 Large-Scale EST Clustering

The primary contribution in this paper is a method for
EST clustering that scales up to the largest currently
available data. We demonstrate the effectiveness of
this approach on 3.78 million mouse ESTs. To our
knowledge, this is the first successful attempt to di-
rectly cluster such large scale EST data.

4.1 The Largest Cluster Problem

Because a single successful alignment between a pair
of sequences is sufficient to combine them under sin-
gle linkage clustering, any spurious alignments will a
compounding effect and lead to the formation a large
cluster. Our experimental studies show that no such
clusters are formed for small-scale data but this be-
comes a pressing issue for large-scale data. For exam-
ple, clustering 168,200 Arabidopsis ESTs using PaCE
yielded a largest cluster size of only 1008 sequences
(0.6% of the total). On the other hand, the largest af-
ter clustering 3.78 million mouse ESTs was composed
of 807,671 ESTs (21.37% of the total)!

In principle, post-processing the initial clusters with
an assembly program should break the largest (and
other) clusters into appropriate subclusters. In prac-
tice, there are two potential drawbacks to this ap-
proach: As assembly programs require Θ(m2) memory
for processing a cluster of size m, it may not be feasible
to post-process the largest cluster if m = Θ(n). Even
if it were, the run-time taken by the serial assembler
on the largest cluster would dominate the total time to
solution. For instance, when TGICL was used to clus-
ter a 1.7 million EST collection, the clustering took an
hour on 20 processors [11]. Subsequent CAP3 assem-
bly, however, took 24 hours. This completely negated
any advantages of using even this modest degree of
parallelism.

In general, if post-processing the largest EST cluster
takes one tenth of the parallel work required for the
entire data, then using thousands of processors yields
no more benefit than using just 10 processors, if we
consider the overall time to solution. This creates an
interesting conundrum – While hundreds of processors
can be effectively utilized for medium-scale EST data,
only few processors can be effectively utilized for very
large data no matter how well the initial clustering
approach scales on parallel machines.

4.2 Our Solution

Single linkage clustering is required to achieve linear
space and to significantly reduce the number of align-
ments performed. Once single linkage clustering is
chosen, the data determine the size of the largest clus-
ter. To overcome large clusters, let us examine their
nature. Large clusters are often formed by merging
relatively big clusters because of spurious alignments.
Such spurious alignments may be caused by a chimera,
or a repeat, or a region common to members of a gene
family that has not sufficiently diverged in sequence
similarity. In many of these cases, there will be one
bridging sequence that brings clusters together and no

3



additional alignment evidence. This is illustrated in
Figure 1(a). It is clear that finding such weak links
and breaking them into smaller clusters, or not allow-
ing cluster formation in the first place should fix this
problem. However, any attempt to carry out and store
alignments will substantially increase the memory re-
quirement to Θ(n2) in the worst case.

To overcome this problem, we devised the following
algorithm:

1. Choose a small constant c ≥ 2. Break each in-
put EST into c consecutive and non-overlapping
pieces of equal size and tag each piece to recog-
nize its source EST. In practice, an EST is broken
only it satisfies a minimum length, such as 200bp.

2. Run the PaCE algorithm on the resulting input
of at most cn sequences. The total memory re-
quired by PaCE is linear with respect to the total
input measured in nucleotides. Because breaking
ESTs does not increase the number of nucleotides,
the additional memory required is negligible. The
clustering result, however, is no longer a partition
of the original EST collection because each EST
may belong to at most c clusters.

3. “Link” every pair of clusters that contain frag-
ments containing the same EST identifier. As
the number of fragments per original EST is at
most c, the total number of links is bounded by
Θ(c2n). Thus, this can be computed simultane-
ously in Θ(c2n) time.

4. In the last step, we merge a pair of clusters if the
number of links between them is at least k, for
some constant k ≥ 2. One could also choose more
sophisticated criteria, such as making k a func-
tion of the size of the clusters. By preserving the
source EST information, we are essentially achiev-
ing multi-linkage clustering by requiring at least
k links between disjoint clusters in the new result.

This method is illustrated for the case of c = 2 and
k = 2 in Figure 1. The parameters c and k should be
chosen appropriately. In general, increasing the value
of c or k will reduce the size of the largest cluster.
However, arbitrarily large values cannot be chosen as
these would result in rejecting genuine alignments. It
is also important to reevaluate the alignment param-
eters. For instance, when c = 2, an originally accept-
able alignment may now be split across the two frag-
ments. Thus, the parameters must be modified ac-
cordingly to guarantee all information in the original
collection of ESTs will be preserved.

This algorithm works for the following reason. By
reducing the number of “bridges” available to a sin-

gle linkage clustering algorithm we are effectively re-
ducing the probability that a spurious link would lead
to the formation of a large cluster because at least
k sequences must now be involved. In addition, this
strategy removes many biological artifacts, which are
sequences that are incorrect or have poor quality. Al-
though it is possible to miss valid alignments because
of fragmentation, remember that ESTs are generated
from ends of messenger molecules (Section 2). As such,
we expect many of these will align as shown in Figure
1 and this problem will be minimal.

We tested this algorithm on the largest mouse EST
cluster composed of 807,000 ESTs. By constructing
a new dataset where c = 2 (1.6 million total), we
were able to break the large cluster into 3,420 clusters,
which represented 780,718 of the original sequences
(97%), in less than 2 hours on 512 processors. Signifi-
cantly, the largest cluster size was 50% of the original
without losing any substantial information. Using a
value of c = 3 further reduced the largest cluster to
216,026 sequences. For the mouse dataset the value of
k did not significantly impact the size of the largest
cluster; however, our experimental data support in-
creasing c incrementally. For example, using c = 3 on
the largest cluster formed when c = 2 was able to re-
duce the largest cluster by an additional factor of two.
Because of the quadratic behavior of assembly, each
reduction in the largest cluster size by a factor of r

reduces the time required by a factor of r2.

5 Validation

Current approaches to validate EST clusters rely heav-
ily on biological experts. The PaCE software tool has
been successfully used to process primarily plant EST
datasets including Arabidopsis (N=168,200; [17]) and
cotton (N=185,000; [18]). Both studies reported the
ability to accurately partition plant ESTs at the cost of
putative false negative overlaps that lead to more than
one cluster per gene. Alternative genome-based meth-
ods, on the other hand, use a known sequence to an-
chor ESTs to fixed locations. This eliminates noise and
ambiguous ESTs that confound single-linkage cluster-
ing because these typically do not align to a single lo-
cation in the genome. As such, genome-based solutions
can serve as the “gold standard” for de novo clustering
result validation. Therefore, we reclustered sequences
present in the mouse UniGene collection provided by
the National Center for Biotechnology (NCBI) using
the complete mouse genome.

Our run was able to obtain homogeneous clusters,
where all members correspond to a single gene, for
50,661 out of 60,862 (83%) clusters with more than one
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(a)

(b)

Figure 1: Illustration of our methodology to avoid formation of large clusters. In (a), two clusters are brought
together by a bridging sequence which could be a chimera or contain a repeat or from parts of a gene family without
significant divergence. Figure (b) shows the effect of breaking each EST into two pieces prior to clustering. The
bridging sequence belongs to both the clusters. However, it is the only link between two clusters and is not sufficient
to merge the clusters.

member. In other words, many PaCE clusters achieve
high accuracy relative to the benchmark without any
post-processing. Most importantly, all of these clus-
ters could be refined by assembly. This overcomes the
primary limitation encountered by previous attempts
to perform large-scale EST clustering.

The above analysis suggests false positive merges are
manageable, but does not address the extent of false
negatives, where ESTs belonging to the same gene are
placed in two or more clusters. In total, 422,598 clus-
ters comprise the UniGene build downloaded in late
March 2006. As previously alluded, any correct parti-
tion can be achieved by locating as many correct links
as clusters. Based on this observation, we fixed the
UniGene partition of the 3.78 million ESTs as truth
and define the distance between results as the num-
ber of additional merges and splits required to trans-
form our resulting PaCE partition to the benchmark
partition. Conceptually, each merge in our transfor-
mation corresponds to a false negative that arises for
many reasons such as poor-quality ESTs. Similarly,
a split corresponds to a false positive that arises for
reasons such as two unrelated ESTs being members
of a large gene family. Doing this comparison indi-
cated that most false negatives correspond to single-
tons that were separated likely due to poor quality in
overlapping regions. Excluding these singletons, we
determined that 3,213,878 of the links determined by
PaCE were correct with 45,05826,125 false negatives;

the number of false positives were only 26,125. Taken
together, these results suggest that the vast majority
of the links found by PaCE were valid with minimal
false positives and negatives.

6 Performance Results

There are two main phases in PaCE: (i) “Tree con-
struction phase”, in which a distributed representation
of a generalized suffix tree is constructed in parallel,
and (ii) “Clustering phase”, in which clustering is per-
formed from overlaps detected and computed in par-
allel. The tree construction phase is expected to scale
linearly with input size. For the clustering phase, the
work is proportional to the number of pairs aligned.

We evaluated PaCE on mouse EST data composed
of 3,783,854 ESTs using 1,024 BlueGene/L nodes. Ta-
ble 1 shows the phasewise run-times as a function of
both the input size and processors used. These ta-
bles show the range of processors on each input until
which the run-time scales linearly, and beyond which
the problem size becomes too small for the processor
size. Significantly, the results show that as many as
512 processors can be used efficiently for even an in-
put containing as few as 100,000 ESTs.

The observed increase of clustering phase run-time
with input size in Table 1 conforms with expected
asymptotic quadratic behavior. In addition, the re-
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Number
of ESTs
100,000
250,000
500,000

1,000,000
2,000,000
3,783,854

Tree construction phase run-time

Number of processors
32 64 128 256 512 1024
44 25 11 6 3 2

110 56 29 15 8 6
123 63 32 16 12

135 69 38 22
174 91 51

248 158

Clustering phase run-time

Number of processors
32 64 128 256 512 1024
36 18 9 5 3 3

115 58 22 11 6 5
152 83 42 18 13

146 69 40 24
247 181 102

950 416

Table 1: Phasewise run-times (in minutes) of PaCE as a function of input and processor sizes.

Figure 2: Pairs generated on mouse EST data using
a maximal common substring cutoff of 30 bp. The
substantial fraction of unaligned pairs are a result of
the greedy heuristic used by the PaCE algorithm.

sults indicate that the run-time for the clustering
phase dominates the total run-time for larger inputs.
Figure 2 shows the number of promising pairs gener-
ated by PaCE based using a minimum cutoff maximal
match length of 30 bp, as a function of the input num-
ber of ESTs. While the growth is input dependent, the
figure shows an almost quadratic increase as expected
in the worst case. Figure 2 also shows that align-
ments are computed for only ∼10-12% of the gener-
ated pairs. Computing alignments over the remainder
is deemed unnecessary, demonstrating the significant
run-time savings achieved without loss of quality.

We evaluated the effectiveness of the master-worker
implementation of the PaCE algorithm as follows: Fig-
ure 3a shows the average run-time (as a percentage of
the total run-time) spent by a worker processor waiting
for the master processor without performing any com-
putation. As expected, this idle time decreases with

increases in input size for a fixed number of processors;
Figure 3a shows that this idle time ranges from 7% to
22% on the data tested. More importantly, the plot
also shows that the processor size can be quadrupled
upon doubling the input size, without increasing the
idle time of workers. We also evaluated idle time on
the master processor. Figure 3b shows that the master
processor is available for at least 80% of the clustering
phase’s run-time even for as few as 100,000 ESTs on
1,024 processors. We conclude that the master proces-
sor is not a bottleneck during the conditions tested.

7 Biological Insights

During the initial stages of the human genome project,
EST sequences were used to estimate the number of
genes in mammalian genomes [2]. Surprisingly, many
of these predictions were off by tens of thousands of
genes because single genes produce more than one
message (and therefore EST) by selectively mixing
and matching expressed portions in a biological pro-
cess called alternative splcing. The frequency of these
events has been estimated by Kan et al. [19] and oth-
ers by mapping individual ESTs to genomic sequences.
Alternative de novo approaches rely on serial assembly
programs to produce related transcripts. We believe
that massively parallel clustering, as presented in this
paper, can facilitate both types of prediction by reduc-
ing a large problem into many disjoint subproblems.

Many cells contain machinery that degrades double-
stranded mRNA formed when the message (sense)
is bound to its reverse complement (antisense). It
has been shown that at least 20% of mammalian
transcripts form sense-antisense pairs [20]. Because
antisense-based gene regulation appears to be evolu-
tionarily conserved, this biological process should have
important functions in many organisms. Although
EST clustering can not resolve the different classes
of antisense interactions, candidates can be detected
using post-processing of single EST clusters.
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Figure 3: (a) Average idle time for each worker processor as a percentage of the total run-time. (b) Availability of
the master processor, measured as the percentage of the clustering phase run-time that the master is idle.

8 Conclusions

In this paper, we present the first method that can
cluster the largest known EST collections on massively
parallel distributed memory machines. We demon-
strate the applicability of our framework on the 3.78
million mouse EST collection represented by Unigene
[14]. Validation confirms that our method produces
biologically meaningful results that can facilitate im-
portant analyses such as detecting alternative splicing
and antisense transcripts. Developing EST clustering
programs that could handle the largest data available
has been a problem frustrating many researchers in-
cluding us. The contribution made in this paper is
a solution to this long standing problem. While we
expect that traditional EST sequencing will soon be
replaced by the use of 454 sequencing technology, the
underlying problem remains the same and our method
is applicable. More importantly, the high throughput
nature of these sequencers make the development of
large-scale clustering methods even more important in
the future.
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