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Abstract—Real-world graphs exhibit structures known as
“communities” or “clusters” consisting of a group of vertices
with relatively high connectivity between them, as compared
to the rest of the vertices in the network. Graph clustering
or community detection is a fundamental graph operation used
to analyze real-world graphs occurring in the areas of compu-
tational biology, cybersecurity, electrical grids, etc. Similar to
other graph algorithms, owing to irregular memory accesses and
inherently sequential nature, current algorithms for community
detection are challenging to parallelize. However, in order to
analyze large networks, it is important to develop scalable parallel
implementations of graph clustering that are capable of exploiting
the architectural features of modern supercomputers.

In response to the 2019 Streaming Graph Challenge, we
present quality and performance analysis of our distributed-
memory community detection using Vite, which is our distributed
memory implementation of the popular Louvain method, on the
ALCF Theta supercomputer.

Clustering methods such as Louvain that rely on modularity
maximization are known to suffer from the resolution limit
problem, preventing identification of clusters of certain sizes.
Hence, we also include quality analysis of our shared-memory
implementation of the Fast-tracking Resistance method, in com-
parison with Louvain on the challenge datasets.

Furthermore, we introduce an edge-balanced graph distribu-
tion for our distributed memory implementation, that signifi-
cantly reduces communication, offering up to 80% improvement
in the overall execution time. In addition to performance/
quality analysis, we also include details on the power/energy
consumption, and memory traffic of the distributed-memory
clustering implementation using real-world graphs with over a
billion edges.

I. INTRODUCTION

Graph clustering, popularly known as community detection,
can be broadly defined as the partitioning of the vertex set
V (G) of a graph G = (V,E, ω) into clusters (or partitions)
such that the vertices within a cluster share a tightly knit con-
nection among them, while a sparser connection to rest of the
network. Community detection has emerged as an important
tool to discover and describe important characteristics of a
graph with numerous applications in science and analytics [1].

Although several variants of the community detection prob-
lem are known to be NP-hard [2], [3], a diverse set of
efficient heuristic strategies have been developed. Modularity
optimization is an important approach and the Louvain method
has been demonstrated to compute good quality solutions effi-
ciently [1]. However, modularity optimization based methods
also suffer from the so-called resolution-limit problem, where
small clusters tend to get merged with larger clusters, and thus,
resulting in mis-identification in graphs that contain both large

and small clusters. Heuristics have been developed to address
the resolution limit problem [4]. Fast-tracking resistance is
one such method that we consider in this work as a baseline
for comparison (§II).

In this paper, we present our work on static community
detection using modularity optimization methods in response
to the 2019 Graph Challenge [5]. The key contributions are
two-fold: (i) we present results from executing an optimized
implementation of Vite, which is our parallel implemen-
tation of the Louvain algorithm, for community detection
on distributed-memory systems [6]—using the ALCF Theta
supercomputer as our experimental testbed (details provided
in §II-B); and (ii) we also present results of implementing a
shared memory method to address the resolution limit problem
that modularity optimization methods typically face.

These contributions can be summarized as follows:
• Present qualitative results from parallel Louvain and Fast-

Tracking Resistance for the Graph Challenge dataset
(§III);

• Present strong scaling results and miscellaneous analysis
on ALCF Theta for a set of inputs consisting of synthetic
and real-world instances (§III); and

• Present relative comparison with the Graph Challenge ref-
erence implementation for the static community detection
inputs.

II. METHODOLOGY

A variety of community detection techniques has been
proposed in literature. Methods that optimize modularity have
been demonstrated to not only scale but also to compute
good quality solutions, albeit with known limitations [1].
We provide a brief background on modularity-based graph
clustering and our target hardware platform in this section.

A. Modularity-based Graph Clustering

Modularity is a statistical measure to assess the quality
of a given community-wise partitioning of a graph. Given
a partitioning, P = {C1, C2, . . . Ck} of the vertex set V in
G(V,E, ω), where 1 ≤ k ≤ n, modularity Q is given by
X−Y , where X is the fraction of intra-cluster edges imposed
by the partitioning P on V , and Y is the expected fraction in
an equivalent but randomly reconnected graph with the same
number of vertices, edges and vertex degree distribution [7].

The Louvain algorithm proposed by Blondel et al., begins
by assigning a unique community to each vertex and repeat-
edly seeking new assignments for a vertex (current assignment
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or one of the communities of its neighbors) that maximizes the
gain in modularity for that vertex [8]. Within a given iteration,
new assignments are sought for every vertex considered in an
arbitrary order. The algorithm iterates until modularity gain is
above a given threshold value. Further, the algorithm proceeds
to the next phase by collapsing the vertices belonging to a
community to a single (meta) vertex in the next phase, and
adding edges to account for inter and intra-community (self
loop) edges. The operations are repeated until the coarsened
graph is of a certain size.

The Louvain algorithm as proposed is inherently sequential,
and several challenges arise in parallelizing the algorithm. Lu
et al. proposed several heuristics for shared-memory platforms
[9], and Ghosh et al. adapted some of these heuristics and
developed new ones for distributed-memory platforms [10].
We use Vite developed by Ghosh et al. in this work and
adapt it for the Intel Knights Landing processor.

Methods based on modularity optimization have been shown
to merge smaller clusters with neighboring larger clusters,
known as the resolution limit problem [11]. Addressing res-
olution limit in an efficient manner is difficult, and many
of the methods proposed also suffer the same problem [4].
We developed a shared-memory implementation of the fast-
tracking resistance (FTR) method proposed by Granell et
al. [4]. FTR begins from a partition (clustering) and attempts
to split the larger partitions into smaller ones using a parameter
called resistance. We present results obtained from FTR as a
baseline for comparison with parallel Louvain (§III).

B. Hardware Platform

Throughout the last decade, we have experienced an in-
crease in the core count (approximately 10-50×) of proces-
sors in HPC systems. HPC systems have also significantly
increased their heterogeneity, by integrating loosely coupled
workload-specialized throughput processors (i.e., general pur-
pose graphic processing units) or tightly coupled extended
vector units (512-bit and beyond). This has made arithmetic
operations (and, in particular, floating point operations) cheap
in terms of energy and actual costs. However, network and
memory bandwidth are not increasing at the same rate, provid-
ing ratios ranging from 10 to 100 flops per bytes and resulting
in unbalanced systems, especially for the novel memory bound
workloads of data analysis and machine learning.

A key challenge for increasing bandwidth with conventional
DDR memory lies in the additional pins, and energy, required
to drive the memory chips and the related memory channels.
3D-stacked memory allows stacking multiple DRAM (Dy-
namic Random Access Memory) chips one on top of the other,
and interconnecting them to a logic layer (memory controller)
with through silicon vias (TSVs), providing high bandwidth
with low energy costs. HBM (High Bandwidth Memory),
the standard ratified by the JEDEC, where the design of
the logic layer is left to the processor integrator, is by far
the predominant type of 3D stacked memory, for a period
opposed to Micron HMC (Hybrid Memory Cube). A number
of CPUs (e.g., Intel Xeon Phi “Knights Landing” -KNL-,
Fujitsu A64FX), GPUs (e.g., NVIDIA Pascal and Volta, AMD
Radeon Vega) and Vector engines (e.g., NEC SX Aurora)

used in modern HPC systems have started to integrate this
type of memory, leading to interesting trade-offs in terms of
bandwidth and memory density (currently stacks only up to
32 GB are possible).

In this work we use ALCF Theta for performance evalu-
ation. Theta is a 4,392 nodes Cray system with Cray Aries
interconnect (with Dragonfly topology). Each node contains
an Intel KNL processor with 64 cores at 1.3 Ghz (Intel Sil-
vermont architecture based cores), 16 GB of high-bandwidth
in-package memory (named MCDRAM), 192 GB of DDR4
RAM, and a 128 GB SSD.

Theta represent a stepping stone towards the next generation
Aurora supercomputer, claimed to become (when operational
in 2021) the first US DOE exascale system. While Aurora
will be based on a heterogeneous design including Intel Xeon
and Intel Xe architecture based GPUs, KNL still remain an
interesting platform for evaluation of novel workloads, due to
its use of many simple cores, the large vector units (Intel AVX-
512), and the use of MCDRAM, an HBM-based 3D-stacked
memory.

These design points, although with very different imple-
mentations and solutions, will be used in future processors:
Fujitsu A64X will be a ARM manycore design with the
Scalable Vector Instruction Extensions and HBM2 memory
(with a more balanced flop/byte ratio). The KNL design has,
for example, exposed some key aspects that developers need to
take into account for the effective exploitation of MCDRAM
(for e.g., higher performances if different processes are used
to map on the cores that directly interface with a vault - i.e., a
3D bank of the stacked memory, or limited effectiveness when
used in software cache mode for the larger DDR4 memory of
the system) [12] and of its multithreaded processors.

III. EVALUATION

We perform our experimental evaluations on the ALCF
Theta supercomputer, and we discuss the platform in Sec-
tion II-B. A KNL node in Theta consists of 64 cores, organized
into 32 tiles (2 cores/tile, sharing an L2 cache of 1 MB) in
a 2-D layout, a high bandwidth on-package memory of size
16 GB (MCDRAM), and 192 GB of DDR4 main memory.
The tiles are connected by a mesh interconnect, and the mesh
support different levels of memory address affinities, known
as clustering modes. We use the quadrant clustering mode, in
which the tiles are divided into four parts (quadrants), which
are spatially located near four groups of memory controllers.

It is possible to configure the MCDRAM as a cache for the
main memory (cache mode), and also treat it as addressable
memory (flat mode). The access latency of MCDRAM is
higher than the standard CPU caches, which are usually
multi-way set associative (reducing conflict misses), whereas
MCDRAM in cache mode is direct-mapped. Due to the
irregular memory accesses inherent in graph applications, we
observed (up to 30%) better performance for our Louvain
implementation using the KNL MCDRAM in flat mode, as
compared to the aforementioned cache mode. Therefore, we
use the MCDRAM in flat mode for the current evaluations.
We use a custom memory allocator (i.e., hbw::allocator)
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from the memkind library [13] to allocate some of the heavily
used C++ data structures on the MCDRAM.

We used Cray MPICH 7.7.3 as the MPI implementation for
this machine. Our distributed-memory Louvain implementa-
tion was run using 16 MPI processes per node and 4 OpenMP
threads per process. We used the Intel R© ICPC 18.0.1 compiler
with “-O3 -xmic-AVX512” as compilation options. We also
use Cray Performance Analysis Tool (CrayPat) to report power
and memory usage metrics.

In the rest of this section, we discuss the quality/
performance of our graph clustering implementations and
compare them with the official 2019 challenge datasets. We
postulate that massive scale dynamic clustering would require
efficient data structures, and usage of persistent memory,
which are still not available on current HPC systems. At
present, our implementation is lacking support of clustering
on streaming/dynamic graph data. Therefore, for the streaming
cases we concatenate the individual files and report clustering
results based on a single file.

Apart from the challenge datasets, we perform clustering
analysis on eight real-world networks (publicly available from
the Suitesparse Matrix Collection [14]), all of which have over
a billion edges. In Table I, we list the size of the undirected
representations of the input networks (challenge and real-
world) used in the evaluations. The Graph Challenge streaming
partition datasets are denoted as LOLO, LOHI, HILO and
HIHI. These acronyms (to be read as low/high) represent the
level of overlap and relative size variation between the blocks.
For instance, HIHI denotes “high level of overlap and a high
level of size variation between blocks”, indicating stronger
interactions (i.e., a large number of edges or connections)
between the individual blocks or clusters of different sizes,
making the task of community detection harder.

TABLE I
EVALUATION DATASETS

Graph challenge datasets Real-world datasets
Name #Vertices #Edges Name #Vertices #Edges

lowOverlap-lowBlockSize
(LOLO),
lowOverlap-highBlockSize
(LOHI),
highOverlap-highBlockSize
(HIHI),
highOverlap-lowBlockSize
(LOHI)

1K 16K mycielskian20 786.4K 1.35B
5K 102.3K webbase-2001 118.1M 2.03B
20K 946.6K it-2004 41.2M 2.3B
50K 2.37M twitter7 41.6M 2.93B

200K 9.5M MOLIERE_2016 30.2M 3.33B
1M 47.5M com-Friendster 65.6M 3.61B
5M 237.5M sk-2005 50.6M 3.89B

20M 949.9M uk-2007 105.8M 6.6B

A. Analysis of Graph Challenge official datasets
We ran the baseline (serial) partition challenge Python

code [5] for small datasets and compare the quality with
our clustering implementations, as shown in Table II. The
quality metrics of precision, recall and F-score are computed
by comparing the results of a clustering implementation with
the provided ground truth data. High values of F-score (close
to 1) and precision/recall corresponds to high quality solution
as compared to ground truth community assignments. For
our distributed-memory Louvain implementation, we observe
lower F-scores for the static HIHI cases, as compared to
baseline (for e.g., static datasets with 5, 000 vertices). For
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Fig. 1. Distributed Louvain clustering strong scaling results of highOverlap-
highBlockSize challenge datasets on ALCF Theta.

few of these cases, the Fast-Tracking Resistance counterpart
provides a better solution, which is nearly identical to the
baseline scores.

In some cases, our clustering scores are notably low due
to a significant increase in “false positive” scenarios (thereby
lowering the precision) compared to the “true positive” ones,
i.e., when a pair of vertices belong to the same community
in the current cluster output set, but differs in the ground
truth set. This increase in “false positive” scenarios can be
attributed to the presence of a number of isolated vertices
or islands in certain challenge datasets, which are grouped
in distinct communities as per our design, whereas in the
challenge ground truth data, they are merged into a larger
community.

Apart from quality metrics, we demonstrate strong scaling
of our distributed-memory Louvain implementation using the
larger challenge datasets in Figure 1. We observe a speedup
of 2-14× on 2048 processes of ALCF Theta.

B. Analysis of real-world graphs
We chose eight large real-world graphs (listed in Table I) to

analyze the performance of our distributed clustering imple-
mentation. Load balancing of real-world graphs is challenging,
since it is nontrivial to implement equitable partitioning of
graphs across processes.

We introduce an edge-balanced partitioning scheme that
vastly improves the communication time at the expense of
an extra communication step involving a broadcast operation.
First, we convert an input graph from its native format to
a binary format, embedding the count of edges connected
to a vertex, in addition to the edge list information. The
binary format is designed to make the I/O efficient, albeit at
the expense of a one-time-only file conversion overhead. The
binary format also allows avoiding the string parsing overhead
of reading ASCII text files, and uses relatively less storage.
We use MPI collective I/O to read the binary data into the
graph CSR data structure directly, and in our experiments, the
file I/O part usually took 1-2% of the entire execution time.

Our assumption is that the number of edges in a graph is
much more compared to the number of vertices, and reading
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TABLE II
QUALITY COMPARISONS OF OFFICIAL DATASETS (1K-1M) WITH KNOWN GROUND TRUTH COMMUNITY INFORMATION (USING LOUVAIN FOR

DISTRIBUTED-MEMORY AND FAST TRACKING RESISTANCE FOR SHARED-MEMORY, COMPARED WITH SERIAL BASELINE BLOCKMODEL PARTITIONING
IMPLEMENTATION). ENTRIES MARKED AS ’-’ WERE TOO SMALL, AND ENTRIES MARKED AS ’X’ WERE NOT COMPUTED.

Baseline blockmodel partitioning implementation (in Python) results of STATIC datasets

Input 1000 5000 20000 50000 200000 1000000
Prec. Recl. F-scr. Prec. Recl. F-scr. Prec. Recl. F-scr. Prec. Recl. F-scr. Prec. Recl. F-scr. Prec. Recl. F-scr.

LOLO 0.998 0.998 0.998 0.921 1.000 0.959 1.000 1.000 1.000 x x x x x x x x x
LOHI 0.919 0.740 0.820 0.935 0.874 0.903 0.840 0.456 0.591 x x x x x x x x x
HILO 0.868 0.969 0.915 0.844 0.765 0.802 0.937 1.000 0.967 x x x x x x x x x
HIHI 0.816 0.851 0.833 0.635 0.680 0.657 0.538 0.673 0.598 x x x x x x x x x

Distributed-memory Louvain clustering results of STATIC datasets

Input 1000 5000 20000 50000 200000 1000000
Prec. Recl. F-scr. Prec. Recl. F-scr. Prec. Recl. F-scr. Prec. Recl. F-scr. Prec. Recl. F-scr. Prec. Recl. F-scr.

LOLO 0.989 0.984 0.986 0.337 0.976 0.501 1.000 1.000 1.000 1.000 1.000 1.000 0.956 1.000 0.978 0.009 0.015 0.011
LOHI 0.499 0.823 0.621 0.500 0.863 0.634 0.741 0.997 0.851 0.771 0.998 0.870 0.022 0.050 0.031 0.012 0.025 0.016
HILO 0.810 0.928 0.865 0.065 0.073 0.069 1.000 1.000 1.000 0.983 1.000 0.991 0.016 0.027 0.020 0.009 0.027 0.013
HIHI 0.363 0.849 0.509 0.100 0.146 0.118 0.858 0.003 0.007 0.038 0.061 0.047 0.019 0.035 0.025 0.081 - -

Shared-memory Fast Tracking Resistance clustering results of STATIC datasets

Input 1000 5000 20000 50000 200000 1000000
Prec. Recl. F-scr. Prec. Recl. F-scr. Prec. Recl. F-scr. Prec. Recl. F-scr. Prec. Recl. F-scr. Prec. Recl. F-scr.

LOLO 0.989 0.984 0.986 0.989 0.959 0.974 1.000 1.000 1.000 1.000 1.000 1.000 0.956 1.000 0.978 0.455 - -
LOHI 0.905 0.910 0.908 0.964 0.850 0.903 0.976 0.997 0.987 0.866 0.999 0.928 0.684 0.001 0.001 0.647 - -
HILO 0.840 0.929 0.882 0.670 0.006 0.012 1.000 1.000 1.000 0.983 1.000 0.991 0.262 - 0.001 0.340 - -
HIHI 0.783 0.793 0.788 0.566 0.003 0.005 0.812 0.998 0.896 0.546 0.999 0.706 0.324 - 0.001 0.204 - -

Distributed-memory Louvain clustering results of STREAMINGEDGE datasets (appended invidual files)

Input 1000 5000 20000 50000 200000 1000000
Prec. Recl. F-scr. Prec. Recl. F-scr. Prec. Recl. F-scr. Prec. Recl. F-scr. Prec. Recl. F-scr. Prec. Recl. F-scr.

LOLO 0.100 0.100 0.100 0.054 0.055 0.055 0.034 0.035 0.034 0.025 0.025 0.025 0.015 0.016 0.016 0.009 0.017 0.012
LOHI 0.144 0.193 0.165 0.072 0.211 0.107 0.059 0.062 0.060 0.033 0.038 0.035 0.022 0.034 0.027 0.012 0.024 0.016
HILO 0.102 0.203 0.135 0.059 0.122 0.079 0.035 0.036 0.035 0.024 0.025 0.025 0.016 0.022 0.018 0.009 0.027 0.013
HIHI 0.126 0.158 0.140 0.101 0.002 0.003 0.053 0.000 0.000 0.037 0.060 0.046 0.019 0.033 0.024 0.013 - -

Distributed-memory Louvain clustering results of STREAMINGSNOWBALL datasets (appended invidual files)

Input 1000 5000 20000 50000 200000 1000000
Prec. Recl. F-scr. Prec. Recl. F-scr. Prec. Recl. F-scr. Prec. Recl. F-scr. Prec. Recl. F-scr. Prec. Recl. F-scr.

LOLO 0.100 0.319 0.152 0.054 0.053 0.054 0.034 0.040 0.037 0.025 0.025 0.025 0.015 0.016 0.016 0.009 0.023 0.013
LOHI 0.135 0.004 0.008 0.072 0.074 0.073 0.058 0.005 0.008 0.033 0.038 0.035 0.022 0.035 0.027 0.012 0.025 0.016
HILO 0.104 0.113 0.108 0.059 0.088 0.070 0.035 0.036 0.036 0.024 0.025 0.025 0.015 0.024 0.019 0.009 0.032 0.014
HIHI 0.127 0.264 0.171 0.096 0.002 0.003 0.053 0.000 0.000 0.037 0.091 0.053 0.019 0.040 0.026 0.013 - -

the edge counts associated with the vertices take only a
fraction of the time taken to read the entire graph. Therefore,
a single root process can read the graph partially (while rest
of the processes are waiting on a barrier), to construct an
equitable distribution scheme which is still vertex-based, and,
broadcast it to the rest of the processes. In this scheme,
processes may own a varying number of vertices (and all the
edges connected to those vertices) to balance out the number
of edges owned by the processes. Figure 2 demonstrates the
standard deviation of edges owned by a process in a standard
vertex-based distribution (where each process owns roughly
same number of vertices, i.e., |V |p ), as compared to our edge-
balanced vertex-based distribution, for the real-world graphs.

The impact of the edge-balanced distribution is observed in
Figure 3, which shows up to 80% improvement in the end-
to-end execution time of clustering compared to the standard
distribution, for most of the real-world graphs. Figure 3 also
demonstrates a speedup of up to 6× on 2048 processes.

Apart from execution time performance, we also measure
the power/energy consumption, MPI communication volume,
and memory traffic of our distributed-memory clustering im-
plementation across 16-128 nodes (each node uses 16 pro-
cesses, and each process uses 4 threads, engaging all the 64
available cores of KNL) of ALCF Theta.

In Table III, we choose four real-world graphs (using

the edge-balanced distribution) to study the miscellaneous
performance metrics. We calculate the #Edges by summing
the edges over iterations and phases of Louvain clustering.
The maximum edge processing rate (#Edges/secs.) obtained
from the baseline implementation of parallel Breadth First
Search (BFS) of the Graph500 benchmark [15] for a similar
system (NERSC Cori KNL nodes) is reported in the latest
Jun’19 Graph500 list to be 678.933 GTEPS (Giga-Traversed-
Edges-Per-Second) on 512 nodes. In comparison, we observe
a maximum of 52 MTEPS (Mega-TEPS) on 128 nodes for our
clustering implementation, owing to the significant differences
between BFS and Louvain clustering, and the respective
volumes of data.

Memory traffic corresponds to the total sum (across all
the processes) of memory accesses in GigaBytes. Since KNL
has the on-package high bandwidth memory (MCDRAM), we
separate DDR memory traffic with HBM or MCDRAM traffic.
The HBM traffic is significantly more than the DDR traffic for
most of the cases (especially for graphs that would typically
run for many clustering iterations, like com-Friendster), which
corroborates our active use of KNL MCDRAM. However, in
certain cases, with increasing number of processes, memory
per process shrinks, reducing the HBM access rate as com-
pared to DDR. The memory traffic rate of com-Friendster is
2-10× more than the other graphs owing to a large number
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Fig. 2. Graph distribution characteristics of standard and edge-balanced vertex-based distribution. Y-axis: Standard Deviation (#Edges/process), X-axis:
#Processes.
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Fig. 3. Distributed-memory Louvain execution times of real-world graphs with over a billion edges, using the standard and edge-balanced graph distribution.
Y-axis: Total execution time (in secs.), X-axis: #Processes.

of iterations to convergence (over 600). It is evident from the
%MPI field that for most of the graphs about 90% of time is
spent in MPI communication.

TABLE IV
FAST-TRACKING RESISTANCE VS LOUVAIN ON REAL-WORLD GRAPHS

WITH A GOOD COMMUNITY STRUCTURE

Name |V| |E| #C(LVN) #C(FTR) Q(LVN) Q(FTR)
soc-flickr 513.9K 6.38M 4362 4391 0.6650 0.6651
ecology2 999.9K 5.99M 172 176 0.9831 0.9835

belgium_osm 1.44M 3.09M 473 499 0.9940 0.9941
CurlCurl_1 226.4K 2.69M 70 79 0.9604 0.9612
denormal 89.4K 1.24M 28 30 0.9229 0.9279

vsp_bump2_e18 56.4K 601.6K 5 7 0.5441 0.5452
sd2010 88.3K 410.7K 47 50 0.9404 0.9423

luxembourg_osm 114.5K 239.3K 227 232 0.9880 0.9883

Finally, we also compare the quality of Fast-Tracking Re-
sistance with Louvain for real-world graphs with a good com-
munity structure (and hence, a higher modularity). Table IV

shows that even for graphs with a relatively better community
structure, Fast-Tracking Resistance can detect more clusters
(denoted as #C), and hence enhance the overall modularity
(denoted as Q) as compared to Louvain.
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