
PaKman: Scalable Assembly of Large Genomes on
Distributed Memory Machines

Priyanka Ghosh∗, Sriram Krishnamoorthy†, Ananth Kalyanaraman∗
∗ Washington State University, {priyanka.ghosh, ananth}@wsu.edu

† Pacific Northwest National Laboratory, sriram@pnnl.gov

Abstract—De novo genome assembly is a fundamental problem
in the field of bioinformatics, that aims to assemble the DNA
sequence of an unknown genome from numerous short DNA
fragments (aka reads) obtained from it. With the advent of high-
throughput sequencing technologies, billions of reads can be gen-
erated in a matter of hours, necessitating efficient parallelization
of the assembly process. While multiple parallel solutions have
been proposed in the past, conducting a large-scale assembly
at scale remains a challenging problem because of the inherent
complexities associated with data movement, and irregular access
footprints of memory and I/O operations. In this paper, we
present a novel algorithm, called PaKman, to address the problem
of performing large-scale genome assemblies on a distributed
memory parallel computer. Our approach focuses on improving
performance through a combination of novel data structures
and algorithmic strategies for reducing the communication and
I/O footprint during the assembly process. PaKman presents a
solution for the two most time-consuming phases in the full
genome assembly pipeline, namely, k-mer counting and contig
generation. A key aspect of our algorithm is its graph data struc-
ture, which comprises fat nodes (or what we call “macro-nodes”)
that reduce the communication burden during contig generation.
We present an extensive performance and qualitative evaluation
of our algorithm, including comparisons to other state-of-the-art
parallel assemblers. Our results demonstrate the ability to achieve
near-linear speedups on up to 8K cores (tested); outperform
state-of-the-art distributed memory and shared memory tools in
performance while delivering comparable (if not better) quality;
and reduce time to solution significantly. For instance, PaKman
is able to generate a high-quality set of assembled contigs for
complex genomes such as the human and wheat genomes in a
matter of minutes on 8K cores.

I. INTRODUCTION

De novo genome assembly is a fundamental problem in
computational biology. The goal is to assemble the DNA
sequence of an unknown (target) genome using the short frag-
ments (called “reads”) obtained from it through sequencing
technologies. The output is a set of “contigs” that represent
contiguous portions of the target genome. Once assembled,
the contigs are scaffolded, which is a step of ordering and
orienting the contigs while accounting for potential gaps
between successive contigs.

The genome assembly problem has been a topic of interest
for well over three decades now, and yet the need for new
scalable approaches has never been more critical than it is
today. The factor driving this need is the continuously evolving
landscape in DNA sequencing technology. With the advent
of numerous high-throughput sequencing technologies, it has
now become possible (even routine) to sequence a genome
by running multiple clonal copies of the target genome (i.e.,
with coverage C ∈ [10, 100]), through a wetlab sequencing

machine; and generating billions of reads (or hundreds of
gigabytes to terabytes of raw data)—–all in a matter of hours.
For instance, a widely used technology such as Illumina is
capable of generating short reads (∼100 bases in length each)
with an impressively low error rate (under 1%). There is also
a new wave of “long read” technologies that are emerging in
the community; however their error rates are still too high for
wider adoption.

In this paper, we address the problem of generating a set
of assembled contigs using short reads sequenced from an
unknown target genome. (We do not consider the subsequent
contig scaffolding step in this work.) There is a plethora of
short read assemblers that have been developed for well over
a decade (e.g., [1], [2], [3], [4], [5]). A large fraction of these
assemblers use the de Bruijn graph, a graph data structure
built out of fixed length substrings (of length k) contained
in the reads, called k-mers, as their building blocks (vertices).
Edges are established between vertices of any two consecutive
k-mers in a read (overlapping in k − 1 positions). In con-
trast to older approaches, de Bruijn graph based approaches
have demonstrated greater time-efficiency and high fidelity in
genome reconstruction.

Despite their advantages, an efficient parallel implemen-
tation of a de Bruijn graph-based method on distributed
memory platforms has proven to be challenging for various
reasons. The input read set required to construct a de Bruijn
graph is typically stored in the file system. In addition, many
algorithms use the file system as additional space for in-
termediate memory-intensive algorithm phases. This, coupled
with complicated I/O patterns, can potentially lead to an I/O
bottleneck during the graph construction phase.

Secondly, to prune erroneous paths or prepare the output,
a parallel implementation that uses a de Bruijn graph should
be able to manipulate the graph in distributed memory post-
construction. This is complicated by the inherently unstruc-
tured nature of the graph (as compared to, say, a dense matrix),
leading to communication imbalance issues that necessitate
specialized optimization strategies.

Finally, generating the output contigs involves performing
numerous “walks” along the graph and enumerating the base
pairs along the path as a contig. This creates multiple chal-
lenges under a distributed memory representation of the graph,
requiring frequent coordination. For instance, one needs to
ensure the same path is not repeatedly traversed by multiple
processes to avoid over-representing a path in the contigs.
This requires coordination (e.g., atomic operations) that could
hamper parallel performance.

578

2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/19/$31.00 ©2019 IEEE
DOI 10.1109/IPDPS.2019.00067

Fig. 1: Schematic illustration of the PaKman assembly framework. Dotted arcs: edges in our PaK-Graph (shown only for
illustration and not stored in our actual implementation); blue dotted arcs: edges internal to a process; and red dotted arcs cross
process boundaries. Solid arcs: walks performed to generate contigs in parallel with replicated copies of the final compacted
PaK-Graph as shown. Ĝp: portion of PaK-Graph at process p, Ĝ: the global copy.

Contributions: In this paper, we present the PaKman al-
gorithm that addresses the above challenges. PaKman com-
bines MPI I/O, MPI collectives, and a novel graph data
structure (which we name PaK-Graph) to simplify I/O and
communication patterns, and eliminate the need for expensive
distributed-memory coordination during the walk phase. We
evaluate PaKman on both shared and distributed memory
platforms, demonstrating near-linear scaling behavior, and
observe speedups between 1.5× and 3.2× over a state-of-the-
art distributed memory assembler, and between 2.8× and 9.3×
over state-of-the-art shared memory assemblers—all while
producing comparable quality in output. To summarize, the
key contributions are:

• A novel distributed memory data structure that enables
contig enumeration with minimal coordination;

• A novel contig generation algorithm with simplified I/O
and communication patterns; and

• Demonstration on shared and distributed memory sys-
tems.

II. OVERVIEW OF APPROACH

Fig. 1 summarizes the major steps of the proposed PaKman
framework. Our approach to efficient and scalable genome
assembly involves the following key optimizations:

Contiguous single-pass I/O: Each MPI process reads a
distinct contiguous portion of the input file in parallel with
other processes. After the input is processed in one pass
through the file, no further I/O is performed. This minimal
I/O requirement, coupled with the simple I/O pattern, makes
it easy to efficiently utilize optimized I/O subsystems (parallel
file systems, striping optimizations, burst buffers, etc.).

Parallel load-balanced counting of k-mers: The input
reads are processed to generate a stream of k-mers and the
global count for each k-mer is computed. PaKman employs
a scalable load-balanced algorithm to construct the k-mer
histogram using only three types of MPI collective calls:
MPI_Allreduce, MPI_Alltoall, and MPI_Alltoallv.

Novel data representation and iterative compaction: PaK-
Graph: While input data and the de Bruijn graph might
be space intensive, we observe that the final output of the

algorithm is only of the order of Megabytes (or a few Giga-
bytes), depending on the species. This motivated the design
of a compact representation of graph representing the k-mer
connectivity. Rather than construct a conventional de Bruijn
graph, we construct a new type of graph (which we call PaK-
Graph; defined in Section III-B), which provides a way to
arrive at a compact representation of the k-mers. This graph
captures the k-mers and their connectivity in a lossless fashion.
While the savings are not significant initially, we iteratively
compact the graph further to dramatically reduce its size
while preserving the total information. We demonstrate this
compaction procedure can be performed efficiently in parallel.

PaK-Graph replication and parallel deterministic walks:
We compact the graph until it fits well within the memory
available in each node of a distributed memory machine.
We observe that the cost of compaction quickly decreases
as the data structure shrinks in size, making subsequent
compaction operations inexpensive. We exploit this property
to sufficiently compact the graph to enable low-cost replication
on all compute nodes of the parallel system. Once replicated,
each MPI process picks a distinct set of starting points and
performs disjoint walks to generate the contigs without any
further communication or coordination. We achieve this using
a deterministic algorithm to “wire” the paths through each
vertex in a PaK-Graph to enable non-redundant walks without
further coordination. This approach reduces the often compli-
cated implementation of the walk phase into an embarrasingly
parallel procedure (starting from each candidate k-mer) that
incurs negligible time.

PaKman leverages algorithmic improvements to enable sim-
plified communication and I/O strategies. Going further, the
entire algorithm and its implementation rely only on a small
number of MPI I/O and MPI collective operations, greatly
simplifying performance portable implementations on new
systems. The algorithm is efficient enough to outperform many
shared-memory-specific de Bruijn graph based methods on
shared memory platforms.

In the rest of the paper, we describe the design and imple-
mentation of each aforementioned step in detail.

579

III. METHODS

A. Notation and Terminology

Let r denote a read of an arbitrary length (denoted by |r|)
over the DNA alphabet A = {a, c, g, t}. For ease of exposition,
we index the characters in a read from 1. Let r(i, j) denote
the substring of length j starting at index i in r, such that
i + j − 1 ≤ |r|. We denote the input set of n reads as R=
{r1, r2, . . . rn}, and their total length as N (=

∑
i |ri|). We

use · operator to denote string concatenation.
A k-mer in a read r is a substring of length k in r, for a

given k > 0; similarly, a (k-1)-mer is a substring of length
k-1. We use the term l-mer to denote a substring of length l
that is significantly shorter than k—e.g., a typical value of k
is between 32 and 48, whereas l is between 6 and 10.

B. PaK-Graph: An Enhanced String Graph

In this section we introduce a new graph data structure
called PaK-Graph, that we will use in our parallel algorithm
(Section III-C). Given an input read set R, and positive integer
constants k and l such that l < k, we define a directed graph
Ĝ(V,E) where V is the set of all “macro-nodes” and E is

the set of all edges. We call each vertex in Ĝ a “macro-node”
because of its augmented node structure as defined below.

Macro-node: Each macro-node in Ĝ (as shown in Fig. 2a)
is defined by a distinct (k-1)-mer present in R. A macro-node
u ∈ V has the following node structure:

• label(u) is the (k-1)-mer corresponding to u.
• prefix extensions(u) is a set of arbitrarily long strings,

each representing a candidate prefix extension of the (k-
1)-mer (for an output contig).

• suffix extensions(u) is a set of arbitrarily long strings,
each representing a candidate suffix extension of the (k-
1)-mer (for an output contig).

An extension with an empty string is called a terminal
(prefix or suffix) extension.

Edges in Ĝ: Edges in Ĝ are defined between a suffix
extension of one macro-node and a prefix extension of another.
Specifically, there exists a directed edge e from a suffix
extension x of a macro-node u to a prefix extension y of
another macro-node v if and only if label(u) ·x = y · label(v).
Note that this implies there can be no more than one edge
incident on each extension.

Fig. 2a represents a single macro-node identified by a (k-
1)-mer. Fig. 2b presents two macro-nodes GCA and CAT
connected by an edge such that, GCA · T = G · CAT . Fig.
2c presents an example of a PaK-Graph for a given input of
two reads for k=3. The empty extenstions (shown in red) for
the macro-nodes AG, TG, TA, and TT indicate there exists a
terminal prefix extension for nodes AG and TG and a terminal
suffix extension for the nodes TA and TT.

Initially, there exists one macro-node for every (k-1)-mer
in R. As for edges, for each k-mer k1 = a1a2 . . . ak in R,
an edge is introduced in Ĝ from the suffix extension with
string ak of the macro-node for a1a2 . . . ak−1 to the prefix
extension with string a1 of the macro-node for a2a3 . . . ak.
In this initial state, the PaK-Graph is equivalent to the de
Bruijn graph constructed forR. However, unlike the traditional

de Bruijn graph, each macro-node through its extensions can
encode an arbitrarily long path along the de Bruijn graph in
a compressed manner. For this reason, our PaK-Graph can
be viewed as an enhanced version of the string graph data
structure originally introduced by Myers [6].

In the implementation, we only store the set of macro-nodes
in Ĝ . Edges are not explicitly stored because the suffix/prefix
from the extension and the (k-1)-mer can be used to uniquely
determine neighboring macro-nodes. Sections III-C3–III-C5
further detail the implementation of Ĝ.

C. PaKman: Parallel Genome Assembly Algorithm

In this section, we describe PaKman, our parallel algorithm
for genome assembly. The input is a set of n reads R (made
available as a single multi-sequence FASTA format file) and
positive integer parameters k and l (l < k). The output is a
set of contigs representing contiguous portions of the target
genome. The number of processes is denoted by psize.

The algorithm consists of multiple steps as described below.

1) Input Reading: The input is loaded from the in-
put file in a distributed manner such that each process
receives roughly the same amount of sequence data (≈
N

psize per process). This is achieved by each process per-
forming a MPI_File_get_size and subsequently load-
ing its unique chunk of reads using MPI-IO functions
(MPI_File_read_at_all), such that no read is split among
processes. Henceforth, we useRp to denote the read set loaded
at process p (i.e., Rp⊆R).

2) k-mer Counting: The goal of this stage is to generate
and compute the frequency of all k-mers from R. A well-
known approach is to generate all k-mers by simply sliding
a window of length k over each read and aggregating counts
in a lookup table with 4k buckets (one for each possible k-
mer over the DNA alphabet) [7]. However, the large size of
k (≥ 32) makes this simple approach prohibitive in space.
Therefore, we use an alternative approach based on minimizers
[8]. The idea is to use a smaller window length l (< k; e.g.,
l = 8) to partition k-mers into buckets, prior to obtaining the
global count for each k-mer from each bucket. For parallel
processing, each min-lmer bucket is assigned a distinct owner
process. There are several ways to implement this minimizer
approach using techniques from MinHashing based principles
[9]. In our implementation, we assign a k-mer to the bucket
corresponding to a least frequent l-mer occurring within that k-
mer (i.e., making it the k-mer’s choice of its min-lmer). This
way, we can expect (though not guarantee) that consecutive
k-mers from the same overlapping region across reads are
expected to be assigned to the same destination process bucket,
which helps reduce communication later.

Algorithm 1 outlines our k-mer counting procedure. In the
first step, each process generates all l-mers from its reads
in Rp and obtains a global count for each l-mer using an
MPI_Allreduce call. The next step implements the minimizer
approach described above. This step involves redistributing the
k-mers generated at various processes to their respective min-
lmer buckets using MPI_Alltoallv. In our implementation,
we perform this task using multiple rounds of communication

580

(a) macro-node structure (b) An edge in Ĝ (c) The PaK-Graph for input reads {AGCACTT, TGCACTA} for k=3.

Fig. 2: Macro-node structure and illustration

to scale up to large input sizes (we use a batch size of a 100
million k-mers in all our experiments).

Algorithm 1: k-mer counting

Input: Input set of reads for each process: Rp, number of processes:
psize, batch size: b

Output: A set of distinct k-mers and their corresponding counts.
Initialize lmer frequency buffer of size 4l

for each r ∈ Rp do
for each l-mer i ∈ r do

Increment lmer frequency [i] /*Update l-mer frequency*/

MPI_Allreduce to compute the global counts for all l-mers
Initialize buffer kmers per proc of size psize
num kmers ← 0
for each read r ∈ Rp do

min lmer ← 0; min lmer count ←∞
for each k-mer k ∈ r do

for each l-mer i ∈ k do
if lmer frequency [i] < min lmer count then

min lmer ← i
min lmer count ← lmer frequency [i]

target id ← retrieve the process id based of min-lmer
Insert k in kmers per proc[target id]
num kmers ← num kmers + 1

if num kmers > b then
Update kmer list by transferring k-mers using
MPI_Alltoallv

return kmer list

At the end of this step, all processes have a set of distinct
k-mers and their respective global counts. Then, we perform a
simple threshold-based pruning: we remove k-mers that have
a count below a certain threshold τ . Such k-mers are deemed
“poor quality” from the assembly perspective. We determine
τ by plotting a k-mer frequency histogram for a fixed number
of top buckets (say h)—obtaining the global counts using an
MPI_Allreduce—and setting τ to the minimum over those
h bucket counts. Parameter h is tunable and is set to 20 in our
experiments.

3) PaK-Graph Construction: k-mer Distribution: We now
describe the distributed construction of the initial PaK-Graph,
involving just a single MPI_Alltoallv communication. At
the end of this step, each process p will hold a distinct portion
Ĝp of the initial Ĝ.

Prior to constructing the PaK-Graph , we need to redistribute
the k-mers because we need each k-mer in two places—one
corresponding to the macro-node of its prefix (k-1)-mer and
another to the suffix (k-1)-mer (as shown in Fig. 2). (If both
(k-1)-mers are identical, then the k-mer is needed only in
one place.) We identify the process id that will act as the
destination for each macro-node using a linear congruential

Algorithm 2: Construct a PaK-Graph of macro-nodes

Input: Input set of tuples (k-mer, k-mer count): Kp at process p,
Alphabet A, Coverage C

Output: The local Ĝp at process p
for each x ∈ Kp do

for each (k-1)-mer x′ ∈ x do
if p is the destination for x′ and x′ /∈ Ĝp then

Create macro-node u with label x′
for each c ∈ A do

/* Detect edges: prefix extensions */
if (c · x′) ∈ Kp then

Append c to u.prefixes
Set vc← ceil(kmer count(c · x′)/C)
Set u.prefix counts ←
{kmer count(c · x′), vc}

Set u.prefix terminal ← false

/* Detect edges: suffix extensions of
the form x′ · c; Details omitted due to
similar logic as above. */

. . .

/* set the internal wiring from prefix to
suffix extensions for node u */

wire info = setup wiring (u)
Append wire info to u.wire info
Add u to Ĝ

return Ĝ

hash function for the macro-node’s corresponding (k-1)-mer;
Subsequently, using an MPI_Alltoallv call, the set of k-
mers are redistributed among the process space such that all
k-mers corresponding a given macro-node are collected on a
single process. At this point, each process p has a list of tuples
Kp = {kmer, count} that will serve as the input to generate

its Ĝp.

4) PaK-Graph Construction: Macro-nodes: Algorithm 2
shows the steps to build Ĝ on each process p using Kp. We
make a couple of key observations here. First, a process p
constructs a macro-node only if its k-mer falls in its domain
(using the hash function). Second, as noted in Section III-B,
the edges of Ĝ are not explicitly stored; instead, the extensions
on either side of a macro-node are sufficient to capture all
the information pertaining to its edges. However, how do
we know if a particular extension exists or not (without
communicating)? To answer this question, consider a valid
prefix extension c · x′, where c ∈ A and x′ is the (k-1)-mer
corresponding to the macro-node under construction. Then,
c · x′ must be a k-mer that is also represented in Kp (as a
result of the initial MPI_Alltoallv). This is the advantage of
initially communicating k-mers to construct the local macro-
nodes. In other words, the algorithm becomes communication-
free at this step because all necessary information for macro-

581

node construction is available from Kp.

There are two other steps in Algorithm 2 that need further
elaboration. First, along with each extension, a list of pairs
of the form 〈kmer count, visit count〉 is stored; where the
visit count represents the number of times that extension can
be allowed to be traversed while taking part in contig enumer-
ation (explained later). It is initialized to
kmer count/C�,
where C is the sequencing coverage. At this time, we also
determine whether a particular extension is terminal or not.

5) PaK-Graph Construction: Wiring: Next, we compute a
“wiring table” that holds the mapping from each prefix exten-
sion of the macro-node to a corresponding suffix extension.
We explain the main idea of the wiring algorithm using the
simple example in Fig. 3, which shows a macro-node for the
(k-1)-mer ACCT (k = 5).

Initially, this macro-node contains two prefix and four suffix
extensions (nonterminal), corresponding to a group of six k-
mers. We first calculate the sum of all the prefix (pc) and suffix
(sc) visit counts. If the suffix (prefix) total count exceeds
the prefix (suffix) total count, we introduce a new terminal
extension on the prefix (suffix) side (shown in red), with the
tuple 〈1, |sc − pc|〉 as shown. Subsequently, we construct a
wiring table that connects each prefix extension to one or
more suffix extensions (i.e., a fan-out). Note that multiple
prefix extensions may also connect to one suffix extension
(i.e., a fan-in). These wiring decisions are made based on the
visit counts using a greedy heuristic. For instance, the prefix
extension corresponding to T that has the maximum visit count
(8) is considered first. This extension greedily selects the top
available suffix extensions whose total visit counts become
greater or equal to its own visit count—effectively selecting
the suffixes C and A as shown. Ties are broken arbitrarily
(albeit deterministically). This procedure is repeated until all
extensions have been exhaustively wired.

Establishing a deterministic wiring strategy as described
above helps us ensure that during traversal of the macro-
nodes (in the contig generation phase), each walk is carried out
in a coordination-free/disjoint manner—–instilling maximum
concurrency in the process (Section III-C9).

This simple greedy strategy in wiring is also motivated
by its impact on the quality of the output contig. Intuitively
the (initial) visit count of an extension represents the num-
ber of distinct locations that particular k-mer (obtained by
concatenating that extension with the (k-1)-mer) is expected
to be present along the genome. Consequently, k-mers that
are adjacent to this k-mer can also be expected (but not
guaranteed) to occur with approximately the same frequency
(e.g., if a k-mer ACCAG is present 10 times, then k-mers
that represent one character extensions such as CCAGT or
TACCA (if they exist) can also be expected to occur with
similar frequency (without guarantee)). This is the intuitive
reason behind the greedy strategy in wiring. We note here that
our wiring strategy is amenable for extension to incorporate
other qualitative information such as paired-end reads. If such
information is made available, it could potentially have a larger
positive impact on assembly quality. This is part of our future
work.

Fig. 3: macro-node wiring illustration for (k-1)-mer ACCT.
The pair <kmer count, visit count> labels each extension.
The red prefix extension denotes a terminal prefix.

Fig. 4: Illustration of iterative compaction of a five-macro-node
PaK-Graph to a two-macro-node one in three iterations.

6) Contig Generation: Generate Independent Set: Using
the initial Ĝ, we initiate an iterative process of compacting
the PaK-Graph until the total number of macro-nodes across
all processes reduces to the extent that the entire graph will
fit in the memory of each compute node. In our experiments,
we set this threshold ψ to 100K macro-nodes.

Algorithm 3 describes the major steps of the iterative
process. The main idea of the algorithm is to identify nu-
merous macro-nodes for removal, remove them in a way
that their information is captured in the macro-nodes that
survive, and iterate with the compacted graph. In the interest
of space, we omit the detailed algorithmic pseudocodes for
the individual functions (Generate independent set and
serialize and transfer); instead we summarize the main
ideas in text alongside an illustration (Fig. 4).

We formulate the problem of identifying macro-nodes to
be removed as one of identifying an independent set I of
macro-nodes in Ĝ. An independent set is a set of vertices in
which no two are adjacent to one another. To identify an I
corresponding to a Ĝ, we use a simple distributed scheme in
which each macro-node selects itself as part of the output set if
and only if it contains the lexicographically largest (k-1)-mer
among all its immediate neighbors. We devised this simple
scheme because it enables each macro-node to make a strictly
local decision without having to communicate with any of
its neighbors. Surprisingly, we found this simple scheme also
yields significant compaction. Specifically, in our experiments,
we found the reduction in the number of macro-nodes be-
tween successive iterations ranged from ∼25−28%, over the
first few iterations. Such a sustained reduction would imply
a O(log(m/ψ)) number of iterations required to converge,

where m is the number of macro-nodes in the initial Ĝ.

582

Algorithm 3: Iterative algorithm to compact a PaK-Graph

Input: PaK-Graph Ĝp , node threshold: ψ
Output: Compacted graph
Initialize independent set (array) I ← ∅
num macro nodes ← len(Ĝp)
while num macro nodes > ψ do

I ← Generate independent set(Ĝp)
/* For every node u ∈ I, pass u.pred_ext to u’s

successor and u.succ_ext to u’s predecessor, and
then delete u. iterate_and_pack_Mnode returns the
list of neighboring macro-nodes to be modified */

transfer nodeInfo ← iterate and pack Mnode(I,Ĝp)
new size ← len(Ĝp)− len(I)
Resize Ĝp to new size after deleting all u ∈ I /* Inform all

macro-nodes that are neighbors of deleted nodes
in I so that they can update their extensions.
This is achieved using an MPI_Alltoallv. */

rewire nodes list ←
serialize and transfer(transfer nodeInfo, Ĝ)

Iterate through the list of modified macro-nodes and re-wire them

populate begin kmer list ← list of starting points for the walks
global Ĝ← MPI Allgatherv(Ĝ)
return (global Ĝ, pcontig list , begin kmer list)

Intuitively, the motivation behind iterative compaction is
to compress the graph to a state where the graph can be
replicated in the local memory of each compute node and the
contig enumeration step can be embarrassingly parallelized.
The idea of detecting and using an independent set of macro-
nodes to compact the graph at every step ensures that this
compaction is achieved in a lossless manner. This is because
no two macro-nodes to be removed at an iteration can be
adjacent in an independent set, and a macro-node that survives
this removal process carries forward the sequence information
preserved in the corresponding extensions of the adjacent
removed macro-nodes—as illustrated by the example in Fig. 4.
This property holds true even in the more complex cases
wherein a macro-node to be retained has multiple predecessor
and successor macro-nodes (with one or more being part
of the independent set); in such a case, our wiring scheme
guarantees a deterministic pairing of all the added extensions
at the surviving node, thereby resulting in no loss of data
(proof omitted owing to space constraints). In terms of space
complexity, with each compaction step, the removal of macro-
nodes generates significant savings in practice, not only owing
to the space constant (i.e., overhead) associated with each
macro-node, but also by eliminating the redundancy that exists
in the representation of k-mers among adjacent nodes in a
PaK-Graph (i.e., the (k-1)-mer label and implicit edges).

7) Contig Generation: Iterate and Pack nodes: In this
step, the impact of removing the macro-nodes that are part of
the independent set at each iteration is communicated to the
surviving macro-nodes, so that they can update their structure
(described in Section III-C8). In the first iteration of the
example in Fig. 4, once the macro-node corresponding to label
GCGA is removed, its two corresponding wired prefix-suffix
extension pair, namely the macro-nodes for AGCG and CGAT,
need to be informed. If any of these macro-nodes are remote,
then the information about this deleted macro-node needs to be
communicated. The iterate and pack function prepares the data
to be communicated and the next step (serialize and transfer)

performs the communication and macro-node update.
8) Contig Generation: (de)Serialize and Transfer: In this

step for iterative graph compaction, an MPI_Alltoallv com-
munication call relays all removed macro-node information to
the impacted processes. Subsequently, macro-node information
at the impacted processes is updated based on the macro-
nodes removed from Ĝ. Consider again the example in Fig. 4.
After removal of the macro-node GCGA in iteration 1, the
neighboring macro-nodes now become immediate predecessor
and successor (akin to the removal of a node in a linked
list). Note that such new predecessor-successor relationship
is established only between pairs of prefix-suffix extensions
that have an entry in the wiring table of the macro-node
being removed. As a result of this repacking, the suffix and
prefix extensions of the two macro-nodes (AGCG and CGAT,
respectively) should be extended as shown to include the
values from removed macro-node. Note that if both a prefix
and suffix extension wired pair for the removed macro-node
happen to be terminals, then we construct and output the
corresponding contig.

It is to be noted that the sizes of the macro-nodes in the
buffer transfer nodeInfo do not stay constant, owing to the
varying lengths of the tuple entries that get communicated.
In fact, the extensions tend to grow in size as the number
of iterations grows. As a result, we need to serialize the
contents of the transfer nodeInfo buffer to convert it to
a byte stream. We utilize cereal [10], a lightweight C++11
serialization library. We create a custom MPI derived datatype
to encapsulate the serialized data in the send buffer for
MPI_Alltoallv. Once the call completes, we deserialize the
receive buffer to obtain the list of tuples, which contain the
macro-nodes to be updated in Ĝ. Lastly, we add the updated
macro-nodes to a buffer (rewire list); this is to initiate the
rewiring of all modified macro-nodes.

9) Contig Generation: Gather and Walk: As described in
Algorithm 3, at the end of the iterative phase, we are left with
a total number of macro-nodes <ψ across all processes. At this
stage, each process prepares a list of distinct starting points
for initiating a walk in the compacted PaK-Graph. Entries
in the begin kmer list are identified as the (k-1)-mer of
macro-nodes with a terminal prefix (and visit count> 0).
Given that the graph has been sufficiently compacted (such
that it can fit the memory of a single node), we initiate a
call to MPI_Allgatherv to collate and gather all remaining
macro nodes from all the processes. Thus each process now
effectively receives a copy of compacted Ĝ, i.e., global Ĝ.

The final phase of the contig generation algorithm involves
the traversal (or walk) across the nodes in global Ĝ. As
described in Algorithm 4, we begin enumerating a contig for
each entry in begin kmer list. Each MPI process initializes a
contig and appends to it the terminal prefix extension followed
by the macro-node, (k-1)-mer, and then initiates a walk,
wherein it looks up its corresponding suffix extension in the
wiring table and appends it to the contig. If the suffix extension
is not terminal, the process continues the walk in a recursive
fashion until a terminal suffix is encountered, at which time the
walk is completed and the contig is returned as output. In the
interest of space, we omit a detailed algorithmic pseudocode

583

Fig. 5: Walk algorithm illustration

Algorithm 4: Walk algorithm to generate final contigs

Input: global Ĝ: compacted PaK-Graph, begin kmer list
Output: Final set of contigs
for each entry b ∈ begin kmer list do

mn← find b in global Ĝ
for each extension i ∈ len(mn.Prefixes) do

if i is terminal then
prefix id ← i
freq ← mn.prefix counts[i]
Initialize contig c
Append mn.prefixes[i] to c
Append Mn.k 1 mer to c
/* A walk in global_Ĝ terminates when a

suffix terminal is encountered. The final
contig is returned by the output function
within the call to walk */

walk(c,freq,0,mn,prefix id)

for the walk function.
We illustrate the walking algorithm in Fig. 5, wherein

we depict the contigs enumerated across three macro-nodes.
The numbers on each wire represent the visit count for
the corresponding prefix/suffix extensions and the tuple (in
brackets) indicates the: {offset in suffix, count} on the wire.
The walking algorithm ensures that at no point during the
walk, will the same sub-range in a wire be walked more than
once. As seen in the case of contigs 1 and 2, the edge GCATT
connecting the first and second node is traversed as part of both
contigs. However, since they traverse separate ranges within
the wire, both walks are disjoint and can occur concurrently.

Lastly, we summarize the properties of the walking algo-
rithm: a) Any walk will start at a terminal prefix and end at a
terminal suffix; b) Every walk will terminate, and two walk’s
starting from two different terminal prefixes will be guaranteed
to be disjoint; c) There might be instances where a walk may
traverse the same node multiple times owing to presence of
repeat regions; and d) The algorithm does not guarantee that
all repeat regions will be reachable from a terminal prefix, and
thus covered as part of the contigs.

D. Limitations of the PaKman algorithm

In this section, we discuss some of the implications of our
algorithmic choices and point to avenues for further research:

• The performance of the input reading phase depends
largely on the I/O subsystem. We have studied the impact
of I/O related parameters across multiple filesystems and
have presented our analysis in section IV-B.

• Our current implementation of k-mer counting does not
account for overlapping communication and computation,

TABLE I: Input datasets used in our experiments. bp refers to
base pair.

Organism Genome Coverage No. of reads Read File size
size (bp) length (GB)

C.elegans 100,286,401 100x 100,286,100 100 11
human chr 2+3 441,221,803 100x 432,999,339 100 58
full human 3,095,677,412 100x 2,861,320,858 100 383
bread wheat 9,134,017,866 90x 6,778,801,997 100 949

and yet performs significantly better than the state-of-
the-art. Once integrated, we hope to further improve the
scalability of this phase.

• Our wiring algorithm relies on a greedy heuristic that
takes the visit count of a k-mer into account while
determining neighbors. As a result, we have observed
instances wherein a false connection may lead to a
mismatch, thereby, contributing to unaligned regions in
the contigs. The quality of the wiring decisions made
can be potentially improved with the incorporation of
auxiliary information (such as paired-end) as available.

IV. EXPERIMENTAL EVALUATION

We evaluated PaKman using the datasets shown in Table I.
All read datasets contain single-end reads generated from
the real genome sequences, using the ART Illumina read
simulator [11]. This approach is consistent with practice,
as the simulators record the originating location for each
read which can be later used as groundtruth for validation.
The full human reference genome was obtained from the
2009 assembly (hg19, GRCh37 (GCA 000001405.1)). The
bread wheat dataset (Triticum aestivum) corresponds to the
GCA 900000045.1 Synthetic W7984 assembly and was ob-
tained from NCBI (www.ncbi.nlm.nih.gov). For the purpose
of extensive performance and qualitative evaluation, we used
C. elegans, human chr 2+3, and full human data sets. The
results of evaluating PaKman on the bread wheat genome are
included in the Appendix.
We used k=32 and l=8 for generating all PaKman results.

Our distributed memory experiments were conducted on the
NERSC Cori machine (Cray XC40), where each node has
128GB DDR4 memory and is equipped with dual 16-core 2.3
GHz Intel Haswell processors. The nodes are interconnected
with the Cray Aries network using a Dragonfly topology. Cori
supports different file systems including: a) Lustre file system
(with 30 PB of disk and > 700 GB/second I/O bandwidth),
b) Burst Buffer, and c) GPFS. While we primarily focus our
comparative evaluation on the Lustre file system, we detail
PaKman’s I/O behavior on all three file systems. Our shared
memory experiments were conducted on Keeran, a single-node
machine with 750GB memory and dual 20-core 2.20 GHz Intel
Xeon(R) CPU E5-2698 processors.

A. Comparative Evaluation

1) Evaluation on Distributed Memory System: We com-
pared the performance of PaKman with the latest version
of HipMer (v0.9.6.3.1), a state-of-the-art distributed memory
genome assembly tool [12], [13]. We used the installation
by the authors on the NERSC Cori system. Parameters for
HipMer were left as default, with k=31. For HipMer we

584

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200
 1300
 1400
 1500
 1600

32 64 128 256 512

T
im

e
in

 s
ec

on
ds

Number of cores

PaKman

HipMer

(a) Strong scaling results for C.elegans.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

160 256 512 1024 2048

T
im

e
in

 s
ec

on
ds

Number of cores

PaKman

HipMer

(b) Strong scaling for human chr 2+3.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200
 1300
 1400
 1500

1024 2048 4096 8192

T
im

e
in

 s
ec

on
ds

Number of cores

PaKman

HipMer

(c) Strong scaling results for full human genome.

Fig. 6: Strong scaling results for PaKman vs. HipMer

 0

 10

 20

 30

 40

 50

 60

 70

 80

8 16 32 40

T
im

e
in

 m
in

s

Number of cores

PaKman

IDBA-UD

FastEtch

Fig. 7: Single node shared memory scaling results for
C.elegans across multiple assemblers

combine the execution times obtained from their log files
corresponding to the tags ‘ufx-31’ and ‘meraculous-31’ and
report that as the total time. Results were obtained with
ppn=16 for both assemblers. Table IV shows Lustre striping
details.

Fig. 6 presents strong scaling results for both assemblers
for all three datasets. The plots show that both tools exhibit
almost linear speedup under strong scaling. However, PaKman
is considerably faster than HipMer on all inputs and processor
sizes tested—by at least a factor of 2.2× (full human; no.
cores=8K) and at most a factor of 3.2× (C. elegans; no.
cores=32). Using PaKman, we are able to assemble a complete
set of contigs for the full human genome in 78.4 seconds on
8K cores.

2) Evaluation on Shared Memory System: Even though
PaKman is designed for distributed memory machines, it can
also be used on shared memory systems that support MPI.
Consequently, we also performed a head-to-head comparison
of PaKman running p MPI processes versus the shared mem-
ory tools running p threads on the same machine (Keeran). We
compared against two state-of-the-art shared memory tools,
namely IDBA-UD [1] and FastEtch [14].

Fig. 7 presents the results of the comparison for the
C.elegans dataset. As can be seen, PaKman is the only
tool to show near-linear scaling, while the remaining tools
hardly show any improvement with number of cores. More
importantly, for all core counts tested, we observe that PaKman
is considerably faster than the other two tools; for instance,
PaKman is faster than the second fastest tool which is IDBA-
UD, by at least 2.8× (8 cores) and at most 9.3× (40 cores).

These improvements are significant as these were observed
despite the overheads associated with MPI.

3) Quality Evaluation: We compared the output quality
of the assemblies produced by the various tools we tested.
For this purpose, we compare the output contigs generated
against the groundtruth (known genome from which reads
were generated). The QUAST [15] tool was used for this
comparison. The quality metrics reported are as follows: total
number of contigs and the largest contig length; N50 contig
length (larger the better); % of genome covered (larger the
better); and largest alignment length (larger the better).

Table II summarizes our qualitative evaluation. As can be
observed, PaKman generally outperforms or performs com-
parably to the second best tool by almost all metrics. We
note here that, to enable a comparison, we did not test inputs
with that paired-end read information, where an estimate
of genomic distance is provided between pairs of reads (at
input) alongside sequence information. This is because our
tool does not yet include this feature; whereas tools such as
HipMer and IDBA-UD do. We expect that with paired-end
information these quality comparison results could change.
Yet, without paired-end information, we observed PaKman to
be competitive. It is also to be noted that HipMer proceeds
more conservatively during contig generation and is known to
produce longer contigs at the end of the scaffolding step.

B. PaKman: Detailed Performance Evaluation
To better understand the behavior of each phase we further

break down the execution time. Fig. 8 presents the strong
scaling results of PaKman broken down by its phases. The
input reading step is I/O bound, dominated by calls to MPI-
IO. For this step, while an improvement in time can be
seen with increase in the number of cores, speedup is hardly
linear. However, the runtime contribution to the total time is
negligible (<1%). On the other hand, kmer counting is the
most expensive step and that step scales linearly with the
number of cores. The contig generation step, which includes
most of the communication-intensive steps such as iterative
graph compaction, also shows near linear speedup although
for larger core sizes the speedup marginally deteriorates (as
can be expected).

Fig. 9 shows PaKman’s runtime broken down by computa-
tion, communication, and I/O. We observe that our algorithm
scales efficiently and is noticeably compute bound, with the
contribution from communication remaining under 20% even
for large core counts. This makes the algorithm well-suited for

585

 4

 8

 16

 32

 64

 128

 256

 512

32 64 128 256 512

T
im

e
in

 s
ec

on
ds

Number of cores

Input Reading
k-mer counting

Contig Generation
Total runtime

Ideal total runtime

(a) Strong scaling results for C.elegans.

 4

 8

 16

 32

 64

 128

 256

 512

256 512 1024 2048

T
im

e
in

 s
ec

on
ds

Number of cores

Input Reading
k-mer counting

Contig Generation
Total runtime

Ideal total runtime

(b) Strong scaling for human chr 2+3.

 8

 16

 32

 64

 128

 256

 512

1024 2048 4096 8192

T
im

e
in

 s
ec

on
ds

Number of cores

Input Reading
k-mer counting

Contig Generation
Total runtime

Ideal total runtime

(c) Strong scaling results for full human genome.

Fig. 8: Strong scaling results for PaKman across multiple datasets. Total runtime corresponds to sum of all the phases.

 8

 16

 32

 64

 128

 256

 512

1024 2048 4096 8192

T
im

e
in

 s
ec

on
ds

Number of cores

input-output time
communication time

computation time
combined time

ideal time

Fig. 9: PaKman breakup of total time spent in I/O,
communication and computation for full human
genome

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

I/O-tim
e

com
m

-tim
e

com
p-tim

e

I/O-tim
e

com
m

-tim
e

com
p-tim

e

I/O-tim
e

com
m

-tim
e

com
p-tim

e

I/O-tim
e

com
m

-tim
e

com
p-tim

e

T
im

e
in

 s
ec

on
ds

Number of Cores

Input Reading
k-mer Counting

Contig generation

8192409620481024

Fig. 10: PaKman computation(comp) vs. com-
munication(comm) time for various stages for full
human genome

 0

 20

 40

 60

 80

 100

 120

 140

 160

1024
2048

4096
8192

T
im

e
in

 s
ec

on
ds

Number of cores

Burst Buffer

LUSTRE

GPFS

Fig. 11: I/O scaling of the Input Reading phase of
PaKman for the full human dataset across various
file systems.

TABLE II: Quality statistics across assemblers. ‘-’ denotes a failed run (due to tool errors or exceeding memory capacity).

Assembler C.elegans human chr 2+3 full human

#contigs N50 % genome Largest Largest #contigs N50 % genome Largest Largest #contigs N50 % genome Largest Largest
coverage alignment contig len coverage alignment contig len coverage alignment contig len

PaKman 54,880 7,193 91.3 108,546 132,632 285,565 3,450 77.88 31,165 33,816 1,402,958 3,128 66.13 36,848 41,156
HipMer 29,832 6,148 84.5 108,537 108,537 - - - - - 649,423 2,837 55.66 33,414 33,414
IDBA-UD 33,563 6,102 86.2 108,539 108,539 200,798 2,782 78.76 31,158 31,158 - - - - -
FastEtch 68,037 4,781 87.9 90,726 107,480 394,941 2,160 77.78 29,241 74,688 - - - - -

TABLE III: List of all MPI calls and their respective counts in
each PaKman phase. Term ‘b’ in k-mer Counting phase de-
notes the number of batch rounds of communication; term ‘i’
in Contig Generation phase denotes the number of iterations
of the (de) serialize and transfer phase in a given run.

PaKman Phase MPI directive #calls

Input reading

MPI File open 1
MPI File get size 1
MPI File read at all 1
MPI File close 1

k-mer counting
MPI Allreduce 2
MPI Alltoall b*1
MPI Alltoallv b*2

Contig generation:
MN-node construction

MPI Alltoall 1
MPI Alltoallv 1
MPI Allreduce 1

Contig generation:
(de)serialize and transfer

MPI Allreduce i*1
MPI Alltoall i*2
MPI Alltoallv i*1

Contig generation: final
gather

MPI Allgather 2
MPI Allgatherv 1

massively parallel systems that offer greater support for com-
pute operations than communication bandwidth. The current
implementation used blocking collectives. With non-blocking
collectives, there is the potential for further improvements.

Fig. 10 captures the computation vs. communication break-

 0

 20

 40

 60

 80

 100

 120

 140

 160

1024 2048 4096 8192

T
im

e
in

 s
ec

on
ds

Number of cores

Macro node construction

Initial setup wiring

Generate Independent set

Iterate and pack nodes

(de)serialize and transfer

Gather and Walk

Fig. 12: PaKman performance breakup of the several stages
in the contig generation step for the full human genome.

down for the individual steps of PaKman. As can be expected,
the contig generation step uses most of the communication
time.

We note here that our algorithm uses only five distinct col-
lectives (excluding the calls to MPI-IO), as shown in Table III.
This is a useful property to have in MPI implementations,
greatly simplifying performance portable installations on new
parallel systems.

As for the I/O time, Fig. 11 shows I/O scaling of the

586

TABLE IV: PaKman runtime statistics. Lustre parameters: sc
denotes stripe count, ss denotes stripe size; cb denotes the
number of MPI aggregators (cb nodes).

PaKman C.elegans
(p=512)

chr 2+3
(p=2048)

full human
(p=8192)

distinct k-mers 1,585,416,564 6,619,495,237 42,182,152,288
#total Macro nodes 188,188,574 793,197,434 4,987,035,369
#total MPI calls 155 1367 2847
Total time (secs) 34.87 39.88 78.42
Lustre I/O parameters sc=25, ss=4M,

cb=16
sc=50, ss=8M,
cb=64

sc=50, ss=8M,
cb=256

input reading step, for different file system configurations
(Burst Buffer, Lustre, and GPFS). In the case of Burst Buffers
(BB), we need to scale up the number of BB nodes with
compute nodes, to keep the BB nodes busy but not over-
subscribed. The performance was comparable to our Lustre
runs. However, we needed to tune the BB settings for each
run. While GPFS served well for the smaller datasets, for the
full human genome, it did not scale beyond 2048 processes.

Table IV shows the Lustre settings used for our PaKman
runs. We observed that, unlike HipMer, the total time for PaK-
man responded to changes made to the striping configuration;
this configuration can be varied and tested quickly for im-
proving PaKman’s performance. Furthermore, we observe that
Lustre I/O times (for the settings presented) remain constant
for a given dataset across all our experiments. Table IV also
lists various other statistics for PaKman. We observed that the
number of macro-nodes in the initial PaK-Graph is roughly
an order of magnitude smaller than the number of distinct k-
mers. This result shows the initial degree of compression that
PaKman achieves (even before graph compaction) compared
to standard de Bruijn graph implementations.

Because a significant fraction of contig generation phase is
spent in communication, we take a deeper look at the per-
formance breakdown of the individual steps within the phase.
Shown in Fig. 12, the steps Initial setup wiring and Generate
Independent set scale linearly and are almost negligible on
8K cores run. In spite of being communication-intensive, the
Iterate and pack nodes step also scales linearly. Scalability
is limited for the (de)serialize and transfer, as it is highly
communication-bound during iterative graph compaction. The
amount of communication involved in Macro node construc-
tion and Gather and Walk is minimal and does not impact the
overall performance.

Fig. 13 shows the performance breakdown of first 40 (out of
708) iterations on the iterative phase of the contig generation
step on 1K cores for the full human genome. We observe a
superlinear decrease in total time, which plateaus after the first
20 iterations for both plots. Fig. 13a also shows the number
of macro-nodes and the independent set size, at each iteration.
We observe that the fraction of macro-nodes included in the
independent set size at each iteration shrinks gradually from
28% to 13% at the end of 40 iterations, to eventually 7% in the
final iteration. Fig. 13b shows that the contributions to runtime
vastly diminish after the first 10-12 iterations.

C. Parametric evaluation

We evaluated the effect of varying two input-based
parameters—viz., coverage and read length—on the perfor-

mance of PaKman. Table V presents the statistics across all
four full human datasets, wherein we compare the baseline
dataset with three datasets of the same genome with varying
read length and coverage.

As seen in Table V, increasing the coverage or the read
length causes an increase in total runtime. Specifically, an
increase in coverage contributes to a larger number of reads,
which subsequently increases the work during the k-mer
counting phase. We notice a similar effect for increasing the
read length, wherein despite the presence of fewer reads, more
work is needed to parse each read given its longer length, to
generate the k-mers.

While these results are to be expected, we also observed
that despite the increase in number of distinct k-mers, the
number of macro-nodes resulting from our threshold-based
pruning step (post-k-mer counting) remains relatively uniform
across the different input settings. This is a desirable property
owing to two reasons: a) Not increasing the number of macro-
nodes implies negligible impact on the contig generation
time as seen in Fig. 14a; b) Secondly, note that the macro-
nodes capture the key information encoded within the input
reads that contribute toward the output contigs; therefore these
results show the ability of our pruning step to capture that
information in a stable manner even as the input read length or
coverage changes. Eventually, after contig generation, we see
the positive impact of increasing coverage and read length on
the output quality metrics (N50, coverage). We also note that
the quality improvement is better with increased read length
than with increased coverage. This is to be expected as longer
reads (with a lower error rate) are a more valuable source of
information than increased coverage (which simply increases
the redundancy in information beyond a certain value).

The effects of these two parameters on HipMer’s perfor-
mance were similar to that of PaKman as shown in the Fig.
14b. In terms of quality, HipMer presented a marginal increase
in N50 (from 2837 to 2843) with the increase in read length.

V. RELATED WORK

De novo genome assembly is a widely researched topic
with a number of assembly tools and algorithms developed
over the last two decades. Therefore in this section, we focus
primarily on parallel short-read assemblers. Short read assem-
blers correspond to that subset which target reads generated
from NGS technologies (e.g., Illumina, 454 pyrosequencing,
SOLiD). Most modern day short read assemblers have widely
adopted the de Bruijn Graph-based (DBG) method of as-
sembly, originally introduced by Pevzner et al. [16]. Popular
shared memory DBG based assemblers include (but not lim-
ited to): Velvet [2], ALLPATHS-LG [17], and SOAP-denovo
[3], all of which utilize OpenMP/Pthreads for parallelization.
More recent implementations of the method include IDBA-
UD [1], an iterative DBG assembler that generates assemblies
by sequentially iterating from small to large k-values used
in graph construction. Although OpenMP parallelized (for a
single k), this method can be time intensive since graphs
for multiple k values proceed sequentially. SPAdes [5] has
support for multithreading and produces assemblies of high
quality owing to its detailed error correction step. However, it

587

216

218

220

222

224

226

228

230

232

234

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

N
um

be
r

of
 n

od
es

iteration number

total macro-nodes

Independent set size

(a) Macro-node count and independent set size. y-axis is in log scale.

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

T
im

e
in

 s
ec

on
ds

iteration number

Generate Independent set

Iterate and pack nodes

(de) serialize and transfer

(b) Execution time of the three phases across iterations

Fig. 13: PaKman behavior of the first 40 iterations in iterative phase of contig generation for full human genome (p=1024).

TABLE V: PaKman performance evaluation across four full human datasets with varying parameters on 2048 processes.

read len=100, cov=100x read len=100, cov=120x read len=150, cov=100x read len=250, cov=100x

baseline dataset human cov120 human rl150 human rl250

File size (GB) 383 460 344 313
#reads: 2,861,320,858 3,433,578,880 1,907,540,469 1,144,527,774
#distinct k-mers: 42,182,152,288 49,242,849,348 16,394,494,176 30,368,099,909
#macro nodes: 4,987,035,369 4,985,198,573 4,976,415,942 4,977,761,715
#iterations in compaction 728 700 733 803
Total time in secs 255.03 346.73 317.12 333.8

N50 (bp) 3128 3177 3409 3431
% genome coverage 66.13 66.25 69.20 69.75

 0

 50

 100

 150

 200

 250

 300

 350

 400

rl=100,cov=100x

rl=100,cov=120x

rl=150,cov=100x

rl=250,cov=100x

T
im

e
in

 s
ec

on
ds

Input Reading
k-mer Counting

Contig Generation

(a) PaKman performance breakdown of different phases for each dataset.

 200

 300

 400

 500

 600

 700

 800

 900

 1000

rl=100,cov=100x

rl=100,cov=120x

rl=150,cov=100x

rl=250,cov=100x

T
im

e
in

 s
ec

on
ds

PaKman

HipMer

(b) Performance comparison of PaKman with HipMer.

Fig. 14: PaKman Performance across all four full human datasets with varying parameters for p=2048. rl corresponds to read
length and cov corresponds to coverage.

is costly with respect to the amount of time and memory it
consumes. We were unable to run SPAdes for our medium to
large datasets owing to its significant memory footprint.

Notable examples of distributed memory DBG based assem-
blers include Ray [18], PASHA [19] and YAGA [20]. Ray and
YAGA have shown to be scalable except for the I/O that proves
to be a bottleneck when reading and writing to files. ABySS
[4] is a full end-to-end assembler and is one the first to be
parallelized using MPI and was the first software to assemble
a human genome from short reads. However their input reading
step presents a bottleneck to the overall performance. ABySS
2.0 [21] departs from using MPI and instead employs Bloom
filters to represent a de Bruijn graph and reduce memory
requirements. HipMer [13], [12] as discussed in the previous
section, also uses Bloom filters to generate its version of the de
Bruijn graph. In our evaluation, we observed HipMer to scale

well for all sizes of input data at high core counts. SWAP [22]
and SWAP-2 [23] are also among the newer set of assemblers
that have been MPI parallelized for executing at large scale
for large genomes. Although the assembly output from SWAP-
2 was high in quality, we observed it failed to execute on
NERSC Cori beyond small to medium sized datasets.

VI. CONCLUSION AND FUTURE WORK

We introduced PaKman, a new algorithm for efficient scal-
ing of two crucial phases of the genome assembly pipeline.
We presented a new data structure—PaK-Graph—for contig
generation with simplified communication requirements. Our
method demonstrated a speedup of over 2× on average in
comparison with state-of-the-art distributed and shared mem-
ory implementations, respectively.

Our goals for future work include: a) Incorporation of paired
end information toward improving quality: although not trivial

588

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

4096 8192

T
im

e
in

 s
ec

on
ds

Number of cores

Input Reading

k-mer Counting

Contig Generation

(a) PaKman performance by phases for the bread wheat genome.

 0

 100

 200

 300

 400

 500

 600

 700

 800

4096 8192

T
im

e
in

 s
ec

on
ds

Number of cores

PaKman

HipMer

(b) Performance of PaKman and HipMer for the bread wheat genome.

Fig. 15: Performance evaluation for the bread wheat genome.

the wiring function has the capacity to be extended for this
purpose. But a space-efficient representation will be needed
to make it work as the graph compacts. b) Provide an end-to-
end solution, by incorporating the scaffolding phase to fully
complete the assembly pipeline. c) Extension to scenarios
where reads are of variable lengths (possibly even long reads).
d) Extension to use heterogeneous architectures.

VII. ACKNOWLEDGMENTS

This research used resources of the NERSC Office of
Science User Facility supported by U.S. DOE under Contract
No. DE-AC02-05CH11231. This work was supported in part
by U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research under award number
63823. Pacific Northwest National Laboratory is operated by
Battelle for DOE under Contract DE-AC05-76RL01830.

REFERENCES

[1] Y. Peng, H. C. Leung, S.-M. Yiu, and F. Y. Chin, “Idba-ud: a de novo
assembler for single-cell and metagenomic sequencing data with highly
uneven depth,” Bioinformatics, vol. 28, no. 11, pp. 1420–1428, 2012.

[2] D. Zerbino and E. Birney, “Velvet: algorithms for de novo short read
assembly using de bruijn graphs,” Genome research, pp. gr–074 492,
2008.

[3] R. Li, H. Zhu, J. Ruan, W. Qian, X. Fang, Z. Shi, Y. Li, S. Li, G. Shan,
K. Kristiansen et al., “De novo assembly of human genomes with
massively parallel short read sequencing,” Genome research, vol. 20,
no. 2, pp. 265–272, 2010.

[4] J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. Jones, and
I. Birol, “Abyss: a parallel assembler for short read sequence data,”
Genome research, pp. gr–089 532, 2009.

[5] A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin et al.,
“SPAdes: a new genome assembly algorithm and its applications to
single-cell sequencing,” J. Comp. Bio., vol. 19, no. 5, pp. 455–477,
2012.

[6] E. W. Myers, “The fragment assembly string graph,” Bioinformatics,
vol. 21, no. suppl 2, pp. ii79–ii85, 2005.

[7] A. Kalyanaraman, S. J. Emrich, P. S. Schnable, and S. Aluru, “Assem-
bling genomes on large-scale parallel computers,” in IPDPS, 2006, pp.
10–pp.

[8] R. Chikhi, A. Limasset, S. Jackman, J. T. Simpson, and P. Medvedev,
“On the representation of de bruijn graphs,” in International conference
on Research in computational molecular biology, 2014, pp. 35–55.

[9] E. Cohen, “Min-hash sketches,” Encyclopedia of Algorithms, pp. 1–7,
2008.

[10] W. S. Grant and R. Voorhies, “cereal–a c++ 11 library for serialization,”
URL https://github. com/USCiLab/cereal, 2013.

[11] W. Huang, L. Li, J. R. Myers, and G. T. Marth, “Art: a next-generation
sequencing read simulator,” Bioinformatics, vol. 28, no. 4, pp. 593–594,
2011.

[12] E. Georganas, A. Buluç, J. Chapman, L. Oliker, D. Rokhsar, and
K. Yelick, “Parallel de bruijn graph construction and traversal for de
novo genome assembly,” in SC, 2014, pp. 437–448.

[13] E. Georganas, A. Buluç, J. Chapman, S. Hofmeyr, C. Aluru, R. Egan,
L. Oliker, D. Rokhsar, and K. Yelick, “Hipmer: an extreme-scale de
novo genome assembler,” in SC, 2015, p. 14.

[14] P. Ghosh and A. Kalyanaraman, “Fastetch: A fast sketch-based assem-
bler for genomes,” IEEE/ACM TCBB, 2017.

[15] A. Gurevich, V. Saveliev, N. Vyahhi, and G. Tesler, “Quast: quality
assessment tool for genome assemblies,” Bioinformatics, vol. 29, no. 8,
pp. 1072–1075, 2013.

[16] P. A. Pevzner, H. Tang, and M. S. Waterman, “An eulerian path approach
to dna fragment assembly,” PNAS, vol. 98, no. 17, pp. 9748–9753, 2001.

[17] S. Gnerre, I. MacCallum, D. Przybylski, F. J. Ribeiro, J. N. Burton,
B. J. Walker, T. Sharpe, G. Hall, T. P. Shea, S. Sykes et al., “High-
quality draft assemblies of mammalian genomes from massively parallel
sequence data,” PNAS, vol. 108, no. 4, pp. 1513–1518, 2011.

[18] S. Boisvert, F. Laviolette, and J. Corbeil, “Ray: simultaneous assembly
of reads from a mix of high-throughput sequencing technologies,”
Journal of computational biology, vol. 17, no. 11, pp. 1519–1533, 2010.

[19] Y. Liu, B. Schmidt, and D. L. Maskell, “Parallelized short read assembly
of large genomes using de bruijn graphs,” BMC bioinformatics, vol. 12,
no. 1, p. 354, 2011.

[20] B. G. Jackson, M. Regennitter, X. Yang, P. S. Schnable, and S. Aluru,
“Parallel de novo assembly of large genomes from high-throughput short
reads,” in IPDPS, 2010, pp. 1–10.

[21] S. D. Jackman, B. P. Vandervalk, H. Mohamadi, J. Chu, S. Yeo et al.,
“Abyss 2.0: resource-efficient assembly of large genomes using a bloom
filter,” Genome research, pp. gr–214 346, 2017.

[22] J. Meng, B. Wang, Y. Wei, S. Feng, and P. Balaji, “Swap-assembler:
scalable and efficient genome assembly towards thousands of cores,” in
BMC bioinformatics, vol. 15, no. 9. BioMed Central, 2014, p. S2.

[23] J. Meng, S. Seo, P. Balaji, Y. Wei, B. Wang, and S. Feng, “Swap-
assembler 2: Optimization of de novo genome assembler at extreme
scale,” in ICPP. IEEE, 2016, pp. 195–204.

APPENDIX A
PaKman PERFORMANCE EVALUATION FOR PLANT GENOME

We also conducted experiments on a larger more complex
genome namely the bread wheat genome, characterized as
highly repetitive and much larger in size (more than three
times the size of the full human genome). The bread wheat
genome utilized in our experiments spans 9.1Gbp (over 56%)
of the 16Gbp genome of hexaploid wheat, Triticum aestivum.

Fig. 15 presents strong scaling scaling results for both
PaKman and HipMer for the bread wheat dataset. Fig. 15a
presents the breakdown in time for all the distinct phases
of PaKman. Fig. 15b shows the total runtime wherein we
observe that both tools exhibit almost linear speedup. PaKman
completes execution of the bread wheat dataset in 226 seconds
on 8K cores and is reported as 1.5x faster than HipMer.

589

