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ABSTRACT
De novo genome assembly describes the process of recon-
structing an unknown genome from a large collection of short
(or long) reads sequenced from the genome. A single run of
Next-Generation Sequencing (NGS) technologies can pro-
duce billions of reads, making genome assembly computa-
tionally demanding. One of the major computational steps
in modern day short read assemblers involves the construc-
tion and use of a string data structure called the de Bruijn
graph. In fact, a majority of short read assemblers build
the complete de Bruijn graph for the set of input reads, and
subsequently traverse and prune low-quality edges, in order
to generate genomic “contigs” — the output of assembly.
These steps of graph construction and traversal, contribute
to well over 90% of the runtime and memory. In this paper,
we present a fast algorithm, FastEtch, that uses sketching
to build an approximate version of the de Bruijn graph for
the purpose of generating an assembly. The algorithm uses
Count-Min sketch, which is a probabilistic data structure for
streaming data sets. The result is an approximate de Bruijn
graph that stores information pertaining only to a selected
subset of nodes that are most likely to contribute to the
contig generation step. In addition, edges are not stored;
instead that fraction which contribute to our contig gener-
ation are detected on-the-fly. This approximate approach
is intended to significantly improve performance (both exe-
cution time and memory footprint) whilst possibly compro-
mising on the output assembly quality. For further scala-
bility, we have implemented a multi-threaded parallel code.
Experimental results using our algorithm conducted on E.
coli, Yeast, and C. elegans genomes show that our method is
able to produce assemblies with quality comparable or better
than most other state-of-the-art assemblers, while running
in significantly reduced memory and time footprint.
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1. INTRODUCTION
De novo genome assembly is the problem of assembling

an unknown genome from a set of DNA “reads” sequenced
from it. Despite advances in assembly algorithms over the
last two decades, development of de novo genome assembers
continues to be an active research topic. Over the years,
multiple Next Generation Sequencing (NGS) technologies
have emerged (e.g. Illumina, 454), which have increased
in throughput, improved in accuracy and decreased in cost,
leading to a massive scale adoption of these technologies
by practitioners. Most of these technologies generate “short
reads”that are of length in the hundreds of bases, with errors
less than 1%, but at rates that can quickly overwhelm the
computational capacity to assemble them.

There are numerous short read assemblers that have been
developed over the last decade (e.g., [1, 2, 11, 16, 17]).
Nearly all of them use a string data structure called the
de Bruijn graph to compute their assembly, and follow a
3-step approach: First, the de Bruijn graph is constructed
using all the substrings of length k (called k-mers) in the
input reads as “vertices”, and all the k + 1-mers that exist
in the input reads as “edges” (see Fig. 1 for an example).
The next step involves error correction, which locates and
prunes paths induced by erroneous k-mers that are likely
to be manifested by sequencing errors. The final step is to
generate a set of assembled contigs by traversing paths in
the residual graph. Of the three steps, the first step of de
Bruijn graph construction is typically the most memory- and
time-intensive, potentially taking hours to even days for as-
sembling moderate sized eukaryotic genomes, and requiring
tens to hundreds of gigabytes of memory.

To mitigate the memory requirements, a handful of re-
cently developed assemblers [3, 14] use a probabilistic data
structure (Bloom filter [10]) during their de Bruijn graph
construction. The filter enables a succinct representation
for finding and locating all k-mers that exist at the price
of reporting false positives with a low probability. How-
ever, the Bloom filter is suited for membership queries. In
the case of genome assembly, in addition to membership, the
frequency of k-mers is also important. Therefore, the Bloom
filter-based methods follow an indirect approach of first in-
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Figure 1: Example of a de Bruijn graph for an input con-
taining the reads {agcactg, tgcacta}, and for k = 3.

dexing the k-mers using the filter and later pruning those
k-mers (vertices) from the graph that have low frequency.
Furthermore, it is essential to estimate the size of the filter
a priori in order for it to perform optimally [7].

Contributions: In this paper, we present a new ap-
proach to compute genome assembly using a probabilistic
data structure specifically designed for counting — viz. the
Count-Min sketch (CM sketch) [6]. The data structure was
originally designed for streaming applications and operates
in sub-linear space. We propose a new genome assembly
algorithm that uses the CM sketch to build a low mem-
ory, approximate version of the de Bruijn graph, and uses
that graph to generate an assembly. More specifically, our
approximate de Bruijn graph stores, with high probability,
only those vertices corresponding to highly frequent k-mers.
Edges are not stored — instead only a subset is detected on-
the-fly, as contigs are generated. By avoiding the construc-
tion of a full blown de Bruijn graph and by selectively enu-
merating edges (and hence, paths) on-the-fly, our approach
trades off assembly accuracy in favor of performance (both
memory and run-time). Toward further scalability, our ap-
proach also parallelizes efficiently on multi-core computers.
Experimental results using our algorithm conducted on E.
coli, yeast, and C. elegans genomes show that our method is
able to produce an assembly with quality comparable or bet-
ter than most other state-of-the-art assemblers, while run-
ning in significantly reduced memory and time footprint.
Henceforth, we call our algorithm FastEtch, referring to its
fast ability to “etch” out a genome using sketching.

2. RELATED WORK
De novo genome assembly is a well researched topic with a

number of assembly tools and strategies developed over the
last two decades. Short read assemblers correspond to that
subset which target reads generated from NGS technolo-
gies (e.g. Illumina, 454 pyrosequencing, SOLiD). Broadly
speaking, modern day short read assemblers can be grouped
under three categories [12]: i) Overlap-Layout-Consensus
(OLC) methods that rely on constructing a pairwise align-
ment based overlap graph; ii) de Bruijn Graph (DBG) meth-
ods that build a de Bruijn graph out of the k-mers occurring
in reads, and then perform error correction and Euler path
traversals to generate an assembly; and iii) String Graph ap-
proaches that represent a variation of the OLC approach, by
focusing on suffix-prefix overlaps between reads.

Of these approaches, the DBG approach has emerged to
be one of the most widely used paradigms. Originally in-
troduced by Pevzner et al. [13], it has been widely adopted
in a number of short read assemblers including (but not
limited to): Velvet [17], ALLPATHS [1], SOAPdenovo [11],
and ABySS [16]. These methods vary in the manner in which
they process the de Bruijn graph, and identify and prune po-
tentially erroneous paths during contig assembly. However
all of these assemblers follow the same algorithmic template:

1. (Graph Construction) Given a set of input reads and
a constant k > 0, construct the de Bruijn graph;

2. (Error Correction) Identify and prune off paths in the
de Bruijn graph that are likely to be an artifact of
sequencing errors and inconsistencies; and

3. (Contig Generation) Compute path traversals of the
residual graph to generate contig assembly.

The DBG approach has its performance advantages — con-
structing a de Bruijn graph is linear in time complexity (in
comparison, building an overlap based graph is quadratic).
In addition, the traversal step treats the problem of contig
generation as an Euler tour (which is polynomial solvable)
as opposed to the intractable Hamiltonian path problem as
OLC approaches do. Despite this performance advantage,
assembling large, complex genomes still remains a compute-
and memory-intensive task, requiring hours to days of com-
putation, and tens to hundreds of gigabytes of memory.

In an attempt to reduce the memory footprint of assem-
bly, Chapman et al. proposed the Meraculous algorithm [3].
The algorithm uses the Bloom filter, a probabilistic data
structure for membership queries, to generate the de Bruijn
graph. Once the graph is generated, simple chain paths (be-
tween branching nodes) are enumerated and the first batch
of unique contigs are generated from these paths. Subse-
quently, the read set is loaded multiple times (iteratively)
to incrementally map the reads against the contigs and in
the process elongate the unique contigs on either end.

Minia is another assembler that uses the Bloom filter [4]
to construct the de Bruijn graph, by storing all the distinct
k-mers (vertices) and subsequently discarding the ones con-
sidered potentially erroneous (appearing fewer times than a
threshold). The tool also stores an additional structure to
remove what the authors call “critical false positives”. More-
over, in order to further reduce memory footprint, the Minia
algorithm uses secondary storage. All k-mers generated from
the read set are partitioned and stored on the disk. Low-
abundance k-mers are filtered, by separately loading each
partition (one at a time) into memory and into a tempo-
rary hash table. In the absence of adequate disk space, we
observed Minia to encounter segmentation faults.

There have been other efforts to generate memory-efficient,
compressed representation of the string structure used for
assembly, viz. bitmaps [5], and FM-index [15].

The algorithm presented in this paper, FastEtch, differs
from all the above previous efforts in the following ways: i)
It is the first approach, to the best of our knowledge, to use
the Count-Min Sketch (a sublinear space data structure) in
the graph construction step; ii) It constructs an approximate
de Bruijn graph, storing only a subset of vertices (k-mers),
and detecting edges on-the-fly as contigs are generated —
thereby saving on both vertex and edge space requirements,
and consequently, the time to solution; and iii) Through a
choice of parameters, it offers a way to control the quality-
performance (time, memory) trade-off in the output.

3. METHODS

3.1 Notation and Terminology
Let r denote a read (string) of length `, over the DNA

alphabet {a, c, g, t}. We index the characters in each read
from 1. Let r(i, l) denote the substring of length l starting
at index i in r, such that i + l − 1 ≤ `. Then, every r(i, k)
is a k-mer in r, for a fixed k > 0. We denote the input set



Figure 2: CM sketch depicting the Update function, which
updates the count for every k-mer to one cell in each row.

of n reads as R = {r1, r2, . . . rn}, and their total length as
N (=

∑
i |ri|). Let K denote the set of all k-mers in R.

Given R and k, the corresponding de Bruijn graph is a
directed graph G(V,E), such that the vertex set V = K,
and there exists a directed edge (u, v) ∈ E for every pair of
k-mers u and v that are consecutive in any read r ∈ R (as
shown in Fig. 1). We note here that the above represents
a minimalist definition of a de Bruijn graph. In practice,
typically a number of other attributes are stored along each
edge — e.g., the set of reads that cover each edge (or vertex),
or the number of occurrences of every k-mer.

3.2 Sketching for Genome Assembly
Introduced in 2003, the Count-Min sketch (CM sketch)

[6] is a sublinear space data structure used for summarizing
massive data streams in applications. It finds use in im-
plementing point, range and inner product queries, quantile
computations, and identification of heavy hitters [6]. The
CM sketch data-structure is a 2-D matrix of depth d and
width w, that stores d×w counts (Fig. 2). The sketch uses
d hash functions:

h1 . . . hd : {1 . . . n} → {1 . . . w}

that are from a pairwise independent family. Two param-
eters, ε and δ, are used to determine the sizes of w and d,
where ε denotes the error in answering a query within the
probability of 1 - δ: w = de/εe and d = dln(1/δ)e.

CM sketch supports basic functions: Update count and
Estimate count. In the streaming model, every incoming
update is of the form < i, c >, where i represents an item
and c represents the count of i for that update. Given an
update < i, c >, the Update count function is given by:

count[j, hj(i)]← count[j, hj(i)] + c, ∀j ∈ [1, d] (1)

The Estimate count function retrieves an estimated count
for a particular item i from the CM sketch, and is given by:

CM(i)← min
j

count[j, hj(i)] (2)

Intuitively, if ai denotes the actual count for item i, then
each entry count[j, hj(i)] represents an overestimate for ai
(due to potential collisions introduced by hj). Therefore,
returning the minimum over all the d counts represents the
lowest overestimate one can derive from the CM sketch.

Given that w = de/εe and d = dln(1/δ)e, the CM sketch
provides the following approximation guarantee [6]:

CM(i) ≤ ai + ε
∑
i′

ai′ , with probability at least 1− δ (3)

As can be observed from this approximation bound, the
quality of the estimate is likely to be better for the more
frequent items in the set — i.e. those items whose ai is a
relatively large fraction of

∑
i′
ai′ . This makes the CM sketch
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Figure 3: Histogram showing k-mer frequency distribution
(expressed as a % of the total distinct k-mers), for two cov-
erage experiments of the E coli genome, with k=32.

naturally suited for keeping track of frequent items in data
streams.

3.2.1 Frequency of k-mers
In this paper, we describe a way to make use of the CM

sketch for detecting frequent k-mers in reads and using them
for constructing an approximate version of the de Bruijn
graph, and subsequently, for generating the assembly. Our
idea to detect and keep track of only frequently occurring
k-mers is directly motivated by sequencing coverage C —
which corresponds to the number of clonal copies of the
target genome used in sequencing. Typically, de novo se-
quencing experiments use a high coverage to sequence the
underlying genome (between > 50× and 100×). Given the
stochasticity of the random shotgun process, this implies
that on an average, each base (and hence, each k-mer origi-
nating at that base) in the genome is covered by roughly C
reads. However, errors during sequencing, even if as low as
1%, alter this expectation, as erroneous positions in reads
generate low frequency (“poor quality”) k-mers. In fact, the
fraction of such low quality k-mers is only expected to grow
as k is increased. The non-erroneous fraction ( “high qual-
ity” k-mers) on the other hand tend to have a frequency
proportional to the coverage.

Consequently, if we are to plot the frequency distribution
of k-mers, we expect to see a bimodal distribution, with
roughly two peaks, one corresponding to the low quality k-
mers and the other high quality k-mers. We conducted a
preliminary study on the frequency distribution of k-mers
generated from two different coverage experiments on the
E. coli genome. Fig. 3 confirms the expectation.

In fact, this chart also provides an interesting insight into
the relative concentrations of the low vs. high quality k-
mers. Notably, well over 75% of all the distinct k-mers are
of low quality, while only up to 25% are high quality k-mers.
This simple observation lays the foundation for our use of
CM sketch for genome assembly — if CM sketch can be
used to effectively identify only those high quality k-mers,
then significant savings in space and time can be achieved.

Fig. 3 also suggests that there exists a clear separation be-
tween low and high qualilty k-mers in their frequency ranges
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Figure 4: The effect of w and d on: a) the standard deviation of the difference between CM count and actual count for all
k-mers. b) the percentage contribution of each k-mer to their respective hash bucket in the CM sketch.

— i.e. as per the bimodal expectation. We exploit these ob-
servations in the design of our algorithm (Section 3.3).

3.2.2 Precision of CM Sketch Counts
In this section, we evaluate the precision of CM sketch

counts when applied to k-mers from sequenced reads. As
described earlier, the size parameters w and d of the CM
sketch play a significant role in controlling the quality of the
count overestimate provided by the sketch. Also note that
the summation (

∑
i′
ai′) in the approximate bound (3) will

be Θ(N), if CM sketch is used for k-mer counting.
Given the above, we first note that even for small values

of d it is possible to achieve a very high probability 1 − δ
in bound (3). For example, d = 5 is sufficient to guarantee
0.99 probability (for 1− δ).

As for w, note that it controls the contributing factor ε of
the summation (

∑
i′
ai′) into the estimate. This implies that

high precision can be achieved by targeting a very low value
of ε. But how small should ε be so as to make the con-
tribution from the summation practically negligible, when
applied to k-mer counting? For instance, a value of w as
high as 106 will bring ε down to 10−6. Assuming N is 109

(1 Gbp input), this still implies a non-negligible contribu-
tion from 103 for each estimate. Given that the sequencing
coverage is typically only under 100×, this suggests that the
value of w has to be increased proportional to N if one were
to accurately recover the counts for all k-mers. However,
such a high value of w is clearly undesirable from a mem-
ory consumption perspective, because as w tends to N , the
sublinear space advantage of the CM sketch diminishes.

This is where our strategy of targeting only frequent k-
mers (high quality) has a direct impact on the practical value
of the CM sketch for k-mer counting. More specifically, since
our goal is not to recover all k-mers but only those that
are frequent, a smaller value of w to justify the sublinear
argument is sufficient in practice.

To illustrate this, we performed an experiment with a 10×
read set of the E. coli genome. For each distinct k-mer, we
computed the difference between the estimated count (CM
count) generated by the CM sketch and the k-mer’s actual
count. Fig. 4a shows the results of this comparison for vary-
ing values of w, and also for a smaller range of d. As shown,
w has a more pronounced effect on the precision of the CM
sketch compared to d. More importantly, the observations

confirm that a small value of w (e.g. 128K) is sufficient to
diminish the standard deviation in the overall difference be-
tween actual and estimated (for all k-mers). Note that by
contrast, the value of N is at least two orders of magnitude
larger (≈ 50M for this set). We also noticed that an increase
in the value of d, does not significantly impact the output
and therefore we have restricted the value of d to 8 in all
our experiments.

We also performed an experiment to study the effect of
varying w on the nature of collision within each hashed entry
(“bucket”) of the CM sketch. Intuitively, the more skewed
a bucket is in its composition, the easier it is to separate
the high quality k-mers from the rest. To study this effect,
we conducted experiments for varying values of w, and cal-
culating the percentage contribution of all distinct k-mers
within their corresponding bucket1. This is obtained by di-
viding the actual count of each k-mer by its corresponding
CM count. Fig. 4b shows the results of this analysis, as
a histogram of k-mers distributed by their contributions to
their respective buckets. As can be observed, as the value of
w is increased, a larger fraction of k-mers contribute dom-
inantly to their respective buckets — as indicated by the
larger area under the curve for >60% contribution. This is
because of lower collision rates. However, too large values of
w implies more space cost for the CM sketch — a tradeoff
between space and filtering efficacy.

3.3 FastEtch: The Assembly Algorithm
Building on the foundations laid out in Section 3.2, we

present our FastEtch algorithm for genome assembly (see
Fig. 5). Our algorithm has two steps:

i) (Graph Construction) Construct an “approximate de
Bruijn graph” using the input reads and CM sketch;

ii) (Contig Generation) Generate contigs by performing
edge detection and path enumeration of the approxi-
mate de Bruijn graph.

3.3.1 Approximate de Bruijn Graph Construction
Our graph construction algorithm uses two data struc-

tures: a d × w CM sketch, and an auxiliary data container
to hold the output “approximate de Bruin graph” (denoted

by Ĝ), which only contains a selected subset of k-mers that
have been identified as “high quality” by our method. Ide-

1Of the d buckets that a k-mer is present, the bucket with
the minimum count for that k-mer is selected.
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Figure 5: FastEtch: A schematic illustration of our sketch-based algorithm for de novo genome assembly.

Algorithm 1: Approximate de Bruijn Graph Construc-
tion Algorithm — Baseline

Input: Input set of reads: R, Width: w, Depth: d,
Threshold: τ

Output: Approximate de Bruijn graph (Ĝ)
for each r ∈ R in parallel do

for each k-mer i ∈ r do
for each j ← 1 to d do

Update count(j, hj(i))← count(j, hj(i)) + 1

Estimate CM(i)← minj count[j, hj(i)]
if CM(i) > τ then

if i /∈ Ĝ then
Insert i in Ĝ[h(i)].list

Initialize Ĝ[h(i)].partialCount(i)← 0

Ĝ[h(i)].partialCount(i)++

return Ĝ

ally, these identified k-mers should correspond to all and
only those frequent k-mers. For the purpose of the auxil-
iary k-mer data container, we use a simple hash table in
our current implementation2. We use multi-threading for
parallelism. Let p denote the number of threads.

Algorithm 1 presents our baseline algorithm to construct
the approximate de Bruijn graph. Given the input set of n
reads R, the reads are partitioned in a load balanced man-
ner (using dynamic scheduling) among the p threads. Each
thread then enumerates all k-mers from its batch of reads,
by simply sliding a window of length k within each read. For
each k-mer i, the following operations are performed:
1) First, the k-mer’s count is incremented in all the corre-

sponding d buckets of the CM sketch, using the Update
count function.

2) Next, we check to see if the k-mer’s estimated count has
exceeded a certain threshold τ . If it has, then that k-mer
is deemed tentatively as “high quality” and is inserted
into Ĝ (if it already does not exist). The first time a

k-mer is inserted into Ĝ, we initialize a partial count for
this k-mer and set it to 0. If the k-mer already exists in
Ĝ, then we simply increment the partial count.

2Note that this can be later extended to more compact rep-
resentations such as the Bloom filter.

The rationale for maintaining a partial count for every
distinct k-mer pushed into Ĝ is as follows: Ideally, the set
of k-mers inserted into Ĝ should correspond to all and only
those k-mers occurring above a certain frequency (set pro-
portional to sequencing coverage C). However, due to col-
lision of k-mers within each bucket of the CM sketch, it is
possible that the estimated CM count for a k-mer, which is
an overestimate, is significantly larger than its actual count.
This could happen in particular within the CM sketch buck-
ets where there is a skewed mixture of a handful of high fre-
quent k-mers alongside numerous low frequency k-mers. If it
so happens that multiple instances of even one of those high
frequency k-mers are inserted early on, then by virtue of col-
lision, any low frequency k-mer that follows into the bucket
is also likely to get selected for insertion into Ĝ. It is pre-
cisely for this reason that we deem any k-mer inserted into
Ĝ as being tentatively high quality, and maintain a partial
count for such k-mers in Ĝ. By initializing this partial count
to 0 (and not τ or the CM count value), we are essentially

making this partial count stored at Ĝ an underestimate
of the actual count. By sheer probability of occurrence, the
low frequency k-mers inserted into Ĝ are likely to remain
close to this initialized value, whereas the high frequency k-
mers (the real high quality ones) are likely to grow in their
partial count values, as more instances of that k-mer appear.
This strategy of moving from an overestimate (CM count)
to an underestimate (partial count) is critical to ensure that
the k-mers that eventually get selected for contig generation
(elaborated in Section 3.3.2) are indeed of high quality.

Improving the Efficacy of Filtering: Note that in the
above baseline approach, once a bucket’s CM count exceeds
τ , all subsequent k-mers for which that bucket is the mini-
mum count bucket, will be inserted into the hash table Ĝ.
But there is no guarantee that such k-mers are all indeed
of high quality. In fact, too large a τ can negatively impact
sensitivity (i.e. potentially missing out on a good fraction
of high quality k-mer insertions). On the other hand, a low
value of τ affects precision by letting in too many low qual-
ity k-mers into Ĝ. Therefore, instead of solely relying on τ ,
we devise a “utility”-based iterative scheme to insert k-mers
into Ĝ, with the aim of keeping the number of insertions into
Ĝ as low as possible without losing sensitivity. We define a
measure called the utility for each CM sketch bucket, which
will be measured dynamically with every CM sketch update



Algorithm 2: A Utility-based Scheme to Insert k-mers
into Ĝ
Input: CM sketch bucket: b, k-mer: i
Let i← k-mer being inserted into bucket b, such that b
is the count-min bucket for i
Increment b.CMcount
if b.CMcount > τ then

if b is of “high utility” then
if i /∈ Ĝ then

Insert i into Ĝ and initialize partial count
Increment b.InsertCount

else
Increment partial count for i in Ĝ

if reset criterion is met then
Reset b.CMcount = b.InsertCount = 0

of that bucket. Intuitively, a CM sketch bucket b is said to
be of high utility if it has a significant potential to contribute
to a high quality k-mer into Ĝ at any stage.

To measure utility, within each CM sketch bucket, we keep
track of an integer for the number of insertions into Ĝ that
has resulted from this bucket so far. We refer to this count
as the bucket’s “insert count”, and it is initialized to 0. This
is kept in addition to the CM count of that bucket. Given
the above, we provide two different ways to determine the
utility of a bucket:

Definition 1. A bucket is said to be of high utility if its
CM count has exceeded τ and its insert count is less than a
certain threshold γ;

Definition 2. A bucket is said to be of high utility if
the ratio of its CM count to insert count is above a certain
threshold β;

The revised algorithm to insert a k-mer into Ĝ is given in
Algorithm 2, using one of the two definitions of choice to
compute a bucket’s utility. Consequently, we generate two
variants — FastEtch-γ and FastEtch-β respectively.

Intuitively, as per Definition 1, the idea is to prevent a
bucket from performing too many inserts into Ĝ as that is
indicative of low quality k-mers. This is achieved by placing
a bound on the number of inserts (γ). However, if we per-
manently shut off a bucket’s contribution after γ inserts are
reached, then any new high quality k-mer that gets inserted
after that point will also be inadvertently skipped. To re-
duce this loss of sensitivity, we reset the entire bucket by
resetting both its CM count and insert count to 0, when a
bucket is no longer of high utility. This process conducted
iteratively for a bucket, lasts until all k-mers in the input
are exhausted.

Definition 2 is similar in spirit except that the criterion for
resetting a bucket’s counts is based on the the ratio of its CM
count to insert count. Intuitively, if a bucket holds too many
low quality k-mers, this ratio will be close to 1. However, a
higher value of the ratio presents a better evidence for high
quality k-mers in that bucket.

3.3.2 Contig Generation
We use the approximate de Bruijn graph (Ĝ) constructed

as above to generate contigs. Algorithm 3 presents our al-
gorithm to generate the assembled contigs. The main steps
are as follows: Given a k-mer i ∈ Ĝ, we define two functions:

Algorithm 3: Contig Generation Algorithm

Input: Approximate de Bruijn Graph: Ĝ
Output: Contigs

for each k-mer i ∈ Ĝ in parallel do
if i is a begin k-mer then

Initialize contig c← first k − 1 characters of i
repeat

Concatenate the end character of k-mer i to
contig c
i← succ(i)

until i does not exist ;
Output contig c

succ(i) and pred(i). Note that i is a string of length k. A

valid successor of i is a k-mer i′ ∈ Ĝ (if exists) such that
i(2, k− 1) = i′(1, k− 1) and the partial count of i′ is greater
than a small constant χ (we used χ = 1 in our experiments).
Given that there are four such possible extensions of i, there
could be at most four valid successors of i in Ĝ. Of these,
succ(i) is set to that k-mer which has the largest partial
count, as long as that partial count is greater than χ. The
partial count check is essential to ensure that low quality
k-mers which occur sparsely but which made their way into
Ĝ get discarded during the contig generation step.

The notion of a valid predecessor and the pred(i) func-
tion are defined similarly except that a predecessor needs to
match its last k − 1 characters with the first k − 1 charac-
ters of i. These two functions provide the basis for contig
generation. More specifically, we begin with any k-mer in Ĝ
that does not have a predecessor. We refer to such k-mers
as begin k-mers. From a begin k-mer we identify successors,
one at a time, and elongate the contig until no further ex-
tension is possible. Consequently, this scheme constitutes
our strategy to detect edges on-the-fly — not all but only
those edges that contribute to contig assembly.

We keep a flag to mark k-mers that have already been
used for generating a contig, so that it does not get selected
as part of another contig. Furthermore, if during successor
and predecessor operations, a given k-mer extension with
the maximum partial count has already been claimed, then
the next best choice is selected and returned as our heuristic.
In our parallel implementation, we use atomic updates (as
opposed to locks) to prevent multiple threads from updating
the same k-mer entries concurrently.

3.3.3 Complexity Analysis
Graph construction: The time to generate k-mers from the

reads and update the CM sketch is Θ(N). The insertion of

the selected k-mers into the hash table for Ĝ depends on
the collision rate at that hash table bucket. Our current im-
plementation uses chaining, and if the k-mers are uniformly
distributed across the hash table entries, then we can expect
near constant time per hash table update as well. The graph
construction step uses a combination of atomic updates and
locks, to update the CM sketch and Ĝ, and we expect the
speedup of this step to be sublinear.

Contig generation: The time for this step is bounded by
the total number of k-mers that were originally inserted into
Ĝ, which in turn can be no greater than the number of
distinct k-mers in the input (O(N)). In practice, though, we

expect the size of Ĝ to be significantly smaller than N (as
discussed in Section 3.2.1). Assuming perfect speedup from



Table 1: Input data sets used in our experiments

Organism Genome
Size
(bp)

Coverage #
of
Reads

Avg
length

Data
size
(GB)

E coli 4,703,541 80 3,713,280 100 0.4
Yeast 12,157,105 100 12,156,200 100 1.4
C.elegans 100,286,401 50 50,143,050 100 5.3

multi-threading using p threads, this implies an expected
runtime complexity of Θ(N

p
). Since the contig generation

step is lock-free we expect linear scaling in that step.
As for space complexity, the CM sketch is a sublinear data

structure. The memory cost of our algorithm is dominated
by the space to store Ĝ. Note that Ĝ stores only those
distinct k-mers identified by the sketch as tentatively high
quality (as described in Section 3.3.1). Also, our algorithm
does not need to store the input set of reads. Consequently,
the expected space complexity is sublinear (o(N)).

4. RESULTS
4.1 Experimental Setup

We tested our assembler using read set inputs from three
different organisms namely E coli (K12 MG1655), Yeast, and
C.elegans (shown in Table 1). All read data sets were gen-
erated using the ART Illumina read simulator [9] for dif-
ferent coverage settings. Experiments were conducted on a
single 128GB DDR4 memory node of the NERSC Cori su-
percomputer (Cray XC40), with each node equipped with
two sockets, each socket populated with a 16-core, 2.3 GHz
Intel Haswell processor.

For comparative evaluation, we compared our assembler
FastEtch with other state-of-the-art de Bruijn graph based
short-read assemblers, viz. Velvet [17], SOAPdenovo [11],
ABySS [16], and Minia [4]. We have presented results for
FastEtch-baseline alongside two additional variants denoted
by FastEtch-γ and FastEtch-β (described in Section 3.3.1).
We used the QUAST [8] tool for quality evaluation, which
reports the following metrics: N50 contig length (similar to
a median contig length), % of genome covered, unaligned
contig length (length of those contigs which have no align-
ment with the reference), and length of the largest region
aligning with the genome.

4.2 FastEtch: Performance Evaluation
Table 2 presents the performance (runtime and memory)

and quality statistics for FastEtch-baseline, for the three in-
puts. We also report on internal de Bruijn graph statistics,
viz. the number of k-mers inserted into Ĝ, and the number
of k-mers that eventually contributed to contigs.

First we note that the number of k-mers that are inserted
into Ĝ is one order of magnitude smaller than the input size
(N). This shows the efficacy of CM sketch as a first level of
filter. Subsequently, we note that there is a further one order
of magnitude reduction in the number of k-mers that even-
tually get selected for contributing into the contigs. This
shows the high selectiveness of our second filter (χ = 1) in

filtering out poor quality k-mers from Ĝ. Such poor quality
k-mers represent false positives as they were identified for in-
sertion into Ĝ despite being infrequent. Section 4.3 presents
results for further reducing these false positives. Put to-
gether, these statistics show that our FastEtch-baseline is
able to lead to a 100-fold reduction in data complexity (from
reads to contigs), for all three inputs.

Table 2: Performance evaluation of FastEtch-baseline across
all three organisms, with k=32, using 32 cores

FastEtch-baseline Ecoli
cov=80x

Yeast
cov=100x

C.Elegans
cov=50x

Input size N (bp) 3.71 × 108 1.21 × 109 5.04 × 109

No. kmers in Ĝ 5.6 × 107 1.8 × 108 8.7 × 108

No. k-mers in contigs 4.6 × 106 1.1 × 107 8.5 × 107

N50 (bp) 14,866 17,223 4,574
Coverage (%) 98.15 94.76 85.10
Largest alignment (bp) 83,580 98,269 94,576
Unaligned contig len. (bp) 3,494 11,290 640,307

Time (sec) 70.86 230.56 1,245.24
Memory (GB) 2.22 7.42 34.50

Table 3: Breakdown of execution time for different stages of
assembly as seen for FastEtch-baseline for all the 3 inputs.

Time in seconds
Input Reading Graph

Construc-
tion

Contig
Genera-
tion

Total
time

E coli 80x 4.83 61.59 4.41 70.83
Yeast 100x 15.40 189.41 25.27 230.07
C.elegans 50x 41.56 795.27 407.90 1,244.73

As for quality, the results show that, despite the approxi-
mation of de Bruijn graph, the output quality of the contigs
is maintained relatively high. The N50 contig lengths are
in tens of thousands for both E coli and Yeast, while for C.
elegans the N50 length is in the thousands. Note that for
C. elegans we used a lower sequencing coverage (50×). The
above trend is also reflected in the overall genome covered
by the contigs. The largest aligning regions in all three as-
semblies were substantially larger (> 80K) than the N50
contig length, indicating the ability of the assembler to cap-
ture long regions along the genome (via one or more con-
tigs). The unaligned contig lengths are for those contigs
which have no alignment against the reference, indicating
false assemblies generated probably due to false extensions
during contig generation. These unaligned fractions repre-
sent about 0.07%, 0.01% and 0.6% of the E coli, Yeast and
C. elegans genomes, respectively.

Table 2 also shows the raw performance (runtime and
memory) of FastEtch. Table 3 shows the runtime break-
down by the major steps of the algorithm. As expected, the
runtime is dominated by graph construction. In our exper-
iments, we fixed the length of the hash table that stores Ĝ
to roughly 14M buckets — significantly less than N in an-
ticipation of a large fraction of k-mers getting filtered out.
However, based on the actual number of k-mers inserted
into Ĝ, this hash table length implies an average collison
rate of 3.61, 12.5 and 40 per bucket for the E coli, Yeast and
C.elegans datasets respectively. The length was fixed to re-
duce memory footprint but at the expense of runtime perfor-
mance (since, due to multi-threading, a bucket needs to be
locked prior to inserting a k-mer). Consequently, the length
of the hash table represents a trade-off between runtime and
memory usage. Furthermore, the choice of parameter τ has
a significant impact on the number of k-mers that are in-
serted in Ĝ, and thereby on the overall performance (both
time and memory). Extended study of these parameters are
presented in Section 4.3.

Fig. 6 shows the speedup for our parallel implementation
for varying number of cores (threads). The contig generation
step shows near linear scaling because it is lock-free. The
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Figure 6: Speedup of FastEtch on C.elegans (50x, k=32).

γ #k-mers in Ĝ N50
(bp)

% Genome
Covered

Largest align-
ment (bp)

500 41,971,992 10,392 98.14 58,465
600 42,681,119 13,062 98.14 68,543
700 42,684,266 12,689 98.13 83,009
800 42,687,750 13,203 98.14 84,565
900 42,678,023 14,179 98.23 69,866

β #k-mers in Ĝ N50
(bp)

% Genome
Covered

Largest align-
ment (bp)

2 42,685,731 14,055 98.18 99,489
4 42,688,740 14,305 98.17 83,857
5 42,679,387 14,051 98.14 97,119
6 42,016,001 5,137 98.10 30,920

Table 4: Table comparing FastEtch-γ vs. β versions on
E coli dataset (Cov=80x) with k=32 and τ = 1, 300. Recall
that N for this dataset = 3.71× 108bp.

graph construction step scales only up to 8 threads. This
step is affected by the collision rate — i.e. locks used to
grant access to concurrently accessed buckets. The time (as
well as memory) taken to update the CM sketch is negligible.

As for memory, the overall memory consumption is dom-
inated by the space to store Ĝ, which is implemented as
a hash table in our current implementation. Note that we
do not store the input reads. Even though the number of
k-mers stored in Ĝ is an order of magnitude smaller than
N , the actual memory consumed in bytes by Ĝ still is 6-7×
larger than N . This is due to auxiliary information per k-
mer, used in our current implementation. Note that we use
a compact bit representation to represent each k-mer in Ĝ.

4.3 Evaluation of Trade-offs
Parametric study: Table 5 depicts a detailed paramet-

ric analysis conducted using the E coli dataset, by varying
three factors: 1) k, 2) the CM sketch threshold (τ), and 3)

the hash table length for Ĝ. We experimented with values
of 32 and 44 for k, 2M and 14M for the hash table length,
and varied τ from 200 to 1000. As expected, the number of
k-mers, across all the three sets of experiments, continues
to diminish with the increase in τ , accompanied with a no-
ticeable decrease in memory consumption as well. However,
an excessive increase in τ contributes to lowering the output
quality (more particularly, N50). The effect of τ is more
pronounced in experiments with higher k-mer lengths, as
seen in the case of k=44. This is because a larger value of k
produces more distinct k-mers but with reduced frequency
of occurrence. Therefore, lowering τ with increase in k is
recommended. Results for k=32, however do not show a

distinguishable difference in overall quality, with changes in
either threshold or hash table length, maintaining a steady
coverage of over 98%. The hash table length however im-
pacts performance, with a larger length leading to a runtime
reduction. Memory consumption, on the other hand, is still
dominated by the number of k-mers inserted into Ĝ (hash
table) and therefore, is affected by τ .

Comparing γ vs. β Heuristics: Table 4 presents the
results for the two variants viz. FastEtch-γ and FastEtch-β.
These experiments were tested for a higher value of τ , antic-
ipating to expose tradeoffs between better filtering efficacy
by the CM sketch vs. output quality. Results in Table 4
show a trade-off between reducing the number of k-mers
stored in Ĝ and preserving the assembly quality (i.e. space
vs. quality). Given that FastEtch-baseline for τ=400, pro-
duced an output of similar quality with approximately 56
million k-mers in Ĝ, we were able to consequently obtain a
25% reduction in space consumption, by producing the same
output quality with approximately 42 million k-mers. We
also note that the performance of the γ and β variants are
comparable, where although it is preferable to favor a larger
γ vs. a smaller β, the resultant assemblies derived from both
were essentially similar, with the β variant contributing to
a slightly higher N50.

4.4 Comparative analysis
We compared FastEtch with four other state-of-the-art as-

semblers — viz. SOAPdenovo, Velvet, ABySS, and Minia.
All experiments were executed on a node with 32 cores.
Memory consumption corresponds to peak memory usage.
However, note that Minia also uses secondary storage. For
SOAPdenovo and Velvet, the graph construction and contig
generation processes needed to be run separately. For com-
parison purpose, we use the E coli genome, which was the
smallest input for which all the programs ran successfully
under at least one comparable parameter setting.

Table 6 shows the results of our comparison. We observed
that all three variants of FastEtch performs consistently the
best in terms of runtime performance. With respect to mem-
ory usage, FastEtch was second only to Minia, which also
uses the disk (disk space not reported). More specifically,
FastEtch performed between 11.6% to 30.6% faster than the
second fastest algorithm, across all the experiments. Also,
on an average we consume 20-30% less memory in compar-
ison to the traditional de Bruijn graph based assemblers.
Consequently, our γ and β variants were able to accom-
plish an additional 15% reduction in terms both memory
and time, by further reducing the size of Ĝ, without compro-
mising (and in some cases improving) the assembly quality.

In terms of assembly accuracy, FastEtch surpasses Velvet
and SOAPdenovo by a large margin both in terms of N50
and % genome covered. ABySS and Minia, on the other
hand, perform better in terms of N50 and unaligned contig
length, albeit taking longer to complete. Note that ABySS
is a full-blown assembler with all conventional steps such as
(exact) graph construction, error correction and contig gen-
eration. Also, ABySS is a parallel code that uses Message
Passing Interface (MPI) for parallelization. Minia, on the
other hand, performs comparable in quality to ABySS de-
spite using Bloom filters. It is to be noted that FastEtch gen-
erally produces the best genome coverage, and performs sim-
ilar in other quality metrics compared to Minia and ABySS,
except mainly for the N50 contig length, which is shorter.



Table 5: Parametric study of FastEtch-baseline for assemblies of E coli (Cov=80x) across varying factors.

k-mer length k=32
τ Hash table

length
#k-mers in
Ĝ

N50
(bp)

%Genome
covered

largest
alignment
(bp)

Unaligned
length (bp)

Time
(in sec)

Memory
(in GB)

200 2,097,152 58,992,931 14,517 98.19 69,459 843 110.30 2.67
300 2,097,152 57,519,737 13,589 98.19 76,028 596 81.24 2.55
400 2,097,152 56,046,239 13,132 98.13 76,028 1,583 80.80 2.45
600 2,097,152 53,088,519 12,544 98.06 76,028 827 80.01 2.32
800 2,097,152 50,126,785 12,544 98.12 70,151 5,090 77.72 2.20

1000 2,097,152 47,161,170 12,050 98.11 64,181 690 78.11 2.01
k-mer length k=32

τ Hash table
length

#k-mers in
Ĝ

N50
(bp)

%Genome
covered

largest
alignment
(bp)

Unaligned
length (bp)

Time
(in sec)

Memory
(in GB)

200 14,680,064 58,993,225 14,866 98.09 74,408 3,072 73.91 2.74
300 14,680,064 57,522,726 14,490 98.09 79,221 2,898 73.50 2.52
400 14,680,064 56,045,485 14,866 98.15 74,408 3,494 69.62 2.44
600 14,680,064 53,087,350 12,484 98.15 74,408 285 70.80 2.31
800 14,680,064 50,123,837 13,019 97.99 59,493 1,155 73.11 2.16

1000 14,680,064 47,157,443 11,831 98.10 64,214 1,048 68.18 2.04
k-mer length k=44

τ Hash table
length

#k-mers in
Ĝ

N50
(bp)

%Genome
covered

largest
alignment
(bp)

Unaligned
length (bp)

Time
(in sec)

Memory
(in GB)

200 14,680,064 63,109,420 23,992 98.34 110,001 2,476 60.30 2.91
300 14,680,064 61,157,424 19,994 98.30 98,375 14 58.12 2.73
400 14,680,064 59,206,449 16,995 98.27 98,375 1,196 59.51 2.50
600 14,680,064 55,294,516 10,551 98.11 97,334 461 60.63 2.36
800 14,680,064 51,388,555 5,236 97.59 46,178 3,340 61.41 2.18

1000 14,680,064 47,456,212 2,799 96.23 19,483 315 60.50 2.09

Table 6: Comparative evaluation of assemblies generated by FastEtch and four other state-of-the-art assemblers. “NA”
indicates that the assembler is unable to produce an output.

E coli (Cov=80x) Memory
(GB)

Time
(sec)

N50
(bp)

%Genome
covered

Largest
alignment
(bp)

Unaligned
contig len.
(bp)

k=32 FastEtch-baseline (τ=400) 2.24 70.86 14,866 98.15 83,580 3,494
FastEtch-γ (τ=1300, γ=900) 1.97 65.67 14,029 98.12 63,544 2,629
FastEtch-β (τ=1300, β=2) 1.92 62.76 14,155 98.15 78,433 3,792

SOAPdenovo 8.93 102.22 278 86.15 1,720 375,826
ABySS 4.82 248.34 22,904 97.76 127,978 0
Velvet 3.04 126.17 887 95.52 4,803 23,448
Minia 1.79 80.25 21,183 96.97 127,978 0

k=44 FastEtch-baseline (τ=200) 2.43 62.04 23,992 98.34 110,001 2,476
FastEtch-γ (τ=500, γ=900) 2.22 56.05 24,154 98.34 119,578 165
FastEtch-β (τ=500, β=2) 2.21 57.35 25,744 98.35 118,836 153

SOAPdenovo 9.20 90.81 1,174 96.94 7,346 36,548
ABySS 5.21 250.20 46,085 98.14 166,040 0
Velvet NA NA NA NA NA NA
Minia 2.15 89.43 46,092 98.06 166,043 100

Yeast (Cov=100x) Memory
(GB)

Time
(sec)

N50
(bp)

%Genome
covered

Largest
alignment
(bp)

Unaligned
contig len.
(bp)

k=32 FastEtch-baseline (τ=800) 7.42 230.56 17,223 94.75 98,269 11,290
FastEtch-γ (τ=1600, γ=1000) 6.27 219.15 16,561 95.42 103,076 21,223
FastEtch-β (τ=2400, β=2) 6.52 221.24 18,161 94.97 99,954 14,862

SOAPdenovo 14.70 355.04 208 74.92 1,241 1,121,246
ABySS 10.23 810.11 22,371 94.22 107,976 0
Velvet 12.25 500.25 631 90.19 4,318 76,821
Minia 2.61 292.17 22,371 94.12 107,976 238

k=44 FastEtch-baseline (τ=400) 7.86 220.54 22,612 95.31 131,423 5,750
FastEtch-γ (τ=800, γ=1000) 7.14 210.73 21,565 95.81 133,711 17,410
FastEtch-β (τ=1800, β=2) 6.91 191.99 23,335 95.34 131,609 12,359

SOAPdenovo 12.72 222.49 763 92.51 5,689 150,673
ABySS 11.40 850.43 33,681 94.75 122,861 0
Velvet NA NA NA NA NA NA
Minia 3.58 302.48 34,083 94.68 122,865 717
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Figure 7: 3-D plot depicting the performance (time, memory, quality) of all assemblers tested, on the E coli dataset (Cov=80x)
with k=32. For FastEtch, the data plotted corresponds to the FastEtch-baseline variant.

This suggests that the current contig extension heuristic we
use can be further improved. Fig. 7 summarizes the quality-
time-memory comparisons for all the methods tested, using a
3-D representation for the E coli dataset (k=32). Although
our approach relies on approximation, we are able to deliver
longer contigs and high assembly accuracy, in less time and
memory compared to most other short-read assemblers.

5. CONCLUSIONS AND FUTURE WORK
In this paper we introduced FastEtch, a novel approach to

assemble genomes using sketching. Our approach computes
the assembly based on an approximate, space-efficient ver-
sion of the de Bruijn graph. To the best of our knowlege,
FastEtch is the first short-read assembler to use the sublinear
streaming data structure, CM sketch. Results have demon-
strated that, despite approximation, FastEtch can produce
highly accurate fast assemblies in reduced memory footprint,
compared to most other assemblers. Our algorithm also ex-
poses tradeoffs between time, memory and quality, that can
be exploited by users.

Future research directions include (but not limited to): i)
exploring alternative, more compact strategies to implement
the approximate de Bruijn graph; ii) use of error correction
heuristics and incorporation of paired-end information to
further improve quality; iii) theoretical and analytical stud-
ies to further improve filtering efficacy of CM sketch; iv)
parallelization on distributed memory machines for scaling
to much larger data sets; and iv) extension to other assembly
frameworks such as transcriptome assembly.
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