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Hao Lu§, Daniel Chavarrià-Miranda‡, Arif Khan†, Assefaw H. Gebremedhin∗

∗ Washington State University, Pullman, WA, USA {sghosh1, ananth, assefaw}@eecs.wsu.edu
† Pacific Northwest National Laboratory, Richland, WA, USA {hala, antonino.tumeo, ariful.khan}@pnnl.gov

‡ Trovares, Inc., Seattle, WA, USA daniel@trovares.com
§ Oak Ridge National Laboratory, Oak Ridge, TN, USA luh1@ornl.gov

Abstract—In most real-world networks, the nodes/vertices tend
to be organized into tightly-knit modules known as communities
or clusters, such that nodes within a community are more likely
to be “related” to one another than they are to the rest of
the network. The goodness of partitioning into communities is
typically measured using a well known measure called modularity.
However, modularity optimization is an NP-complete problem. In
2008, Blondel, et al. introduced a multi-phase, iterative heuristic
for modularity optimization, called the Louvain method. Owing
to its speed and ability to yield high quality communities, the
Louvain method continues to be one of the most widely used
tools for serial community detection.

In this paper, we present the design of a distributed memory
implementation of the Louvain algorithm for parallel community
detection. Our approach begins with an arbitrarily partitioned
distributed graph input, and employs several heuristics to
speedup the computation of the different steps of the Louvain
algorithm. We evaluate our implementation and its different
variants using real-world networks from various application
domains (including internet, biology, social networks). Our
MPI+OpenMP implementation yields about 7x speedup (on
4K processes) for soc-friendster network (1.8B edges) over a
state-of-the-art shared memory multicore implementation (on
64 threads), without compromising output quality. Furthermore,
our distributed implementation was able to process a larger
graph (uk-2007; 3.3B edges) in 32 seconds on 1K cores (64
nodes) of NERSC Cori, when the state-of-the-art shared memory
implementation failed to run due to insufficient memory on a
single Cori node containing 128 GB of memory.

Index Terms—Community detection, Parallel Louvain, Dis-
tributed graph clustering, Parallel graph heuristics.

I. INTRODUCTION

Community detection is a widely used operation in graph

analytics. Given a graph G = (V,E), the goal of the commu-

nity detection problem is to identify a partitioning of vertices

into “communities” (or “clusters”) such that related vertices

are assigned to the same community and disparate/unrelated

vertices are assigned to different communities. The community

detection problem is different from the classical problem of

graph partitioning in that neither the number of communities

nor their size distribution is known a priori. Because of its

ability to uncover structurally coherent modules of vertices,

community detection has become a structure discovery tool in

a number of scientific and industrial applications, including

biological sciences, social networks, retail and financial net-

works, and literature mining. Comprehensive reviews on the

various formulations, methods, and applications of community

detection can be found in [9], [11], [23], [26].

Various measures have been proposed to evaluate the

goodness of partitioning produced by a community detection

method [16], [18], [21]. Of these measures, modularity is

one that is widely used. Proposed by Newman [24], the

measure provides a statistical way to quantify the goodness

of a given community-wise partitioning, on the basis of the

fraction of edges that lie within communities. Modularity has

its limitations; more specifically, it suffers from a resolution

limit [12]. Additionally, modularity optimization is an NP-

complete problem [7]. Despite these limitations, the measure

continues to be widely used in practice [11], [13]. Resolution-

limit-free versions of modularity have been proposed [30]. Fur-

thermore, numerous efficient heuristics have been developed

over the years, making the analysis of large-scale networks

feasible in practice.

One such efficient heuristic is the Louvain method proposed

by Blondel et al. [5]. The method is a multi-phase, multi-

iteration heuristic that starts from an initial state of |V |
communities (with one vertex per community) and iteratively

improves the quality of community assignment until the

gain in quality (i.e., modularity gain) becomes negligible.

From a computation standpoint, this translates into performing

multiple sweeps of the graph (one per iteration) and graph

coarsenings (between successive phases).

Because of its speed and relatively high quality of output

in practice [15], the Louvain method has been widely adopted

by practitioners. Since its introduction to the field, there have

been multiple attempts at parallelizing the Louvain heuristic

(see Section II). To the best of our knowledge, the fastest

shared memory multithreaded implementation of Louvain is

the Grappolo software package [22]. The implementation was

able to process a large real-world network (soc-friendster; 1.8B

edges) in 812 seconds on a 20 core, 768 GB DDR3 memory

Intel R© XeonTMshared memory machine [14].

In this paper, we extend this line of work into the distributed

memory domain. More specifically, we present a distributed

memory implementation of the Louvain method for parallel

community detection. One of the key challenges in the design
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of an efficient distributed memory Louvain implementation

is to enable efficient vertex neighborhood scans (for changes

in neighboring community states), since with a distributed

representation of the graph, communication overheads can

become significant. Another key challenge is the frequency at

which community states are accessed for queries and updates;

the serial algorithm has the benefit of progressing from one

iteration to the next in a synchronized manner (benefiting

always from the latest of state information), while the cost

of maintaining and propagating such latest information could

become prohibitive in a distributed setting. The variable rates

at which vertices are processed across the processor space

presents another layer of challenge in the distributed setting.

The approach proposed in this paper overcomes the above

challenges using a combination of various heuristics.

Contributions: We make the following contributions in

this paper:

• Discuss the design of distributed memory parallel Lou-

vain algorithm (Section IV)

• Present effective heuristics for optimizing performance of

distributed community detection (Section IV-B)

• Carry out performance analysis of the proposed algorithm

using real-world moderate-large scale networks on 16 to

4K processes of NERSC Cori (Section V)

The remainder of the paper is organized as follows: After

a brief review of related work in Section II, we provide in

Section III essential preliminaries on the community detec-

tion problem along with a description of the serial Louvain

heuristic and associated design challenges for parallelization.

We present our distributed memory parallel algorithm and the

heuristics we introduce to improve performance in Section IV.

We provide an extensive performance evaluation on real-world

networks in Section V. Section VI concludes the paper.

II. RELATED WORK

There have been a number of prior research on distributed

parallel community detection [4], [8], [25], [27], [28], [31].

Among these, an MPI-based distributed memory Louvain

implementation is reported in [28]. Like us, they split the

vertices and their edge lists among the processes using a

1D decomposition. Therefore, our distribution strategies are

similar. However, the overall methods are different, including

the use of heuristics to optimize performance. Moreover, we

use large real-world datasets in our experimental evaluations,

and compare the performance of our MPI+OpenMP Lou-

vain algorithm with that of a pure OpenMP implementation.

The authors report the execution time of the uk-2007 real-

world network (3.3B edges) to be ∼45 secs on 128 IBM R©

Power7TMnodes. In comparison, we report an all inclusive

execution time of ∼47 secs for uk-2007 on 128 processes

using 8 Intel R© Haswell nodes of NERSC Cori, and 4 OpenMP

threads per process.
Another MPI implementation is discussed in [31], where

ParMETIS [17] is used to near-optimally partition the graph

among processes before the distributed memory community

detection algorithm starts. Since graph partitioning is an NP-

hard problem, we decided not to spend time finding a near-

optimal graph partition, and work with a simpler distribution

instead.

III. PRELIMINARIES

A graph is represented by G = (V,E), where V is the

set of vertices and E is the set of edges. An edge between

vertex i and j may have an associated edge weight wi,j .

The community detection problem is one of identifying a set

of communities in an input graph, where the communities
represent a partitioning of V . The goodness of clustering

achieved by community detection can be measured by a global

metric such as modularity [24]. More specifically, given a

community-wise partitioning of an input graph, modularity

measures the difference between the fraction of edges within

communities compared to the expected fraction that would

exist on a random graph with identical vertex and degree

distribution characteristics. Given G and its adjacency matrix

representation A, the modularity of G, denoted by Q, is given

by:

Q =
1

2m

∑
i,j

(Aij − ki ∗ kj
2m

)δ(ci, cj)

where:

m = sum of all the edge-weights

ki = weighted degree of vertex i

ci = community that contains vertex i

δ(ci, cj) = 1 if ci = cj , 0 otherwise.

(1)

In practical terms, modularity depends on the sum of all

edge weights between vertices within a particular community

(denoted by eij), and sum of weights of all edges incident

upon each community c (denoted by ac). Viewed that way,

Equation 1 can be written as Equation 2, where C denotes the

set of communities.

Q =
∑
c∈C

[
eij
2m

−
( ac
2m

)2
]

where:

eij =
∑

wij : ∀i, j ∈ c, and {i, j} ∈ E

ac =
∑
i∈c

ki

(2)

We use the formulation in Equation 2 in our implementa-

tions.

A. Serial Louvain algorithm
The Louvain method is iterative and consists of multiple

phases. Each phase runs for a number of iterations until

convergence. Initially, each vertex is assigned to a separate

community. Within each iteration, all vertices are processed

as follows: for a given vertex v, the gain in modularity (ΔQ)

that would result in moving v to each of its neighboring

communities is calculated; if the maximum of such gain is

positive, then v is moved to that community from its current

community. The phase is continued until the gain in modularity
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between any two successive iterations falls below a user-

specified threshold (τ ). When a phase ends, the graph for

the next phase is rebuilt, by collapsing all vertices within

a community into a single meta-vertex, and the process is

continued until no appreciable gain in modularity is achieved

between consecutive phases.
A pseudocode for the serial Louvain algorithm is shown in

Algorithm 1.

Algorithm 1: Serial Louvain algorithm.

Input: Graph G = (V,E), threshold τ
Input: Initial community assignment, Cinit

1: Qprev ← −∞
2: Cprev ← Initialize each vertex in its own community
3: while true do
4: for all v ∈ V do
5: N(v)← neighboring communities of v
6: targetComm← argmaxt∈Nv ΔQ(v moving to t)
7: if the gain is positive then
8: Move v to targetComm and update Ccurr

9: Qcurr ← ComputeModularity(V,E,Ccurr)
10: if Qcurr −Qprev ≤ τ then
11: break
12: else
13: Qprev ← Qcurr

B. Challenges in distributed memory parallelization
The primary issue affecting the global modularity in dis-

tributed memory parallelization of the Louvain algorithm

stems from concurrent community updates. A particular pro-

cess only has the updated vertex-community association in-

formation from its last synchronization point. Between the

last synchronization point and by the time the current process

accesses a community, it is possible that a remote process

has marked some updates for the community. However, these

changes will be applied at the next synchronization point. Due

to this lag of community update, the global modularity score

(and overall convergence) of a distributed-memory parallel

implementation of Louvain algorithm could be different from

a similar serial or shared memory implementation. Lu et

al. [22] discuss some challenges in parallelization such as

negative gain and local maxima scenarios which are relevant

for distributed memory cases as well.
There is significant communication overhead at every itera-

tion of every phase, owing to exchange of community updates

(vertices entering and leaving communities). Updated commu-

nity information is required for calculating the cumulative edge

weights within a community, and incident on a community,

which are part of the modularity calculation. Therefore, at

every iteration, we need updated community information of

tail/ghost vertices (a vertex owned by another process, but is

stored as part of the edge list in the current process). Also,

if a locally owned vertex moves to another community that

is owned by a remote process, then the degree and edge

weights pertaining to that vertex need to be communicated to

the target community owner as well. Modularity calculation

also requires global accumulation of the weights, requiring

collective communication operations. Finally, at the end of a

phase, the graph is rebuilt, which entails communicating new

vertex-community mappings to the respective owners of ghost

vertices.

IV. PARALLEL ALGORITHM

In this section we discuss our parallel Louvain implemen-

tation and the various heuristics we introduce to optimize

performance. We use p to denote the number of processes,

and rank i to denote an arbitrary rank in the interval [0, p−1].
Input Distribution: We distribute the input vertices and

their edge lists evenly across available processes, such that

each process receives roughly the same number of edges; no

clever graph partitioning is performed. Each process stores

a subset of vertices that it owns, and also keeps track of a

“ghost” copy for any vertex that has an edge to any of its

local vertices but is owned by a different (remote) process.

Henceforth, we refer to the latter set of vertices as “ghost”

vertices. We use the compressed sparse row (CSR) format

to store the vertex and edge lists. Similarly, each process

owns an arbitrary subset of communities (set initially to equal

number of communities per process), and also keeps track

of set of “ghost” communities to which the process’s local

communities have incident (inter-community) edges. Given the

static nature of input loading, each process knows the vertex

and community intervals owned by every other process as

well. However, the information pertaining to those vertices and

communities could change dynamically and therefore need to

be communicated.

A. Overview of the parallel algorithm

As mentioned earlier, the Louvain algorithm comprises

multiple phases, and each phase is run for a number of

iterations. Initially, each vertex is in its own community,

and as community detection progresses, vertices migrate by

entering and leaving communities. Each vertex resides in one

community at the start of an iteration, and decides on which

of its neighboring communities to move to by the end of

an iteration. Algorithm 2 shows a high-level description of

the parallel Louvain algorithm executing on a process. In this

pseudocode, each iteration of the while loop corresponds to a

Louvain “phase”.

Algorithm 2: Parallel Louvain Algorithm (at rank i).
Input: Local portion Gi = (Vi, Ei) of the graph G =
(V,E)
Input: Threshold, τ (default: 10−6)

1: Ccurr ← {{u}|∀u ∈ V }
2: {currMod, prevMod} ← 0
3: while true do
4: currMod← LouvainIteration(Gi, Ccurr)
5: if currMod− prevMod ≤ τ then
6: break and output the final set of communities

7: BuildNextPhaseGraph(Gi, Ccurr)
8: prevMod← currMod
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Algorithm 2 shows the two major steps of the parallel

Louvain algorithm. The first step involves invoking the Lou-

vain iteration, which runs the Louvain heuristic for modularity

maximization. The second step is graph reconstruction, where

vertices in each cluster are collapsed into a single meta-vertex,

compacting the graph. In what follows, we describe these two

steps more in detail.

a) Louvain iteration: Algorithm 3 lists the steps for

performing a sequence of Louvain iterations within a phase.

Since each process owns a subset of vertices and a subset of

communities, communication usually involves information on

vertices and/or communities. For each vertex owned locally,

a community ID is stored; and for each community owned

locally, its incident degree (ac) is stored locally (as part of the

vector Cinfo in Algorithm 3). In addition, each process stores

the list of its ghost vertices and their corresponding remote

owner processes. Since this vertex mapping to the process

space changes with every phase (owing to graph compaction),

we perform a single (one-time per phase) send-receive commu-

nication step to exchange these ghost coordinate information

(Algorithm 4). Note that the initial ghost community informa-

tion can be derived from the ghost vertex information, as at the

start of every phase, each vertex resides in its own community.

However, after every iteration (within a phase), changes to the

community membership information need to be relayed from

the corresponding owner processes to all those processes that

keep a ghost copy of those communities.
The main body of each Louvain iteration consists of the

following major steps (see Algorithm 3):

i) At the beginning of each iteration, information about

ghost vertices (i.e., their latest community assignments)

are received at each process (lines 4-5);

ii) Using the latest vertex information, compute the new

community assignments for all local vertices (lines 7-9).

This is a local computation step;

iii) Send all updated information for ghost communities to

their owner processes, and receive and updated informa-

tion on any local communities that were updated remotely

(lines 10-11);

iv) Compute the global modularity based on the new com-

munity state (lines 12-13); and

v) If the net modularity gain (ΔQ) achieved relative to the

previous iteration is below the desired threshold τ , then

terminate the phase (continue otherwise).

b) Graph reconstruction: The communities found at the

end of the current phase are considered as new vertices for

the compressed graph for the next phase. Edges within a com-

munity form a self loop around the community, whereas the

weights of edges between communities are added and a single

edge is placed between them with the cumulative weight.

The graph reconstruction phase is shown via an example in

Fig. 1. Process #0 owns vertices {0, 1, 2}, while process #1
owns vertices {3, 4}. The figure shows the partitioning of the

CSR representation. The index array employs local indexes,

whereas the edges array has global vertex IDs. Each process

has an array identifying community IDs for local vertices, and

Algorithm 3: Algorithm for the Louvain iterations of a

phase at rank i.
Output: Modularity at the end of the phase.

1: function LOUVAINITERATION(Gi, Ccurr)
2: Vg ← ExchangeGhostV ertices(Gi)
3: while true do
4: send latest information on those local vertices that are

stored as ghost vertices on remote processes
5: receive latest information on all ghost vertices
6: for v ∈ Vi do
7: Compute ΔQ that can be achieved by moving v to each

of its neighboring communities
8: Determine target community for v based on the migration

that maximizes ΔQ
9: Update community information for both the source and

destination communities of v
10: send updated information on ghost communities to owner

processes
11: Cinfo ← receive and update information on local

communities
12: currModi ← Compute modularity based on Gi and Cinfo

13: currMod← all-reduce:
∑

∀i currModi
14: if currMod− prevMod ≤ τ then
15: break
16: prevMod← currMod

17: return prevMod

Algorithm 4: Algorithm to receive information about

ghost vertices from remote (owner) processes.

Input: Local portion Gi(Vi, Ei) (in CSR format)

Output: List Vg of ghost vertices

1: function ExchangeGhostV ertices(Gi)
2: for v ∈ Vi do
3: [e0, e1]← getEdgeRangeForV ertex(v)
4: for u ∈ [e0, e1] do
5: owner ← Gi.getOwner(u)
6: if owner �= me then
7: vmap[owner]← vmap[owner] ∪ {u}
8: for j ∈ [0, p− 1] do
9: if j �= me then

10: send vmap[j] to rank j
11: receive data in Vg[j] list

12: return Vg

a hash map that associates remote neighbor vertices with their

respective community ID.
The distributed graph reconstruction process proceeds ac-

cording to the following steps, as corresponded by Fig. 1.

1) Each process counts its unique local clusters, which are

renumbered starting from 0. Renumbering is performed

with a map that associates the old community ID with

the new ID.

2) Each process checks for local community IDs that, during

the Louvain iterations, may have been assigned to remote

vertices but are no longer associated with any of the

vertices in the local partition.

3) Local unique clusters are renumbered globally: this is

achieved using a parallel prefix sum computation on the

number of unique clusters.
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Fig. 1. Graph reconstruction. In the example, we suppose that the modularity
optimization has assigned vertices {0, 1, 3} to community 0, vertex 2 to
community 2 and vertex 4 to community 4 (i.e., vertices 2 and 4 are each
one in their own community). Because community IDs originate from vertex
IDs, we consider the community IDs from 0 to 2 owned (local) to process
#0, and community IDs 3 and 4 local to process #1.

4) Processes are involved in communicating the new global

community IDs for the local partition. Only the new

community IDs that replaces the old community IDs used

in other processes need to be communicated.

5) Every process examines each of the vertices in its parti-

tion and starts creating partial new edge lists. For each

vertex in the partition, a process checks its neighbor list.

Neighbors associated with the same new community ID

contribute to a “self loop” edge.

6) Once these new partial edge lists have been created,

they are redistributed across processes. New partitions are

generated so that every process owns an equal number of

vertices (as much as possible).

7) New arrays for indices and vertices of the coarsened

graph can thus finally be rebuilt from the edge lists.

B. Heuristics for performance optimization

We present two heuristics which further improve the over-

all execution times of the distributed Louvain algorithm by

reducing the number of iterations within a phase.

a) Threshold Cycling: The Louvain algorithm uses a

threshold τ to decide termination—more specifically, if the net

modularity gain achieved between any two successive phases

(Algorithm 2) falls below τ then the algorithm is terminated

(achieves convergence). (Note that the same threshold is also

used between consecutive iterations of a phase in Algorithm 3

to terminate a phase.) Typically, this τ parameter is kept fixed

throughout the execution.
We extend the concept presented by Lu et al. [22] for a

multithreaded Louvain algorithm implementation, in tuning

the threshold across phases. The main idea is that during the

initial phases, when the graph is relatively large, the threshold

is also kept large, and is reduced incrementally for the later

phases. The point here is that if the threshold is small, then

the Louvain algorithm per phase will typically undergo more

iterations before it can exit; however, a higher threshold could

translate to lesser number of iterations to convergence. Such

savings in the number of iterations are likely to result in larger

performance savings in the earlier phases when the graph is

still large.
We implemented a scheme in which the threshold is

modulated in a cyclical fashion across phases. A range of

threshold values are invoked in successive phases after every

N phases, where N is predetermined. This is demonstrated in

Fig. 2, where phases 0–2, 3–6, 7–9 and 10–12 have respective

thresholds of 10−3, 10−4, 10−5 and 10−6. This pattern is again

repeated from phase 13 and so on.

10-8

10-7

10-6

10-5

10-4

10-3

10-2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

T
hr

es
ho

ld

Phases

Fig. 2. Threshold cycling illustration.

b) Early Termination: In our parallel Louvain algorithm,

one of the major contributors to communication cost is ex-

pected to result from communicating ghost vertex information

across processes. This cost can easily become a bottleneck if

the original partitioning of the input graph has a large fraction

of edges between vertices that reside in different processes.

However, after experimenting with our multithreaded Louvain

algorithm [22] with numerous inputs, we made a critical

observation: that, the rate at which the overall modularity

increases significantly slows down as the number of iterations

increases within a phase. This diminishing returns property in

quality is captured in almost all of the modularity evolution

charts presented in [22]. This happens because within a phase,

the rate at which vertices change their community affiliation
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tends to drastically reduce as the iterations progress within a

phase. In other words, vertices tend to hop around initially

but soon collocate with their community partners, thereby

becoming less likely to move in the later stages.
We present a heuristic to take advantage of the above ob-

servation. We devise a probabilistic scheme by which a vertex

decides to stay “active” or become “inactive”, at any given

iteration. Being “active” implies that the vertex will participate

in the computation within the main body of the Louvain

iteration (Algorithm 3; lines 7-10), and will recompute its

current community affiliation. Alternatively, if the vertex is

“inactive”, it will be dropped from the processing queue during

that iteration. Note that by making a vertex inactive during

an iteration, we can save on all the potential computation

and communication that it generates. The savings can be

particularly significant for larger degree vertices. To identify

which vertices to make inactive, we take advantage of the

above observation by looking at the most recent activity of

that vertex; intuitively, if the vertex has not moved lately then

we reduce the probability that it will stay active.
More specifically, consider a vertex v. Let Cv,j denote the

community containing v at the end of any given iteration j. Let

the probability that v is active during iteration k be denoted

by Pv,k. We define Pv,k as follows:

Pv,k =

{
Pv,k−1 ∗ (1− α), if Cv,k−1 = Cv,k−2

1, otherwise
(3)

where α is a real number between 0 and 1. The idea is to

rapidly decay the probability as a vertex continues to stay

in its current community. As α approaches zero, it becomes

similar to the baseline scheme; and as it approaches one, it

becomes highly aggressive in terminating vertices early on

during execution, with the potential risk of compromising on

quality. Consequently, we call this probabilistic heuristic the

“early termination” (ET) heuristic.
To study the effect of the α parameter on the performance-

quality trade-off, we modified our multithreaded implementa-

tion of [22] with this heuristic and tested it on two real-world

inputs. The results are tabulated in Table I. As can be observed,

the heuristic demonstrates the ability to achieve significant run-

time savings with negligible loss in quality. The savings vary

by the input—for CNR (3.2M edges), we observe about 2x

speedup in run-time (from α = 0 to 1), while for Channel

(42.7M edges), we see a 58.27x speedup. CNR has small

world characteristics, while Channel has a banded structure.
Consequently, we incorporate this heuristic into our dis-

tributed implementation. More specifically, we changed the

main computation for loop of Algorithm 3, so that each

vertex marks itself first as active or inactive based on the

probabilistic scheme, and subsequently includes itself for

further processing or not. We developed two minor variants

to the above ET idea (labeled, ET and ETC, respectively):
First, when the probability for a given vertex becomes less

than 2%, we label it inactive.
Secondly, the early termination scheme can also be com-

bined with another option to provide reasonably better per-

formance. We provide an option to calculate the percentage

of global inactive vertices, and if 90% of the vertices are

inactive in a particular phase, then the program exits. This

option requires an extra remote communication, involving

global summation of inactive vertices. In certain cases, we

observe early termination with remote communication to be

around ∼1.25-2.3x better than using early termination alone.
Further sophistication in the implementation is possible.

Note that if α is 1, then once a vertex marks itself as inactive,

it will stay inactive for ever. In fact, we should be able to safely

argue that this property will hold (with high probability) for

large α values as it nears 1. Secondly, any communication

that relates to inactive vertices can be prevented/preempted by

communicating the ghost vertex IDs that have become inactive

to other processes that still think they need them.
Our distributed memory Louvain algorithm code is available

for download under the BSD 3-clause license from: http://hpc.

pnl.gov/people/hala/grappolo.html.

V. EXPERIMENTAL EVALUATION

We used real-world graphs for our experimental evalua-

tions (see Table II). As far as we know, currently no MPI-

based distributed memory Louvain algorithm implementation

is publicly available. Therefore, to compare our results, we use

the multithreaded implementation of the Louvain algorithm,

namely Grappolo [22]. In our evaluations, we include both

performance (execution time) and output quality (modularity),

and also report on the number of iterations used by respective

implementations. Below we summarize the descriptors/legends

used in the figures/tables in this section to refer to the different

variants of our parallel algorithm (discused in Section IV-B).

• Baseline: the main parallel version (Algorithm 2)

without the heuristics in Section IV-B.

• Threshold Cycling: version with threshold cycling

enabled.

• ET: version with adaptive early termination, which re-

quires an input parameter (α). We report ET performance

with α = 0.25 and α = 0.75.

• ETC: variant of ET with an extra communication step to

gather inactive vertex count. We report ETC performance

with α = 0.25 and α = 0.75.

Experimental setup: We used the NERSC Cori su-

percomputer for our distributed/shared memory evaluations.

NERSC Cori is a 2,388-node Cray R© XC40TMmachine with

dual-socket Intel R© XeonTME5-2698v3 (Haswell) CPUs at 2.3

GHz per node, 32 cores per node, 128 GB main memory per

node, 40 MB L3 cache/socket and the Cray R© XCTMseries

interconnect (Cray R© AriesTMwith Dragonfly topology). We

use cray-mpich/7.6.0 as our MPI implementation, and Intel R©

17.0.2 compiler with -O3 -xHost compilation option to

build the codes.
Our primary testset consists of 12 graphs collected in their

native formats from four sources: UFL sparse matrix collec-

tion [10], Network repository [29], SNAP [20] and LAW [6].

The graphs are listed in Table II, along with their respective

output modularity as reported by Grappolo (using 1 thread).
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TABLE I
PRELIMINARY EVALUATION OF OUR ADAPTIVE EARLY TERMINATION HEURISTIC USING OUR MULTITHREADED IMPLEMENTATION. ALL RUNS WERE

EXECUTED ON 8 CORES OF AN INTEL R© XEONTM MACHINE. THE INPUTS, CNR AND CHANNEL, ARE BOTH NETWORKS DOWNLOADED FROM [10], WITH

325K AND 4.8M VERTICES RESPECTIVELY.

Input: CNR Input: Channel
α Modularity Time (in sec.) No. iterations Modularity Time (in sec.) No. iterations

1.0 0.91265 2.25 20 0.94314 1.73 28
0.9 0.91282 2.48 74 0.9432 6.69 76
0.8 0.91277 2.64 66 0.94329 6.71 72
0.7 0.91278 2.60 66 0.94349 8.44 88
0.6 0.91279 2.71 64 0.94334 11.58 117
0.5 0.91278 2.73 61 0.94333 15.56 152
0.4 0.91285 2.69 60 0.94352 20.48 195
0.3 0.91280 2.80 58 0.94314 25.61 232
0.2 0.91284 2.90 59 0.94312 39.44 348
0.1 0.91286 3.42 57 0.94338 69.26 583
0.0 0.91286 5.42 63 0.94369 100.82 232

TABLE II
TEST GRAPHS, LISTED IN ASCENDING ORDER OF EDGES.

Graphs #Vertices #Edges Modularity
channel 4.8M 42.7M 0.943

com-orkut 3M 117.1M 0.472
soc-sinaweibo 58.6M 261.3M 0.482
twitter-2010 21.2M 265M 0.478
nlpkkt240 27.9M 401.2M 0.939

web-wiki-en-2013 27.1M 601M 0.671
arabic-2005 22.7M 640M 0.989

webbase-2001 118M 1B 0.983
web-cc12-PayLevelDomain 42.8M 1.2B 0.687

soc-friendster 65.6M 1.8B 0.624
sk-2005 50.6M 1.9B 0.971
uk-2007 105.8M 3.3B 0.972

We converted the test graphs from their various native

formats to an edge list based binary format, and used the

binary file as an input in our implementation. Since we make

use of MPI I/O for reading the input file in parallel (and follow

best practices), our overall I/O time is about 1-2% of the

overall execution time. Since our implementation also uses

OpenMP for multithreading, we set either 2 or 4 threads per

process, in order to use all 64 threads per node of Cori.

Comparison on a single node: To assess the overhead

of our MPI+OpenMP distributed memory Louvain implemen-

tation, we compared it with the multithreaded implementation

from the Grappolo software package, on a single Cori node,

using a single process and multiple threads. Table III shows the

runtimes in seconds of our distributed memory implementation

and the shared memory (Grappolo) implementation for the

input graph soc-friendster (1.8B edges). The table shows that

performance of the pure OpenMP version is about 2.3x better

than our distributed version on all 32 cores of the node. On the

other hand, the distributed version shows better scaling with

the number of threads (about 4x speedup on 64 threads relative

to 4 threads, whereas the shared-memory version scales to

about 2x). In all these runs, the modularity difference was

found to be under 1%. Furthermore, the distributed version

obtains a speedup of up to 7x compared to the optimized

shared-memory version on 64 threads, when we scale out to

4K processes on 256 nodes (see Fig. 3).

TABLE III
DISTRIBUTED MEMORY VS SHARED MEMORY (GRAPPOLO)

PERFORMANCE (RUNTIME) OF LOUVAIN ALGORITHM ON A SINGLE CORI

NODE USING 4-64 THREADS. THE INPUT GRAPH IS SOC-FRIENDSTER

(1.8B EDGES).

#Threads Distributed memory (sec.) Shared memory (sec.)
4 6,082.25 1,216.54

8 3,615.52 843.37

16 2,252.09 725.26

32 1,515.24 689.38

64 1,303.98 554.52

A. Strong scaling
We report the total runtime (inclusive of the time to read

the input graph, perform modularity maximization and graph

reconstruction) for our test graphs in Fig. 3. We observe that

the process end points of best speedup vary by the input,

with moderate/large inputs showing reasonable scalability up

to 1K-2K processes. However, some graphs such as sk-2005,

have relatively low number of iterations per phase, which

indicates that there is not enough work to utilize the increased

parallelism beyond a certain point. These end points in scaling

are to do with the balance between computation and communi-

cation times. For instance, we used HPCToolkit [1] to profile

the Baseline version on soc-friendster on 256 processes (32

nodes). Analysis shows that 98% of the entire execution time

is spent in the main body of the Louvain iterations (with 1% in

graph rebuilding and another 1% for reading the input graph

using MPI I/O routines). Of the 98%, roughly 34% is used

in communicating community related information, and 40%

is spent in the reduction operation (line#13 of Algorithm 3);

whereas 22% of the time is used in computation (lines #6-#9).
To compare the different versions, we calculated speedup

as the ratio between the Baseline execution time on 16-128

processes and the execution time for the fastest running version

observed for a particular input. Table IV shows these results.

It can be seen that early termination versions (ET or ETC)

deliver the best performance in most cases.

B. Weak scaling
For weak scaling analysis, we use GTgraph synthetic graph

generator suite [3] to generate graphs according to DARPA

HPCS SSCA#2 benchmark [2]. Graphs following SSCA#2
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Fig. 3. Execution times of our distributed Louvain implementation for graphs listed in Table II. X-axis: Number of processes (and nodes), Y-axis: Execution
time (in secs.).

benchmark are comprised of random-sized cliques, with vari-

ous parameters to control the amount of vertex connections

and inter-clique edges, along with other options to set the

maximum sizes of clusters and cliques.
We fix the maximum clique size of the generated graphs (of

various dimensions) to 100 and deliberately keep inter-clique

edge probability low to enforce good community structure.

Each graph is executed on a different combination of processes

(and nodes), such that overall work-per-process is fixed. A list

of the generated graphs along with the process-node config-

uration on which they are run is provided in Table V. Our

distributed implementation reported exact same convergence

criteria for each graph listed in Table V, since the underlying

structures of the graphs are similar, despite the difference in

sizes. The weak scaling results we obtained are summarized in

Fig. 4. The figure shows nearly constant execution time for the

Baseline versions of our distributed Louvain implementation

using input SSCA#2 graphs of varying sizes and varying

process counts (1-512).

C. Analysis

a) Benefits of Threshold Cycling: The Threshold Cycling

scheme provided significant performance (runtime) benefit

(compared to Baseline) with less than 3% decrease in modu-

892



TABLE IV
VERSIONS YIELDING THE BEST PERFORMANCE OVER THE BASELINE

VERSION (RUN ON 16-128 PROCESSES) FOR INPUT GRAPHS (LISTED IN

ASCENDING ORDER OF EDGES).

Graphs Best speedup Version
channel 46.18x ETC(0.25)

com-orkut 14.6x ETC(0.75)

soc-sinaweibo 3.4x
Threshold
Cycling

twitter-2010 3.3x ETC(0.25)

nlpkkt240 8.68x
Threshold
Cycling

web-wiki-en-2013 7.92x ET(0.75)
arabic-2005 5.8x ETC(0.25)

webbase-2001 7x ETC(0.25)
web-cc12-PayLevelDomain 3.75x ETC(0.25)

soc-friendster 23x ETC(0.25)
sk-2005 1.8x ETC(0.75)
uk-2007 2.4x ETC(0.75)

TABLE V
GTGRAPH SSCA#2 GENERATED GRAPH DIMENSIONS AND ASSOCIATED

INFORMATION.

Name #Vertices #Edges Modularity #Processes (Nodes)
Graph#1 5M 333.7M 0.999981 1(1)
Graph#2 10M 660.7M 0.999990 32(2)
Graph#3 50M 3.3B 0.999998 208(13)
Graph#4 100M 6.6B 0.999999 448(28)
Graph#5 150M 6.9B 0.999999 512(32)
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Fig. 4. Weak scaling of distributed Louvain implementation (Baseline) on
GTgraph generated SSCA#2 graphs. X-axis: Input graphs listed in Table V,
Y-axis: Execution time (in secs.).

larity for over 90% of the test graphs. Meanwhile, threshold

cycling performed only marginally better for the soc-sinaweibo

and web-wiki-en-2013 graphs. These graphs ran for only 3 or 4

phases, and the Louvain algorithm converged before ending a

cycle of threshold modifications. In such cases, our distributed

implementation always forces Louvain iteration to run once

more with the lowest threshold (default τ = 10−6), to ensure

acceptable modularity. Hence, in such cases, threshold cycling

yields only nominal benefit.
b) Benefits of Early Termination: The runtime charts

in Fig. 3 show that the early termination versions (ET or

ETC) provide the best performance for most input graphs.

We discuss the modularity growth and iterations per phase

characteristics on 64 processes for two of the test graphs—

nlpkkt240 and web-cc12-PayLevelDomain.

These results are shown in Figs. 5a and 5b (for nlpkkt240)

and Figs. 6a and 6b (for web-cc12-PayLevelDomain). Gener-

ally, we observed one of two trends among all the test graphs:

one in which ET with α = 0.25 performs better than ET

with α = 0.75 (Figures 5a and 5b), and another in which the

converse happens—(Figs. 6a and 6b).

In Fig. 5a we observe slow growth in modularity of

ET(0.75) across many more phases (which increases the over-

all execution time) compared to ET(0.25). Also, we observe

significantly more iterations per phase for ET(0.75) compared

to ET(0.25) in Fig. 5b. It is to be noted that although the total

number of phases of ET(0.75) is 2.6x, and total iterations is

1.3x to that of Baseline, the overall execution time of ET(0.75)

is still about 1.47x better than Baseline. This is due to the

prevalence of a number of inactive vertices per phase, the

time spent per phase is significantly less than the Baseline

version. With α close to 1, the scheme of labeling vertices as

inactive becomes more aggressive. This hurts the convergence

characteristics as evidenced by a higher number of phases for

ET(0.75), as there are fewer (active) vertices at every phase

which can move to other communities, maximizing ΔQ.

However, we observe an interesting phenomenon with ET,

when the optional communication step is performed (i.e., ver-

sion ETC). In Fig. 5b, we see that ETC(0.25) and ETC(0.75)

display very similar performances, whereas ET(0.25) and

ET(0.75) were quite different. The remote communication step

computes the global number of vertices that are inactive, and if

it is more than 90%, then Louvain iteration exits. This is quite

different from the ET counterparts, as ET still relies comparing

consecutive modularities to a fixed τ per iteration in a phase.

Fig. 5b shows a linear increase in modularity/iterations, due

to this exit condition, and yields about 20-30% performance

benefit as compared to using ET alone.

For web-cc12-PayLevelDomain, we observe from Fig-

ures 6a and 6b that the aggressive version of ET with α = 0.75
(denoted as ET(0.75)) performs better than ET(0.25), at the

expense of 4% decrease in modularity. The performance of

ET(0.75) is 16% better than ET(0.25) owing to lesser number

of iterations per phase.

We also compared our distributed memory ET version

directly against the shared memory results of Table I. For the

CNR input, we varied α from 0 (least aggressive) to 1 (most

aggressive). The results showed a reduction in runtime from

0.523 seconds down to 0.488 seconds (∼6.7% improvement),

largely owing to the reduction in the number of iterations

(from 37 down to 24); while the modularity values were

largely consistent up to the second decimal place. The time

improvement is more modest compared to the shared memory

results of Table I. Note that the shared memory version

deploys a different set of heuristics such as coloring and vertex

following [22], and therefore the behavior is expected to be

different. Combining ET with Threshold Cycling yields better

performance in some cases, as shown in Table VI. However,

in nearly all ETC cases, we did not see any benefit of adding

Threshold Cycling, because the exit criteria of ETC is not

τ -based.
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Fig. 5. Convergence characteristics of nlpkkt240 (401.2M edges) on 64 processes.
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Fig. 6. Convergence characteristics of web-cc12-PayLevelDomain (1.2B edges) on 64 processes.

TABLE VI
PERFORMANCE OF ET(0.25) COMBINED WITH THRESHOLD CYCLING FOR

SOC-FRIENDSTER (1.8B EDGES). RELATIVE PERCENTAGE GAINS IN

PERFORMANCE ARE IN BRACES.

Processes (Nodes)
Execution time

ET(0.25)
(secs.)

Execution time
ET(0.25) + Threshold Cycling

(secs.)
256(16) 683.996 614.788 (10%)
512(32) 448.048 398.773 (11%)
1024(64) 299.744 264.645 (12%)

2048(128) 216.606 195.127 (10%)
4096(256) 186.869 167.851 (10%)

D. Quality assessment

In order to assess the quality of our distributed Louvain

implementation, we compare our results against known ground

truth communities for a variety of networks generated by the

LFR benchmark [19]. When the quality assessment feature

is turned on, our implementation performs extra collective

operations per Louvain method phase to gather the vertex-

community associations of the current graph into the root

process.
We follow the exact same methodology to calculate F-

TABLE VII
QUALITY COMPARISONS WITH GROUND TRUTH COMMUNITY

INFORMATION.

#Vertices #Edges Precision F-score
350K 34.73M 0.980889 0.990352
600K 58.91M 0.981865 0.990849
1M 98.12M 0.962938 0.981119

1.5M 147.13M 0.937488 0.967736
2M 196.45M 0.896050 0.945176

score as discussed in [14], using the statistical measures of

precision and recall, which are computed from the community

assignment comparisons of the ground truth data with our

distributed implementation. For the current set of LFR bench-

mark networks, we ran our distributed implementation on 2

nodes with 16 processes per node (with 2 OpenMP threads per

process). As shown in Table VII, high F-score and precision

(recall was found to be 1.0 for every case) corresponds to

high quality solution as compared to ground truth community

assignments. We also observed nearly identical F-score results

reported by Grappolo for the same LFR benchmark networks.
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VI. CONCLUSION

We presented a distributed memory implementation of the

Louvain algorithm for parallel graph community detection. We

introduced several heuristics, the inclusion of which was found

crucial for improving performance and scalability. Our parallel

implementation demonstrated speedups of 1.8x-46.18x (using

up to 4K processes) relative to the Baseline version, for a

wide variety of real-world networks. Modularities obtained by

the different versions of our parallel algorithm are in most

cases comparable to the best modularities obtained by a state-

of-the-art multithreaded Louvain implementation. We believe

the detailed discussion of the parallel implementation, the

heuristics introduced, and the experimental analysis provided

in this paper will benefit a wider range of graph algorithms

which also have a greedy iterative structure with vertex-centric

computations.
We plan to extend this work in several ways. One direc-

tion we are investigating is incorporation of other heuristics,

including the use of distance-1 coloring to ensure that the

set of vertices that are proceeed in parallel for community

assignments are mutually non-adjacent and hence independent.

This may lead to faster convergence. Apart from this, in order

to make our implementation more scalable, we are considering

neighborhood collective operations introduced in MPI-3.
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