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Abstract—Traditional implementations of parallel graph op-
erations on distributed memory platforms are written using
Message Passing Interface (MPI) point-to-point communication
primitives such as Send-Recv (blocking and nonblocking). Apart
from this classical model, the MPI community has over the years
added other communication models; however, their suitability
for handling the irregular traffic workloads typical of graph
operations remain comparatively less explored. Our aim in this
paper is to study these relatively underutilized communication
models of MPI for graph applications. More specifically, we
evaluate MPI’s one-sided programming, or Remote Memory
Access (RMA), and nearest neighborhood collectives using a
process graph topology. There are features in these newer models
that are intended to better map to irregular communication
patterns, as exemplified in graph algorithms.

As a concrete application for our case study, we use dis-
tributed memory implementations of an approximate weighted
graph matching algorithm to investigate performances of MPI-
3 RMA and neighborhood collective operations compared to
nonblocking Send-Recv. A matching in a graph is a subset of
edges such that no two matched edges are incident on the same
vertex. A maximum weight matching is a matching of maximum
weight computed as the sum of the weights of matched edges.
Execution of graph matching is dominated by high volume of
irregular memory accesses, making it an ideal candidate for
studying the effects of various MPI communication models on
graph applications at scale.

Our neighborhood collectives and RMA implementations
yield up to 6× speedup over traditional nonblocking Send-Recv
implementations on thousands of cores of the NERSC Cori
supercomputer. We believe the lessons learned from this study
can be adopted to benefit a wider range of graph applications.

Keywords—Graph analytics, One-sided communication, MPI-3
RMA, MPI-3 neighborhood collectives, Graph matching.

I. INTRODUCTION

Single program multiple data (SPMD) using message pass-
ing is a popular programming model for numerous scientific
computing applications running on distributed-memory parallel
systems. Message Passing Interface (MPI) is a standardized in-
terface for supporting message passing through several efforts
from vendors and research groups. Among the communication
methods in MPI, point-to-point Send-Recv and collectives
have been at the forefront in terms of their usage and
wide applicability. Especially, for distributed-memory graph
analytics, Send-Recv remains a popular model, due to its
wide portability across MPI implementations and support for
communication patterns (asynchronous point-to-point updates)
inherent in many graph workloads.

In addition to the classical Send-Recv model, Remote
Memory Access (RMA), or one-sided communication model,
and neighborhood collective operations are recent advanced
features of MPI that are relevant to applications with irregular
communication patterns. A one-sided communication model

separates communication from synchronization, allowing a
process to perform asynchronous nonblocking updates to re-
mote memory. Prior to the recent release of MPI-3 [11],
MPI RMA had several limitations that made it unsuitable for
one-sided operations in applications. Bonachea and Duell [3]
discuss the limitations of MPI-2 RMA compared with contem-
porary Partition Global Address Space (PGAS) languages.

Data locality and task placement are crucial design con-
siderations to derive sustainable performance from the next
generation of supercomputers. Presently, MPI offers enhanced
support for virtual topologies to exploit nearest neighborhood
communication [18]. To derive the maximum benefit from
the topology, there are special communication operations in
MPI, namely neighborhood collectives (abbreviated as NCL),
to collectively involve only a subset of processes in commu-
nication. MPI neighborhood collectives advance the concepts
of standard collective operations, and build up on decades
of past research effort in optimized algorithms for collective
operations. We provide an overview of these models in §II.

From an application perspective, graph algorithms have
recently emerged as an important class of applications on
parallel systems, driven by the availability of large-scale data
and novel algorithms of higher complexity. However graph
algorithms are challenging to implement [25]. Communication
patterns and volume are dependent on the underlying graph
structure. Therefore, a critical aspect of optimization in such
applications is in designing the granularity of communication
operations, and the choice of communication primitives.

Summary of contributions: In this paper, we use graph
matching, a prototypical graph problem, as a case study to
evaluate the efficacy of different communication models. Given
a graph G = (V,E, ω), a matching M is a subset of edges such
that no two edges in M are incident on the same vertex. The
weight of a matching is the sum of the weight of the matched
edges, and the objective of the maximum weight matching
problem is to find a matching of maximum weight. Algorithms
to compute optimal solutions are inherently serial and are
impractical for large-scale problems, albeit having polynomial
time complexity [12, 23]. However, efficient approximation
algorithms with expected linear time complexity can be used
to compute high quality solutions [10, 29]. Further, several
of the half-approximation algorithms can be parallelized ef-
ficiently [5, 26]. We use the parallel variant of the locally-
dominant algorithm in this work to explore the efficacy of
three communication models (detailed in §IV). In particular,
we implemented the locally-dominant algorithm using Send-
Recv, RMA and neighborhood collectives. To the best of
our knowledge, it is the first time that these communication
schemes have been used for half-approximate matching.

Secondly, we devised a detailed case study for understand-
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ing and characterizing the performance efficacy of different
communication models for graph matching under different
measures. Our working hypothesis is that the newer commu-
nication models of RMA and NCL are likely to outperform
the classical Send-Recv model for graph matching. The goal
of the case study was to test this hypothesis using the three
implementations of half-approximate matching.

Summary of findings: While our study demonstrates the
general validity of our working hypothesis (at a high level),
it also paints a more nuanced picture about the way these
individual models differ with input distributions, ordering
schemes, and system sizes. More specifically:

• We demonstrate that with our RMA and NCL implemen-
tations, one can achieve up to 4.5× speedup for a billion-
edge real-world graph relative to Send-Recv (§V).

• We demonstrate that while RMA is more consistent at
delivering high performance, NCL is more sensitive to
the type of input graph and to input vertex ordering.

• Besides runtime performance, we also evaluate the energy
and memory consumption costs of these different models
for graph matching, and show that NCL and RMA signif-
icantly reduce these costs as well. Our study makes a case
for not viewing any one of these metrics in isolation but
to identify models that are likely to achieve best tradeoffs
under different configurations.

II. BUILDING PARALLEL GRAPH ALGORITHMS USING

MPI-3 RMA AND NEIGHBORHOOD COLLECTIVES

A number of graph-based algorithms are iterative in na-
ture, requiring updates to different subset of vertices in each
iteration, with some local computation performed on the
vertices by the current process. This is referred to as the
owner-computes model. Implementing such owner-computes
graph algorithms on distributed-memory using MPI Send-Recv
typically requires asynchronous message exchanges to update
different portions of the graph simultaneously, giving rise
to irregular communication patterns. Algorithm 1 illustrates
a generic iterative graph algorithm, representing the owner-
computes model.

Algorithm 1: Prototypical distributed-memory owner-
computes graph algorithm using nonblocking Send-Recv
for communication. Compute function represents some
local computation by the process “owning” a vertex.
Input: Gi = (Vi, Ei) portion of the graph G in rank i.

1: while true do
2: Xg ← Recv messages
3: for {x, y} ∈ Xg do
4: Compute(x, y) {local computation}
5: for v ∈ Vi do
6: for u ∈ Neighbor(v) do
7: Compute(u, v) {local computation}
8: if owner(u) �= i then
9: Nonblocking Send(u, v) to owner(u)

10: if processed all neighbors then
11: break and output data

Within the realm of the owner-computes model, it is
possible to replace Send-Recv with other viable communi-
cation models. Our distributed-memory approximate match-
ing implementations follow the owner-computes model and
serve as an ideal use-case to study the impact of different
communication models, while being representative of a wide

variety of distributed-memory graph algorithms. We briefly
discuss two alternative communication methods in this section,
namely Remote Memory Access (RMA) and neighborhood
collective operations. MPI RMA was presented in the MPI-
2 specification (circa 1997). MPI-3 was the next major update
to the MPI standard (circa 2012), that introduced neighborhood
collectives and included significant extensions to MPI RMA.

Remote Memory Access (RMA): In contrast to MPI
two-sided model, MPI RMA extends the communication
mechanisms of MPI by allowing one process to specify all
communication parameters, both for the sending side and for
the receiving side. To achieve this, every process involved
in an RMA operation needs to expose part of its memory
such that other processes can initiate one-sided data transfers
targeting the memory of any particular process. The exposed
memory is referred to as an MPI window. After creation
of an MPI window, processes can initiate put/get one-sided
operations. For synchronization, users need to invoke a flush
operation, which completes its outstanding RMA operations.
Two categories of MPI RMA communication exist: active
and passive. For an active target communication, both origin
and target processes are involved in the communication, but
for passive target communication, only the origin process is
involved in data transfer. We use passive target communication,
since it is better suited for random accesses to different target
processes [19].

Neighborhood collectives: Distributed-memory graph
algorithms exhibit sparse communication patterns, and are
therefore ideal candidates for exploring the relatively recent
enhancements to MPI process topology interface [18]. Dis-
tributed graph topology allows each process to only define
a subset of processes (as edges) that it communicates with.
Neighborhood collective operations make use of this graph
topology, in optimizing the communication among neighboring
processes [16, 17, 27]. Fig. 1 represents the process graph
topology, mimicking the underlying data distribution (we do
not assume fixed neighborhoods). A graph topology can also
be augmented with edge weights representing communication
volumes between nodes, at the expense of extra memory.
However, we only use unweighted process graphs in this paper.
In the context of the owner-computes model, the primary
impact of using a distributed graph topology is reduction in
memory consumption, which in this case is expected to be
proportional to the subset of processes as opposed to all the
processes in the communicating group. We provide supporting
information for this reduction in Table VIII.

III. HALF-APPROXIMATE MATCHING

We discuss in this section the half-approximate matching
algorithm in serial, and in Section IV we discuss its paral-
lelization in distributed-memory.

A. Matching preliminaries
A matching M in a graph is a subset of edges such that no

two edges in M are incident on the same vertex. The objective
of a matching problem can be to maximize the number of
edges in a matching, known as the maximum matching, or
to maximize the sum of the weights of the matched edges,
known as the maximum weight matching (when weights are
associated with the edges). A further distinction can be on
the optimality of the solutions computed – optimal or approx-
imate. We limit our scope to half-approx weighted matching
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Fig. 1: Subset of a process neighborhood and MPI-3 RMA remote displace-
ment computation. Number of ghost vertices shared between processes are
placed next to edges. Each process maintains two O(neighbor) sized buffers
(only shown for P7): one for storing prefix sum on the number of ghosts
for maintaining outgoing communication counts, and the other for storing
remote displacement start offsets used in MPI RMA calls. The second buffer
is obtained from alltoall exchanges (depicted by arrows for P7) of the
prefix sum buffer among the neighbors.

(a) MPI calls, graph matching. (b) MPI calls, Graph500 BFS.

Fig. 2: Communication volumes (in terms of Send-Recv invocations) of MPI
Send-Recv baseline implementation of half-approx matching using Friendster
(1.8B edges) and Graph500 BFS using R-MAT graph of 2.14B edges on
1024 processes. Black spots indicate zero communication. The vertical axis
represents the sender process ids and the horizontal axis represents the receiver
process ids.

algorithms in this paper. We refer the reader to several classical
articles on matching for further details [13, 21, 23].

A simple approach to compute a half-approx matching is
to consider edges in a non-increasing order of weights and
add them to the matching if possible. This algorithm was
proposed by Avis and is guaranteed to produce matchings that
are half-approx to optimal matching [1]. However, ordering of
edges serializes execution. Pries proposed a new algorithm by
identifying locally dominant edges – edges that are heavier
than all their adjacent edges – without a need to sort the
edges [29]. The locally dominant algorithm was adapted to
a distributed algorithm by Hoepman [20], and into a practical
parallel algorithm by Manne and Bisseling [26] and Halap-
panavar et al. [15]. We build on the work on MatchboxP [5]
and implement novel communication schemes. We note that
each communication model is a nontrivial implementation and
requires significant modifications to the Send-Recv based algo-
rithm. Further, communication patterns generated by matching
are distinctly different from available benchmarks such as
Graph500, as shown in Fig. 2, which makes it a better
candidate to explore novel communication models in MPI-3.

Intuitively, the locally-dominant algorithm works by identi-
fying dominant edges in parallel, adding them to the matching,
pruning their neighbors and iterating until no more edges can
be added. A simple approach to identify locally dominant
edges is to set a pointer from each vertex to its current heaviest

neighbor. If two vertices point at each other, then the edge
between these vertices is locally dominant. When we add
this edge to the matching, only those vertices pointing to
the endpoints of the matched edge need to be processed to
find alternative matches. Thus, the algorithm iterates through
edges until no new edges are matched. This algorithm has
been proved to compute half-approx matchings [26]. The
algorithm has expected linear time complexity but suffers from
a weakness when there are no edge weights (or weights are
all equal) and ties need to be broken using vertex ids [26].
However, a simple fix for this issue is to use a hash function
on vertex ids to prevent linear dependences in pathological
instances such as paths and grids with ordered numbering of
vertices.

B. Serial algorithm for half-approximate matching
Algorithm 2 demonstrates the serial half-approximate

matching algorithm, based on [26]. There are two phases
in the algorithm: in the first phase, the initial set of locally
dominant edges in G = (V,E, ω) are identified and added to
matching set M ; the next phase is iterative—for each vertex
in M , its unmatched neighboring vertices are matched. For a
particular vertex v, N ′

v represents unmatched vertices in v’s
neighborhood. The vertex with the heaviest unmatched edge
incident on v is referred as v’s mate, and this information
is stored in a data structure called mate. Throughout the
computation, mate of a vertex can change as it may try to
match with multiple vertices in its neighborhood. We use
similar notations for the parallel algorithms as well.

Algorithm 2: Serial matching algorithm.
Input: Graph G = (V,E, ω).
Output: M set of matched vertices.

1: matev ← ∅ ∀v ∈ V , M ← ∅
2: for v ∈ V do
3: u← matev ← argmaxu∈N′

v
ωu,v

4: if mateu = v then
5: M ←M ∪ {u, v}
6: while true do
7: v ← some vertex from M
8: for x ∈ N ′

v where matex = v and x � M do
9: y ← matex ← argmaxy∈N′

x
ωx,y

10: if matey = x then
11: M ←M ∪ {x, y}
12: if processed all vertices in M then
13: break

IV. PARALLEL HALF-APPROXIMATE MATCHING

In distributed-memory, we need to communicate informa-
tion on candidate mates, and a way to express the context
of the data that is being communicated. We discuss these
communication contexts in detail in the next subsection and
subsequently present our distributed-memory implementation
of the matching algorithm. But first we describe the strategy
we follow for graph distribution.

A. Graph distribution
Our graph distribution is 1D vertex-based, which means

each process owns some vertex, and all of its edges. The
input graph is stored as a directed graph, so each process
stores some vertices that are owned by a different process in
order to maintain edge information. For example, if vertex u
is owned by process #0 and vertex v is owned by process #1,
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Fig. 3: Communication contexts depicting different scenarios in distributed-memory half-approx matching. If y is a vertex, then y′ is its “ghost” vertex.

and there is an edge between u and v, then process #0 stores
u− v′, and process #1 stores v − u′ (where u′/v′ are “ghost”
vertices, and there is an undirected edge between process #0
and #1 in the distributed graph process topology). We store
locally owned vertices and edges using Compressed Sparse
Row (CSR) format [9]. The owner function takes a vertex
as an input parameter and returns its owning process. This
simple distribution may cause load imbalance for graphs with
irregular node degree distributions; in §V-C we investigate the
impact of graph reordering techniques and load imbalances.

B. Communication contexts
The message contexts are used to delineate actions taken

by a vertex to inform its status to its neighbors and to avoid
conflicts. For Send-Recv implementation, these contexts are
encoded with message tags, and for RMA and neighborhood
collective implementations, they are part of the communication
data. A vertex is done communicating with its ghost vertices
when all its cross edges have been deactivated, and is no longer
a part of a candidate set. Fig. 3 demonstrates communication
contexts arising from different scenarios as the distributed-
memory algorithm progresses.

From these scenarios, we conclude that a vertex may send
at most 2 messages to a “ghost” vertex (i.e., an incident vertex
owned by another process), so the overall number of outgoing/
incoming messages is bounded by twice the number of ghost
vertices. This allows us to precompute communication buffer
sizes, making it convenient for memory allocation. Based on
the ghost counts, a process can stage incoming or outgoing
data associated with a particular neighbor process on discrete
locations in its local buffers.

C. Distributed-memory algorithm
Algorithm 3 demonstrates the top-level implementation

of our distributed-memory half-approx matching. Similar to
the serial algorithm 2, the parallel algorithm also consists of
two phases: in the first phase, locally owned vertices attempt
to match with the unmatched vertices on its neighborhood
(FINDMATE, Algorithm 4), and in the next phase, neigh-
bors of matched vertices in Mi are processed one by one
(PROCESSNEIGHBORS, Algorithm 5).

We maintain a per process counter array called nghosts
that tracks the number of “active” ghost vertices in its neigh-
borhood (that are still unmatched and available). As the ghost
vertices are processed, the count is decremented. When the
sum of the content of nghosts array returns 0, it means that a
process does not have an active ghost vertex, and is free to exit
if it has no pending communication. An MPI_Allreduce

Algorithm 3: Top-level distributed-memory algorithm.
Input: Local portion of graph Gi = (Vi, Ei) in rank i.

1: matev ← ∅ ∀v ∈ Vi, nghostsi ← ∅, Mi ← ∅
2: for v ∈ Vi do
3: FINDMATE(v)

4: while true do
5: PROCESSINCOMINGDATA()
6: v ← some vertex from Mi

7: if owner(v) = i then
8: PROCESSNEIGHBORS(v)

9: if SUM(nghostsi) = 0 then
10: break

operation to aggregate ghost counts may also be required for
RMA and NCL to exit the iteration.

We use generic keywords in the algorithms (such as
Push, Evoke and Process) to represent communication/
synchronization/buffering methods used across multiple MPI
versions. Table I provides a mapping of those keywords to the
actual MPI functions used by a specific implementation.

TABLE I: Description of keywords used in algorithms.

Keyword/Action Send-Recv RMA Neighborhood
Collectives

Push (mark
data for
imminent
communica-
tion)

MPI Isend MPI Put Insert data into send
buffer.

Evoke (evoke
outstanding
communica-
tion)

MPI Iprobe MPI Win flush all
MPI Neighbor alltoall

MPI Neighbor alltoall
MPI Neighbor alltoallv

Process
(handle
incoming
data)

MPI Recv Check data in local
MPI window.

Check data in receive
buffer.

The FINDMATE function, depicted in Algorithm 4, is used
whenever a locally owned vertex has to choose an unmatched
vertex with maximum weight (i.e., mate) from its neighbor-
hood. Apart from initiating matching requests (REQUEST
communication context), if there are no available vertices
in the neighborhood for matching, then it can also eagerly
send an INVALID message to all its neighbors, such that
they can deactivate the edge (Case #5 from Fig. 3). After a
vertex receives an INVALID message from its neighboring
vertex, the neighbor can no longer be considered as a potential
candidate. Therefore, INVALID messages are broadcast by
vertices that cannot be matched with the goal of minimizing
futile matching requests.

Edge deactivation involves evicting an unavailable vertex
from the neighborhood candidate set of potential mates (for
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Algorithm 4: FINDMATE: Find candidate mate of a
vertex in rank i.
Input: Locally owned vertex x.

1: y ← matex ← argmaxy∈N′
x
ωx,y

2: if y �= ∅ then {Initiate matching request}
3: if owner(y) = i then
4: if matey = x then
5: N ′

x \ y
6: N ′

y \ x
7: Mi ←Mi ∪ {x, y}
8: else{y is a ghost vertex}
9: N ′

x \ y
10: nghostsy ← nghostsy − 1
11: Push(REQUEST , owner(y), {y, x})
12: else{Invalidate N ′

x}
13: for z ∈ N ′

x do
14: if owner(z) = i then
15: N ′

x \ z
16: N ′

z \ x
17: else
18: N ′

x \ z
19: nghostsz ← nghostsz − 1
20: Push(INVALID , owner(z), {z, x})

Algorithm 5: PROCESSNEIGHBORS: Process active
neighbors of a matched vertex in rank i.
Input: Locally owned matched vertex v.

1: for x ∈ N ′
v do

2: if matev �= x then
3: if owner(x) = i then
4: N ′

v \ x
5: N ′

x \ v
6: if matex = v then{Recalculate matex}
7: FINDMATE(x)

8: else
9: N ′

v \ x
10: nghostsx ← nghostsx − 1
11: Push(REJECT , owner(x), {x, v})

e.g., N ′
x \y represents evicting vertex y from the candidate set

of vertex x). When the unavailable vertex is a ghost, then the
nghosts counter needs to be decremented as well.

The PROCESSNEIGHBORS function helps to mitigate po-
tential conflicts in the neighborhood of a matched vertex.
After the first phase, multiple vertices (denoted by set X)
in the neighborhood of a matched vertex v may list v as a
mate. However, since v is already matched and unavailable
from the candidate sets, ∀x ∈ X,x /∈ M . In that case,
PROCESSNEIGHBORS evokes mate recalculation for x if it is
locally owned, or sends a REJECT message to the owner of
x (Case# 4 of Fig. 3).

PROCESSINCOMINGDATA ensures proper handling of in-
coming data from another process. Based on the received
communication context, relevant action is taken; that involves
edge deactivation, along with mate recalculation or successful
matching or rejection of a matching request.

D. Implementation of the distributed-memory algorithms
In this section, we discuss implementations of the

distributed-memory algorithms using MPI Send-Recv, RMA
and neighborhood collectives.

Algorithm 6: PROCESSINCOMINGDATA: Process in-
coming data in rank i.

1: flag ←Evoke()
2: if flag = true then {received data}
3: {x, y, ctx} ← Process incoming data

4: if ctx.id = REQUEST then
5: matched← false
6: if x /∈Mi then
7: N ′

x \ y
8: if matex = y then
9: Mi ←Mi ∪ {x, y}

10: matched← true
11: if !matched then {push REJECT if match not possible}
12: N ′

x \ y
13: nghostsy ← nghostsy − 1
14: Push(REJECT , ctx.source, {y, x})
15: else if ctx.id = REJECT then
16: N ′

x \ y
17: nghostsy ← nghostsy − 1
18: if matex = y then
19: FINDMATE(x)

20: else{received INVALID}
21: N ′

x \ y
22: nghostsy ← nghostsy − 1

a) MPI Send-Recv implementation: The baseline Send-
Recv implementation uses MPI_Isend to initiate a nonblock-
ing send operation for communicating with a neighbor process.
It uses a nonblocking probe call (i.e., MPI_Iprobe) in every
iteration, before receiving the message (using MPI_Recv),
as there is no prior information on incoming message due
to irregular communication. The communication context is
encoded in the message tags. At present, we do not aggre-
gate outgoing messages, therefore, PROCESSINCOMINGDATA

checks for incoming messages and receives them one at a time.

b) MPI-3 RMA implementation: In MPI RMA, a pro-
cess needs to calculate the memory offset (also referred to as
target displacement) in the target process’s memory in order
to initiate a one-sided data transfer. Calculation of the target
displacement is nontrivial and error prone. A straightforward
way to calculate remote displacement is via a counter held by
every process in the communicating group. However, main-
taining a distributed counter requires extra communication, and
relatively expensive atomic operations.

In Fig. 1, we show an alternate way to precompute remote
data ranges for a process graph neighborhood. The amount
of data exchanged between two nodes of a process graph is
proportional to the number of ghost vertices. A prefix sum
on the number of ghosts a process is sharing with each of
its neighbor (process) allows a process to logically partition
its local outgoing buffer among target processes, to avoid
overlaps or conflicts. After performing the prefix sum over the
number of ghosts, an MPI_Neighbor_alltoall within a
process neighborhood informs a process of a unique offset
that it can use in RMA calls targeting a particular neighbor.
In addition to this scheme, each process would just need
to maintain a local counter per neighboring process. There
is also no way to determine incoming data size in MPI
RMA without an extra communication. Hence, we issue an
MPI_Neighbor_alltoall on a subset of processes, to
exchange outgoing data counts among the process neighbor-
hood. This may lead to load imbalance when the process
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neighborhood sizes are disproportionate.
For the RMA version, before the MPI window can be

accessed, we have to invoke a flush synchronization call,
to ensure completion of current outstanding one-sided data
transfers at the origin and remote side.

c) MPI-3 neighborhood collectives implemen-
tation: We use blocking neighborhood collective
operations on a distributed graph topology. Specif-
ically, we use MPI_Neighbor_alltoall and
MPI_Neighbor_alltoallv to exchange data among
neighbors. The distributed graph topology is created based
on ghost vertices that are shared between processes following
our 1D vertex-based graph distribution. Unlike MPI RMA
or Send-Recv cases, where communication is initiated
immediately, in this case, the outgoing data is stored in
a buffer for later communication. Nearest neighborhood
communication is invoked using this buffer once every
iteration. The idea is to allow data aggregation before
initiating collective communication. The outgoing data counts
are exchanged among using MPI_Neighbor_alltoall,
allowing a process to receive incoming data counts and
prepare the receive buffer. The performance of neighborhood
collectives on our distributed graph topology may be
suboptimal in certain cases, especially since we do not make
any assumptions about the underlying graph structure.

Although we discuss distributed-memory implementations
using half-approx graph matching as a case study, our MPI
communication substrate comprising of Send-Recv, RMA and
neighborhood collective routines can be applied to any graph
algorithm imitating the owner-computes model.

V. EXPERIMENTAL EVALUATION

In this section, we present results and observations from our
experimental evaluation using a set of synthetic and real-world
graphs with diverse characteristics. In the context of neighbor-
hood collective model, we study the impact of graph reordering
using the Reverse Cuthill-McKee (RCM) algorithm [6, 24]. We
also provide results from comparing the performance of our
implementations with a similar implementation of half-approx
matching named MatchBox-P [5]. MatchBox-P uses the MPI
Send-Recv model. Since this implementation has limitations
on the size and types of inputs it can process, we compare our
results with MatchBox-P only for moderate-sized inputs.

A. Notations and experimental setup
Notations. We use the following descriptors in the figures

and tables listed in this section to refer to the different variants
of our parallel algorithm presented in §IV:

• NSR: Baseline parallel version using nonblocking MPI
Send-Recv.

• RMA: Uses MPI-3 RMA, internally it also uses neighbor-
hood collectives to exchange incoming data counts among
neighbors.

• NCL: Uses blocking MPI-3 neighborhood collectives.
• MBP: Nonblocking MPI Send-Recv in MatchBox-P.

In the process graph, each process is represented by a unique
vertex or node, and an edge is added to each node that it
shares neighborhood with (see Fig. 1). If the degree of a node
is high, it participates in a lot of neighborhoods resulting in
larger volume of communication. The number of edges in the
process graph is represented by |Ep|, whereas the total number
of edges in the input graph, including the edges connected to

ghost vertices is denoted by |E′|. The average and maximum
node degrees in the process graph are represented by davg and
dmax. In this context, standard deviation applies to degrees in
the process graph (denoted by σd), and edges augmented with
ghost vertices (denoted by σ|E′|). We follow these notations
throughout the rest of the paper.

Computing platform. We used the NERSC Cori super-
computer for our experimental evaluations. NERSC Cori is a
2,388-node Cray R© XC40TMmachine with dual-socket Intel R©
XeonTME5-2698v3 (Haswell) CPUs at 2.3 GHz per node, 32
cores per node, 128 GB main memory per node, 40 MB L3
cache/socket and the Cray R© XCTMseries interconnect (Cray R©
AriesTMwith Dragonfly topology). We use cray-mpich/7.7.0 as
our MPI implementation, and Intel R© 18.0.1 compiler with
-O3 -xHost compilation option to build the codes. We
use the TAU profiling tool [30] to generate point-to-point
communication matrix plots.

Dataset. We summarize the datasets used for evaluation
in Table II. We use different types of synthetically generated
graphs: Random geometric graphs (RGGs); R-MAT graphs,
used in Graph500 BFS benchmark; and, stochastic block par-
tition graphs (based on the degree-corrected stochastic block
models). Datasets were obtained from the SuiteSparse Matrix
Collection1 and MIT Graph Challenge website2.

TABLE II: Synthetic and real-world graphs used for evaluation.

Graph category Identifier | V | | E |
Random geometric
graphs (RGG)

d=8.56E-05 536.87M 6.64B

d=6.12E-05 1.07B 13.57B
d=4.37E-05 2.14B 27.73B

Graph500 R-MAT Scale 21 2.09M 33.55M
Scale 22 4.19M 67.10M
Scale 23 8.38M 134.21M
Scale 24 16.77M 268.43M

Stochastic block
partitioned graphs

high overlap,low
block sizes (HILO)

1M 23.7M

—"— 5M 118.7M
—"— 20M 475.16M

Protein K-mer

V2a 55M 117.2M
U1a 67.7M 138.8M
P1a 139.3M 297.8M
V1r 214M 465.4M

DNA Cage15 5.15M 99.19M

CFD HV15R 2.01M 283.07M

Social networks
Orkut 3M 117.1M
Friendster 65.6M 1.8B

B. Scaling analysis and comparison with MatchBox-P
We present execution time in seconds for different inputs

in this section. Data is presented in log2 scale for both X axis
and Y axis. We present both strong scaling and weak scaling
results. We first present weak scaling performance of three
classes of synthetic graphs in Fig. 4. Our distributed-memory
implementation of random geometric graph (RGG) generator
is such that any process executing matching on the subgraphs
will communicate with at most two neighboring processes. By
restricting the neighborhood size to two, we observe 2− 3.5×
speedup on 4-16K processes for both NCL and RMA versions
relative to NSR, for multi-billion-edge RGG (Fig. 4a). In
Fig. 4b, we demonstrate the weak scaling performance of
moderate sized Graph 500 R-MAT graphs (with 33 − 268M
edges) on 512 to 4K processes. We observe about 1.2 − 3×
speedup for RMA and NCL relative to NSR.

Fig. 4c demonstrates contrasting behavior, where NSR
performs better than NCL and RMA, using a stochastic

1https://sparse.tamu.edu
2http://graphchallenge.mit.edu/data-sets
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(b) Graph500 R-MAT graphs on 512-4K pro-
cesses.
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(c) Stochastic block-partitioned graphs on 512-
2K processes.

Fig. 4: Weak scaling of NSR, RMA, and NCL on synthetic graphs.
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Fig. 5: Strong scaling results on 1K-4K processes for different instances of Protein K-mer graphs.

block partitioned graph (450M edges), comprising of clusters
of vertices and high degree of connectivity between them.
Although NCL scales with the number of processes, NSR
performs at least 1.5 − 2.7× better across 512-2K processes.
In order to gain better insight on the performance of NCL,
we present statistics on the process graph for different number
of processes with this input in Table III. Due to high degree
of connectivity between processes, NCL/RMA is not efficient
for this input (in stark contrast to RGG distribution, where the
maximum degree is bounded).
TABLE III: Neighborhood graph topology statistics for stochastic block
partitioned graph on 512-2K processes.

p | Ep | dmax davg

512 1.31E+05 511 511

1024 5.24E+05 1023 1023

2048 2.10E+06 2047 2047

We now present performance results from the execution of
real-world graphs of moderate to large sizes. For the Protein
k-mer graphs in Fig. 5, we observe that RMA performs
about 25 − 35% better than NSR and NCL. In some cases,
performance of both RMA and NCL was 2 − 3× better
than NSR. The structure of k-mer graphs consists of grids
of different sizes; when the grids are densely packed, it affects
the performance of neighborhood collectives.

Strong scaling results for the two social network graphs,
Friendster (1.8B edges) and Orkut (117M edges), are presented
in Fig. 6. We observe 2− 5× speedup for NCL and RMA on
1K and 2K processes, relative to NSR. However, for both the
inputs, scalability of NCL and RMA is adversely affected with
larger number of processes. Similar to the stochastic block-
partition graph, we observe large neighborhood for NCL, as
shown in Table IV, resulting in poor performance for NCL.
For Friendster, the number of edges connecting ghost vertices
(|E′|) increase by 4× on 4K processes, whereas for Orkut
the increase between 512 and 2048 processes is 14×. Since
we use blocking collective operations (for RMA/NCL), the
degree distribution adversely affects the performance at scale,
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(a) Execution times of Friendster on
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Fig. 6: Performance of RMA and NCL on social network graphs.

TABLE IV: Neighborhood graph topology statistics for Friendster and Orkut.

p | Ep | dmax davg σd

Friendster on 2K/4K processes

2048 2.09E+06 2047 2045 2045.29

4096 8.33E+06 4095 4069 4069.87

Orkut on 512/2K processes

512 1.30E+05 511 509 509.03

2048 1.84E+06 2047 1797 1808.03

as compared to nonblocking Send-Recv implementation. Con-
sequently, we next present reordering as a potential approach
to address this problem (§V-C).

C. Impact of graph reordering
We explore bandwidth minimization using the Reverse

Cuthill-McKee (RCM), which can be implemented in linear
time and is therefore a practical heuristic for large-scale
inputs. The reordered and original matrices that we use in our
experiments are presented in Fig. 7.

We observe counter-intuitive results with graph reordering,
due to a simple 1D vertex-based partitioning of data in our
current implementations. We observe that every process expe-
riences an increase in overall communication volume due to an
increase in the number of ghost vertices. Table V summarizes
this increase by presenting the number of edges augmented by
ghost vertices for a given number of partitions (i.e., |E′|), for
both the original and RCM-based reordered graphs. Overall,
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TABLE V: Impact of reordering depicted through the number of edges augmented with the number of ghost vertices for different partitions.

Graph |V | |E| Original RCM
|E′| |E′|max |E′|avg σ|E′| |E′| |E′|max |E′|avg σ|E′|

Cage15 (p = 256) 5.15E+06 9.92E+07 1.88E+08 1.29E+06 7.34E+05 1.64E+05 1.98E+08 8.77E+05 7.74E+05 8.64E+04

HV15R (p = 512) 2.01E+06 2.83E+08 5.62E+08 1.34E+06 1.10E+06 9.29E+04 5.66E+08 1.24E+06 1.11E+06 6.36E+04

(a) Original Cage15. (b) Reordered Cage15.

(c) Original HV15R. (d) Reordered HV15R.

Fig. 7: Rendering of the original graph and RCM reordered graph expressed
through the adjacency matrix of the respective graphs (Cage15 and HV15R).
Each non-zero entry in the matrix represents an edge between the correspond-
ing row and column (vertices).

we observe 1 − 5% increase in total and average number
of edges for reordered cases due to a balanced number of
edges per process. We observe that standard deviation (σ|E′|)
is decreased by 30 − 40% relative to the original graph
distribution. For the same datasets, we summarize the details
of process neighborhood in Table VI. We observe that the
average node degree (davg) of RCM-based reordered graphs
is about 2× that of the original graphs, and thus, increasing
the volume of communication on average. Consequently, NSR
suffers a slowdown of 1.2 − 1.7× for reordered graphs. As
illustrated in Fig. 8, NCL exhibits a speedup of 2 − 5×
compared to the baseline Send-Recv version. In Fig. 9, we
show the communication profile for the original and reordered
variants of HV15R. Although RCM reduces the bandwidth,
the irregular block structures along the diagonal can lead to
load imbalance. We also note that the two inputs chosen
for evaluation have amenable sparsity structure and do not
completely benefit from reordering. However, our goal is
to show the efficacy of reordering as a good heuristics for
challenging datasets in the context of neighborhood collectives.
TABLE VI: Neighborhood topology of original vs RCM reordered graphs.

Graphs
Original RCM

|Ep| dmax davg σd |Ep| dmax davg σd

Cage15 (p = 256) 3572 58 27.90 9.40 7423 87 57.99 23.91

HV15R (p = 512) 5100 43 19.92 7.38 14403 83 56.26 18.12

In Fig. 8, we also observe NSR performing 1.2−2× better
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Fig. 8: Comparison of original vs RCM reordering on 1K/2K processes.

(a) Total message volume—
original HV15R.

(b) Total message volume—
reordered HV15R.

Fig. 9: Communication volumes (in bytes) of original HV15R and RCM
reordered HV15R. Black spots indicate zero communication. The vertical axis
represents the sender process ids and the horizontal axis represents the receiver
process ids.

than MBP for large graphs, whereas NCL/RMA consistently
outperformed MBP by 2.5− 7×.

D. Performance summary
We hypothesized that one-sided (RMA) and neighborhood

collective (NCL) communication models are superior alter-
natives to the standard point-to-point (NSR) communication
model. But, our findings reveal the trade-offs associated with
these versions. In this section, we discuss three aspects to
summarize our work: i) Performance of the MPI implemen-
tations (Table VII and Fig. 10), ii) Power and memory usage
(Table VIII), and iii) Implementation remarks.

Performance of MPI implementations: We use a com-
bination of absolute (summarized in Table VII) and relative
(illustrated in Fig. 10) performance information to summarize
the overall performance of the three communication models
used to implement half-approximate matching. For each input,
we list the best performing variant in terms of speedup
relative to NSR using data from 512 to 16K process-runs
in Table VII. We capture the relative performance using the
performance profile shown in Fig. 10. We include data from 50
representative combinations of (input ,#processes) to build
this profile. We observe that RMA consistently outperforms
the other two, but NCL is relatively close to RMA. However,
performance of NSR is up to 6× slower than the other two,
but is competitive in about 10% of the inputs.

Power and memory usage: Using three moderate to
large inputs on 1K processes (32 nodes), we summarize energy
and memory usage in Table VIII. Information is collected
using CrayPat [8], which reports power/energy per node and
average memory consumption per process for a given system
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Fig. 10: Performance profiles for RMA, NCL and NSR using a subset of
inputs used in the experiments. The X-axis shows the factor by which a given
scheme fares relative to the best performing scheme. The Y-axis shows the
fraction of problems for which this happened. The closer a curve is aligned
to the Y-axis the superior its performance is.

TABLE VII: Versions yielding the best performance over the Send-Recv
baseline version (run on 512-16K processes) for various input graphs.

Graph category Identifier Best speedup Version

Random geometric
graphs (RGG)

d=8.56E-05 3.5× NCL
d=6.12E-05 2.56× NCL
d=4.37E-05 2× NCL

Graph500 R-MAT

Scale 21 2.32× NCL
Scale 22 3× RMA
Scale 23 3.17× RMA
Scale 24 2× NCL

Protein K-mer

V2a 1.4× RMA
U1a 2.2× RMA
P1a 2.32× RMA
V1r 3.3× RMA

DNA Cage15 6× NCL

CFD HV15R 4× NCL

Social network
Orkut 3.26× NCL
Friendster 4.45× RMA

configuration. In Table VIII, we see that the average memory
consumption for NCL is the least, about 1.03 − 2.3× less
than NSR, and about 9 − 27% less than RMA for each case.
The overall node energy consumption of NSR is about 4×
that of NCL and RMA for Friendster. The relative increase in
communication percentages of NCL and RMA relative to NSR
can be attributed to the exit criteria in the second phase of the
algorithm (as described in §IV). For NSR, a local summation
on the nghosts array is sufficient to determine the completion
of outstanding Send operations. However, for RMA and NCL,
since processes do not coordinate with each other, it may lead
to a situation where a process exits the iteration and waits
on a barrier, while another process has a dependency on the
process that exited, and is therefore stuck in an infinite loop. To
avoid such situations, we have to perform a global reduction on
the nghosts array to ascertain completion, which adds to the
additional volume in communication. Performance or energy
values cannot be taken in isolation and for identifying an
approach that provides the best tradeoffs, one needs to compute
Energy-Delay Product (EDP). While more testing is needed to
that effect, based on the results we observed in this paper, we
find that NCL appears to provide a reasonable tradeoff between
power/energy and memory usage.

Implementation remarks: Based on our experience in
building distributed-memory half-approx matching (which is
representative of a broader class of iterative graph algorithms),
we posit that the RMA version provides reasonable benefit
in terms of memory usage, power/energy consumption and

TABLE VIII: Power/energy and memory usage on 1K processes.

Ver. Mem.
(MB/proc.)

Node
eng. (kJ)

Node
pwr. (kW)

Comp.
%

MPI
% EDP

Friendster (1.8B edges)
NSR 977.7 2868.04 10.7 61.6 38.4 8.29E+08

RMA 577.4 793.27 9.78 21.4 78.6 1.35E+08

NCL 419.3 740.13 9.65 20.8 79.1 1.27E+08

Stochastic block-partitioned graph (475.1M edges)
NSR 154.8 485.80 8.18 57.5 42.5 2.88E+07

RMA 196.3 690.41 9.09 7.2 92.8 5.24E+07

NCL 149 593.90 8.82 7.2 92.7 4.00E+07

HV15R (283.07M edges)
NSR 210.2 154.98 5.95 13.5 86.4 4.04E+06

RMA 116.8 163.97 6.32 4.6 95.3 4.25E+06

NCL 106.9 140.85 6.07 3.2 96.7 3.27E+06

overall scalability. While it is possible to make the Send-Recv
version optimal, handling message aggregation in irregular
applications is challenging. On the other hand, neighborhood
collective performance is sensitive to the graph structure,
and mitigating such issues requires careful graph partitioning
(§V-C), which in itself is NP-hard. However, due to the
ubiquity of RDMA interconnects, it is possible that RMA is
better optimized than neighborhood collectives over the graph
topology on current Cray systems.

Our distributed-memory half-approx matching code is
available for download under the BSD 3-clause license from:
https://github.com/Exa-Graph/mel.

VI. RELATED WORK

Lumsdaine et al. [25] provide excellent overview of the
challenges in implementing graph algorithms on HPC plat-
forms. Gregor and Lumsdaine provide an overview of their
experiences with the Parallel Boost Graph Library in [14].
Buluç and Gilbert provide an alternative means to implement
graph algorithms using linear algebra kernels in [4].

Thorsen et al. propose a partitioned global address space
(PGAS) implementation of maximum weight matching in
[31]. We discussed a set of closely related work on half-
approximate matching in §IV.

Besta et al. provides extensive analysis on the role of
communication direction (push or pull) in graph analytics,
and uses MPI RMA in implementing push or pull vari-
ants of graph algorithms [2]. Our distributed-memory half-
approximate matching is based on the push model.

Kandalla et al. study the impact of nonblocking neighbor-
hood collectives on a two-level breadth-first search (BFS) algo-
rithm [22]. Communication patterns for the matching algorithm
are not comparable with the communication patterns for BFS.
Since the authors experiment only with synthetic graphs fea-
turing small-world properties (average shortest path lengths are
small), BFS converges in a few iterations and communication
properties are conducive for collective operations. However,
matching displays dynamic and unpredictable communication
behavior compared to BFS, as shown in Fig. 11.

Dang et al. provide a lightweight communication runtime
for supporting distributed-memory thread-based graph algo-
rithms in Galois graph analytics system [7, 28]. They use MPI
RMA (not passive target synchronization like us, but active
target synchronization, which is more restrictive) and Send-
Recv (particularly MPI_Iprobe, that we use as well), but
not neighborhood collectives, in their communication runtime.

VII. CONCLUSIONS

We investigated the performance implications of design-
ing a prototypical graph algorithm, half-approx matching,
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(a) Matching. (b) Graph500 BFS.

Fig. 11: Communication volumes (in terms of bytes exchanged) of baseline
implementation of half-approximate matching and Graph500 BFS, using R-
MAT graph of 134.2M edges on 1024 processes.

with MPI-3 RMA and neighborhood collective models and
compared them with a baseline Send-Recv implementation.
We demonstrated speedups of 1.4− 6× (using up to 16K
processes) for the RMA and neighborhood collective imple-
mentations relative to the baseline version, using a variety of
synthetic and real-world graphs.

We explored the concept of graph reordering by reducing
bandwidth using the Reverse Cuthill-McKee algorithm. We
demonstrated the impact of reordering on communication
patterns and volume, especially for the neighborhood collective
model. Although we did not observe expected benefits in our
limited experiments, we believe that careful distribution of
reordered graphs can lead to significant performance benefits,
which we plan to explore in the near future.

We believe that the insight presented in this work will ben-
efit other researchers in exploring the novel MPI-3 features for
irregular applications such as graph algorithms, especially on
the impending exascale architectures with massive concurrency
coupled with restricted memory and power footprints.
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