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ABSTRACT

Because of cost, non-volatile memory NVDIMMs such as Intel

Optane are attractive in single-node big-memory systems. We eval-

uate performance and cost trade-offs when using Optane as volatile

memory for huge-graph analytics. We study two scalable graph

applications with different work locality, access patterns, and paral-

lelism. We evaluate single and partitioned address spaces—Memory

and AppDirect modes—and compare with distributed executions

on GPU-accelerated and CPU-based supercomputers.

We show that AppDirect can perform and scale better thanMem-

ory for the largest working sets (12%), even when dominated by

irregular access patterns, if most accesses are NUMA-local and Op-

tane accesses are frequently reads. Surprisingly, between Memory

and AppDirect, processor-cache performance can change due to

line invalidations; updates to the caching policy (via non-temporal

hints) can make a 25% improvement. We observe that single-node

graph analytics frequently has >4–10× cost/performance advan-

tages over distributed-memory executions on supercomputers.

CCS CONCEPTS

• Hardware → Non-volatile memory; • Computing method-

ologies → Parallel algorithms; • Theory of computation →

Graph algorithms analysis; • General and reference → Per-

formance.
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1 INTRODUCTION

Graph analytics, using graph algorithms for exploration and dis-

covery, is a rapidly emerging area of data science that has been

especially enabled by the availability of massive data. Implement-

ing graph algorithms on distributed-memory platforms is challeng-

ing; and their execution is parallel-inefficient due to computation-

communication imbalances [28]. Shared-memory systems are a

popular alternative, but may not hold graphs with billions to tril-

lions of vertices (entities) and edges (relationships).

An emerging memory option for shared-memory systems is

non-volatile memory (NVDIMMs or PMM for persistent memory

module or persistent memory), now widely available as Intel Op-

tane. Optane is about half the cost of DRAM [30] and enables large,

shared, and byte-addressable memory on single-node systems. Typ-

ical Optane-based systems provide 25% more memory for 20–30%

cost reduction (cf. Table 5). For example, an Intel Cascade Lake

CPU with 6 memory channels (2 DIMMs/channel) supports 1.5 TB

DRAM (256 GB DDR4) and 3 TB of PMM (512 GB NVDIMM). An 8-

socket system supports up to 24 TB Optane PMM; such systems are

now available on Amazon AWS for large in-memory databases. The

recent Cooper Lake CPUs support Optane 200, which advertises

25% more memory bandwidth than Optane 100 modules [16, 17].

Systems with PMM form a relatively new offering for “big mem-

ory” workloads: single-node systems with coherent shared-memory

spaces, formed from multiple-memory domains as well as multiple

memory types (DRAM and PMM). Although providing the benefit

of larger memory capacity, these systems bring a host of challenges

ranging from a variety of memory configurations, programming

options, and performance differences from DRAM (e.g., asymmetric

latency, longer latency, reduced bandwidth, and reduced scaling).

This paper evaluates the suitability of huge-graph analytics on

single-node systems with PMM as a volatile pool. There are two

principal ways to configure PMMs. In Memory mode, DRAM acts

as a direct mapped cache for the entire persistent memory space:

total volatile capacity is the size of PMM. In AppDirect mode,

DRAM and PMM are separate: total volatile capacity is the sum.

Prior work using AppDirect mode views PMM as a persistent

pool, accessed through a filesystem. The filesystem is used even

when using a PMMmemory allocator such as memkind [43]. We use

Linux’s emerging support for accessing PMM through the virtual

memory system via special NUMA nodes. With either AppDirect

interface, the address space is partitioned, forming a heterogeneous
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Figure 1: Performance of community detection (Grappolo) and influence maximization (Ripples), at different thread counts,

for combinations of application variants (cf. §4.3.2 and §4.3.3) and Optanememorymodes. Combinations along horizontal axis

formed from application name (prefix of g or r), memory mode—DRAM (dram), Memory (mem), and AppDirect (kdax)—and

variant (integer suffix). Performance is relative to leftmost combination, i.e., base DRAM variant (gdram or rdram) or Memory

variant (gmem or rmem); values below 1.0 indicate a speedup. AppDirect variants can perform better than Memory: gkdax >

gmem always (except clueweb12 at 64 threads); gkdax2 > gmem2 for uk2014; rkdax{2|3} > rmem for slash, twitter, and talk (≤

64 threads). AppDirect and Memory variants can match base DRAM variant: gkdax for friendster and moliere2016; gmem2

for moliere2016; rmem for slash, talk, topcats at 192 threads; rkdax{2|3} for slash, twitter, and talk (≤ 64 threads).

memory system with separate address spaces. The programmer must

then decide where to allocate each data structure and (with PMM)

how it is distributed across NUMA domains.

Evaluations on several workloads have shown that Memory

mode has about 10% overhead compared to workloads running

exclusively on DRAM [13, 40, 51]. Non-graph workloads in App-

Direct usually experience a slowdown of 1.5-2× or more [40, 51].

An open question is whether graph applications can exploit App-

Direct, enabling maximum memory capacity while achieving bet-

ter performance. This is challenging due to Optane’s longermemory

latencies, especially for writes. To exploit AppDirect, the program-

mer must understand application and Optane characteristics.

We explore how graph applications with large working sets but

different work locality, access patterns, and parallelism can exploit

Optane memory. We study two large-scale graph applications—

community detection (Grappolo) [27] and influence maximization

(Ripples) [32]—as exemplars of two broader classes of irregular

graph applications; namely, iterative graph methods and stochastic

diffusion-based graph methods. Both Grappolo and Ripples have

parallel implementations for both shared-memory (OpenMP) and

distributed-memory (MPI+OpenMP); and both are dominated by

irregular memory accesses. However, there are four key differ-

ences between these applications—working set, partitioning, access

patterns, and synchronization—that are representative of many

important graph analytic workloads.

(1) Grappolo’s working set is dominated by the input graph

whereas Ripples’ is dominated by a Monte Carlo (MC)-based

‘big-data’ analysis, with numerous small data structures per

MC sample on the input graph.

(2) Grappolo’s careful partitioning of graph and work distributes

tasks such that they have relatively good NUMA locality.

In contrast, Ripples’ probabilistic graph traversals result in

many unpredictable accesses with poor NUMA locality, even

if it does have many irregular accesses to local structures.

(3) Grappolo’s accesses are quite irregular within a task but

those to the large graph are fairly regular (and mostly reads).

In contrast, both of Ripples’ graph and local accesses are

irregular.

(4) Finally, Grappolo’s iterative algorithm depends on global

knowledge and therefore requires atomic and all-to-all syn-

chronization. In contrast, Ripples’ MC tasks are compara-

tively asynchronous and can therefore exploit accelerators

and scale well on distributed resources.

This combination of shared and unique traits make these two ap-

plications ideal for evaluating the efficacy and associated trade-offs

of Optane memory for graph analytic workloads.

Our work makes the following contributions.

• We evaluate the suitability of huge-graph analytics—not graph

kernels—on single-node systems, comparewith distributed execu-

tions from CPU-only and GPU-accelerated clusters, and estimate

cost/performance. We use large working sets (up to 2.3 TB) on a

single system (6 TB Optane + 768 DRAM). Figure 1 summarizes

our single-node results.

• We show that AppDirect can perform and scale better thanMem-

ory (12% for huge graphs), even when dominated by irregular

access patterns, as long as most accesses are NUMA-local and Op-

tane accesses are frequently reads. Moreover, careful AppDirect

and Memory implementations can match DRAM-only.
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• Surprisingly, between Memory and AppDirect, processor-cache

performance can improve due to fewer line invalidations. Up-

dates to the caching policy (via non-temporal hints) can make

a substantial improvement (25%) and remove Memory’s perfor-

mance penalty.

• We demonstrate a performance and programming advantage for

AppDirect’s new virtual memory interface and NUMA controls.

We explain performance through carefully crafted metrics.

• We show frequent price/performance benefits (usually >4–10×)

for shared-memory analytics over corresponding executions on

GPU-accelerated and CPU-based supercomputers.

This paper is organized as follows. We provide an overview of

Optane memory and execution modes (§2). We then discuss our

selected graph applications and their characteristics (§3). Our exper-

imental evaluation (§4) discusses microbenchmark results, single-

node performance, comparisons with distributed performance, and

overall price/performance. Finally, we consider related work (§5)

and provide conclusions (§6).

2 INTEL OPTANE PERSISTENT MEMORY

Optane memory modules (PMMs) can be configured into different

operating modes that determine the available address space for

applications and the overall functionality. There are three Optane

memory modes: Memory, AppDirect and Mixed. Figure 2 shows

how the three modes differ in how DRAM caches PMM, using the

most common provisioning of a socket’s DIMM slots with DDR

and PMM modules. Table 1 lists the possible Optane configurations

from an application view. Mixed mode is now deprecated.

Figure 2: Optane modes: Memory, AppDirect and Mixed.

Configuration Address space Description

dram: AppDirect

DRAM
DRAM

DRAM is main memory with

normal malloc interface.

mem: Memory PMM
PMM is main memory; DRAM

is direct-mapped L4 cache

fsdax: AppDirect

FS-DAX
DRAM, PMM

DRAM as usual; PMM via

file system (classic block device)

kdax: AppDirect

KMEM-DAX
DRAM, PMM

Linux >v5.1; PMM via virtual

memory (hotplug character device)

Mixed

(deprecated)
x , (PMM − x )

x PMM in Memory mode;

remaining PMM in AppDirect

Table 1: Possible Optane configurations.

2.1 Memory mode

Memory mode replaces the DRAM volatile capacity with the persis-

tent memory capacity. In this mode, DRAM acts as a direct-mapped

write-back cache to the PMM modules connected to the same in-

tegrated memory controller (iMC) on a CPU socket; there are two

iMC’s per socket. Because of this restriction, DRAM cannot cache

accesses to PMM on other sockets. If the memory controller is un-

able to detect the requested data block in the DRAM cache, it brings

the data into the DRAM cache from the PMM in specific block

sizes (4096 bytes in our case). Thus, a cache hit in the DRAM cache

is equivalent to DRAM latency (tens of nanoseconds), whereas a

cache miss incurs PMM latency to fetch the requested blocks into

the DRAM (hundreds of nanoseconds).

Memory mode is arguably the most productive mode in the

context of application development, as it requires no updates to

the application code, and is ideal for applications that exhibit high

reuse in cache. Persistence is not enabled in this mode, which is

only possible through AppDirect mode.

2.2 AppDirect mode

Traditionally, persistent memory systems are accessed using the

filesystem like standard block devices. File I/O over disk or flash

storage requires maintaining page cache on DRAM, which is re-

dundant for byte-addressable block devices, as reads/writes can be

performed directly without any intermediate buffering.

An Optane NVDIMM region is a physical address range that is

striped across one or more namespace devices. Namespaces are a

Linux kernel feature that can partition the system resources (for

e.g., DIMMs) among processes such that different sets of processes

have their own view of the resources [42]. Hence, it is possible to

provision one or more namespaces from an NVDIMM region. The

AppDirect mode enables the creation of a Direct-Access (DAX)

namespace as a volatile memory address space which enables direct

access to a DAX character device file (as opposed to a block device)

that can send and receive bytes. Two relevant options are:

• FS-DAX is the classic AppDirectmode that enables direct access

to persistent memory through the file system, by creating a

block device. This requires creating namespaces on sockets and

mounting one or more file systems. An important limitation

in this mode is that namespaces are restricted to the DIMMs

mapped to a single socket. To spread allocations across multiple

namespaces (sockets) either a striped device must be created (e.g.,

RAID-0 using dmsetup), or a programmer must use distributed-

memory data structures.

• KMEM-DAX eliminates the need for mounting file systems over

namespaces (since it creates a character device). Allocations,

including a single allocation, can be spread across PMM name

spaces without having a backing file passing specific allocation

policy to the persistent memory allocator. KMEM-DAX requires a

relatively new Linux kernel (>v5.1) to transform the namespaces

into hotplugged memory regions seen as special memory-only

NUMA nodes that the kernel can use for allocation. The KMEM-

DAX option also requires extra space in DRAM for storing page

table metadata, which is 64 bytes per 4 KB segment. Optionally,

PMM can store the metadata, but for performance we prefer
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DRAM. This metadata can easily grow to tens of GBs, for larger

namespaces.

We use the memkind [43] library to manage allocations on PMM.

However, memory allocation is only relevant for KMEM-DAX. In

the classic filesystem route (i.e., FS-DAX), since the memory is

already available via the file, memkind just points to the memory.

Using memkind in the FS-DAX option can be cumbersome, if multi-

ple filesystems are mounted separately or are logically combined

in a RAID-0 configuration through multiple namespaces.

On the other hand, in the KMEM-DAX option, memory is man-

aged by the O/S, and there are policies that can be set via memkind

to govern the allocation strategies. We use the MEMKIND_DAX_KMEM_

PREFERRED policy in which each thread allocate its own memory

such that the objects each thread allocates are local to it, and it only

allocates in the remote (cross-socket/package) PMM node when

the memory runs out. Other policies are MEMKIND_DAX_KMEM and

MEMKIND_DAX_KMEM_ALL. For both the cases, memory comes from

the closest PMMNUMA node at the time of allocation, but when the

current node memory is exhausted, for MEMKIND_DAX_KMEM policy,

the swap space is used, whereas for the MEMKIND_DAX_KMEM_ALL

case memory is allocated on another PMM node before spilling to

the swap space. We prefer MEMKIND_DAX_KMEM_PREFERRED because

it enables spanning an allocation across all PMM NUMA nodes.

2.3 Mixed mode

It is possible to configure a system to utilize a percentage of the

persistent memory in Memory mode and the rest in AppDirect

mode, referred as the Mixed mode. But, since this mode provisions

all the DRAM as a direct-mapped last-level cache (as in the Memory

mode), PMM capacity is lost. Also, there are some challenges in

utilizing this mode, as some systems restricts the ratio of DRAM

memory to PMM to be a minimum of 1:4. Also, the performance

may suffer as the traffic on the memory bus will increase. As a

result, this mode is deprecated and is not investigated.

3 GRAPH APPLICATIONS

In this section, we provide a brief overview of two prototypical

graph algorithms used in this work—community detection and influ-

ence maximization—focusing on the key computation/algorithmic

features that can provide insight on system performance, and pro-

viding a contrast between the two algorithms. More details can be

found in the respective publications [27, 32].

3.1 Community Detection using Grappolo

Given a graph G = (V , E,ω), the goal of community detection is
to partition the input set of vertices into a set of “communities”

(or clusters) such that there is a significantly higher concentration

of edges connecting the vertices within a cluster than between

vertices across clusters. The problem is typically posed as one of

optimizing a quality metric called modularity [35]. Since the under-

lying optimization problem is NP-Hard [6], efficient heuristics are

used in practice [10].

Grappolo [27] is a shared memory multi-threaded implementa-

tion of the Louvain heuristic [4]. It is a multi-phase multi-iteration

algorithm that begins by assigning each vertex to its own commu-

nity. Within an iteration, all vertices are visited once. Each vertex

scans its local neighborhood to determine if and which of its neigh-

boring community it should join. This locally greedy decision is

made by calculating the net modularity gain that results by either

staying or migrating to each of the target communities. The al-

gorithm iterates until the net modularity gain achieved between

successive iterations falls below a certain threshold. Algorithmi-

cally similar to Grappolo are two libraries named Vite [12] and

miniVite [11] that target distributed-memory platforms.

In addition to the graph data structure stored in a compressed

sparse row (CSR) format, the algorithm maintains two auxiliary

data structures—a vector to maintain the community states of all

vertices globally, and a second set of thread-local data structures

to store the set of unique communities that are neighbors of each

vertex. The purpose of the latter is to help each vertex reach its

locally greedy decision by examining its neighboring communities

efficiently. It is implemented as a C++ std::map, storing the set of

unique communities that the neighbors belong to and the number

of edges that the vertex has to each of those unique communities.

The search combined with allocation and de-allocation of mem-

ory makes this operation one of the most expensive operations

in Grappolo. Alternative approaches with different memory and

performance tradeoffs also exist in Grappolo.

3.2 Influence Maximization using Ripples

Given a directed graph G = (V , E,ω), a diffusion model, and a

budget k , the objective of the influence maximization problem is

to identify a set of k seed vertices (S ⊆ V ), which when initially
activated, will result in the activation of the maximum expected

number of vertices inG at the end of the diffusion process. The edge

weight (ω(s, t)) represents the probability of a node s influencing
(activating) its neighbor t . A diffusion model is a stochastic process

that defines how information originating from a seed set (S) spreads
through the rest of the network. However, the classical problem

formulation [20] is NP-hard, and various efficient algorithms (in-

cluding some with approximation guarantees) have been devised

[20, 25, 46, 47].

Ripples [32, 34] is a parallel influence maximization implemen-

tation that builds on the IMM algorithm of Tang et al. [47]. For

experiments in this paper, we chose the Independent Cascade (IC)

model for diffusion, where there is a one-shot chance for an acti-

vated vertex to activate its neighbors. Minutoli et al. [32, 33] show

that the IC model is more memory intensive and computationally

challenging than the Linear Threshold (LT) model.

Intuitively, the algorithm is a randomized experiment to infer the

most impactful source of activation of the vertices in the graph that

is based on the concept of reverse reachablility. From a randomly

chosen vertex v , the algorithm reconstructs the possible “paths of

the spread” causing the activation of v by following the rules of the

diffusion model going backwards. This process is computed with

probabilistic breadth-first searches (BFS) working on the transposed

graph. The frontier of one such BFS will constitute a vertex set Rv , a

reconstruction of the process resulting in the activation of the given

vertexv . The collection of such sets originating from a set of vertices

chosen uniformly at random is denoted by R. Building R consumes

the greatest fraction of the computation time. The number ofRv sets

that should be computed, represented by θ , is calculated through
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an estimation procedure aimed at finding a lower bound for the

influence function. The value of θ is nondeterministic and is non-
linearly proportional to the graph size and some other parameters,

which control the submodular approximation guarantee of the

computed solution (1 − 1/e − ϵ , for 0 < ϵ < 1)[32].

3.3 Characterization & Contrast

Community detection using Grappolo and influence maximization

using Ripples are by no means unique, and are representative of two

broader classes of graph analytical workloads. Grappolo is a classic

example of an iterative graph algorithm that makes multiple sweeps

of the graph, each time updating the labels associated with every

vertex based on the labels of its neighbors, until a convergence

criterion is reached. In the literature, these are also referred to as

topology-driven methods [23], and other examples include Page-

Rank, Bellman-Ford shortest path algorithm, and graph coloring.

Ripples, on the other hand, is representative of stochastic diffusion-

based class of approaches that perform Monte-Carlo simulations

on the graph. Numerous complex networks applications involve

such simulations [14, 37]. Therefore, characterizing Grappolo and

Ripples toward their ability to exploit nonvolatile memory helps us

inform and guide future use of the memory technologies on a wider

range of irregular applications. Furthermore, the contrasting traits

that these two applications embody—in working set, partitioning,

access patterns, and synchronization (as elaborated in Section 1)—

would help us evaluate and test the various modes and trade-offs

associated with single-node partitioned-memory systems.

4 EXPERIMENTAL EVALUATION

This section first discusses our shared-memory platform (§4.1) and

microbenchmark evaluations (§4.2). We then evaluate application

single-node performance (§4.3) and compare to corresponding dis-

tributed performance (§4.4) and cost-performance (§4.5).

4.1 Experimental platform

Our platform has four sockets, each with a SDP (pre-release) Xeon

Platinum 8260 (Cascade Lake) CPU (2.3 GHz, 24 cores, 32 KB L1

and 1 MB L2 private caches per core, 33 MB shared L3 cache). Over

four sockets, there are 192 hardware threads. Each processor has 6

memory channels with 1 DDR4 and 1 PMM module per channel.

The DDR4 modules are 32 GB each, making 768 GB total DRAM

capacity. The Optane DIMMs are 256 GB each, making 1.5 TB

persistent memory per socket, or 6 TB total. There are 3 links for

Intel Ultra Path Interconnect (UPI) per CPU for connecting to other

CPU sockets. The platform uses Ubuntu v19.04 O/S, with Linux

kernel v5.1.

Grappolo uses OpenMP parallelization and is compiled with

Intel compiler v19.0.4.243 with -O3 -xHost compilation options.

Ripples also uses OpenMP and is compiled using GCC v8.3.0 with

the -O3 -mtune=native options. The input graphs were obtained

from Suitesparse Matrix Collection [22], SNAP datasets [24] and

LAW repository [5].

For AppDirect, we focus on KMEM-DAX. Without filesystem

overhead, KMEM-DAX provides superior latency and bandwidth

over FS-DAX, as will be discussed. Further, we believe KMEM-DAX

provides a superior interface for Optane as volatile memory. Mem-

ory can be allocated through the virtual memory system, according

to memkind’s NUMA policies. (Although the policies are currently

more constrained than DRAM, there are no analogs in FS-DAX.)

Also, FS-DAX mode is cumbersome to use: to create an Optane re-

gion that spans multiple sockets, one must create a RAID filesystem

cross multiple distinct namespaces (volumes).

We use 1 GB page size in AppDirect KMEM-DAX to mini-

mize potential page faults. We also enable transparent hugepages

(THP) [2], using 2 MB pages, and turn off page migration to prevent

page movement across NUMA nodes during program execution.

We use memkind library v1.10.1-rc1 for PMM allocations.

4.2 Microbenchmark evaluation

For both graph analytics application, units of work are typically

bound by memory latency of irregular accesses. Therefore, we

expect parallel performance to be limited by parallel random access

bandwidth. We collect benchmark results showing idle latency

and random access bandwidth. For comparison, we also obtain

bandwidth of regular accesses (STREAM). We show results across

memory modes and (usually) for local and remote accesses.

We assess memory latency and bandwidth of the Optane config-

urations shown in Table 1 using two microbenchmarks: Intel Mem-

ory Latency Checker [49] (MLC) and STREAM [29]. The STREAM

benchmark was modified to support allocation on PMM, whereas

only the binary version of MLC is available. Particularly, in the App-

Direct KMEM-DAX option, the buffer is spread over four names-

paces across the NUMA regions (using the MEMKIND_DAX_KMEM_

PREFERRED memkind policy discussed in §2.2).

4.2.1 Sequential and random access bandwidth. The local and re-

mote random access bandwidth is particularly relevant for graph

applications. Table 2 shows local and remote (across NUMA nodes)

bandwidths for DRAM-only (via AppDirect), Memory mode, and

PMM (via AppDirect FS-DAX). We use Intel MLC v3.7 [49]. Since

we do not have access to the MLC source code, we were unable to

make the requisite changes to use AppDirect KMEM-DAX mode.

Memory

(mode)

Read Write

Access Local Remote Local Remote

DRAM-only

(dram)

Seq 103.67 34.3 43.14 31.42

Random 97.95 34.27 42.16 29.72

Memory

(mem)

Seq 100.88 34.29 23.76 18.12

Random 95.51 34.27 20.7 16.82

PMM

(fsdax)

Seq 32.42 32.02 2.79 2.78

Random 10.44 10.36 3.71 3.63

Table 2: Local/remote sequential/random access B/W (GB/s).

The DRAM-only and Memory modes exhibits at least 3× bet-

ter bandwidth compared to PMM AppDirect FS-DAX. In general,

bandwidth of random access operations is about 10% slower than

sequential for the AppDirect DRAM and Memory modes.

4.2.2 STREAM. We updated the STREAM benchmark [29] to allo-

cate the buffers on PMM, in order to compare performances between

the different Optane modes we use in the application evaluation.

The STREAM benchmark uses three buffers to conduct memory
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bandwidth evaluation on four kernels. We set the buffer length

to 109, and the overall memory usage is about 24GB. We use 192

threads, and each experiment is run for 10 iterations. Figure 3

demonstrates that Memory provides competitive performance to

AppDirect DRAM. MLC’s TRIAD’s results (not shown) agree.

Figure 3: Average latency and bandwidth on updated

STREAM for Optane modes (redder is better).

The AppDirect KMEM-DAX and FS-DAX modes exhibits about

40× reduction compared to AppDirect DRAM/Memory. The per-

formance of KMEM-DAX is about 1.1–4.5× better than FS-DAX, as

the data is spread across the device namespaces on all NUMA re-

gions. Nevertheless, the next section demonstrates that in full graph

applications, KMEM-DAX mode can improve aggregate bandwidth.

4.3 Application Single-node Performance

We analyze several variants of Grappolo and Ripples, over different

Optane modes, using a variety of real-world graphs, with working

sets (PMM + DRAM) up to 2.3 TB. Our key findings are:

• AppDirect mode can perform and scale better than Memory,

even when dominated by irregular access patterns with many

writes, as long as most accesses are NUMA-local and Optane

accesses are frequently reads.

• Processor-cache latency can be a major contributor to perfor-

mance degradation, even for executions dominated by random

accesses to remote DRAM or PMM.

• Surprisingly, between Memory and AppDirect, processor-cache

performance can improve due to fewer line invalidations. Updates

to the caching policy, via non-temporal hints for accesses with

low temporal locality, can make a substantial improvement and

remove Memory’s performance penalty.

• Prefer Memory when dominated by random and remote reads

and writes with complicated temporal reuse.

The AppDirect variants were not difficult to implement, assuming

detailed knowledge of the application’s implementation and data

accesses.

4.3.1 Performance metrics. The evaluations employ the following

metrics, crafted to highlight memory performance and data access

locality. They are combinations of raw metrics from the CPU’s

performance monitoring unit, collected with Intel VTune profiler

v2021.1.0 beta10. Our analysis script aggregates and collates the

raw data to compare across application variants.

CPU Time (s): Average time (derived from cycles) the CPU is

working (per thread). In contrast to wall clock time, this excludes

time spent idling, and thus can be significantly smaller due to load

imbalance and memory bound operations.

Mem Stalls, Cache Stalls: Cycles that CPU cores were stalled

waiting on data from memory and processor-cache (L1...L3), respec-

tively. Stalls represent waste, so the fewer stalls the better.Mem

Stalls captures effects of accessing DRAM vs. PMM. Cache Stalls

shows differences in cache performance between memory modes.

RFO Cycles: Cycles with at least one read-for-ownership (RFO)

transaction (exclusive access to a cache line on a store miss), i.e.,

cache coherence activity. This metric helps explain why cache

performance differs between memory modes.

LDRAM, LPMM, RDRAM+PMM: Loads that resolve in local

(L) or remote (R) DRAM or PMM, or their sum. These enable evalu-

ation of NUMA-related problems such as Memory’s DRAM-cache.

4.3.2 Grappolo: Graph Community Detection. We use four graphs

of different characteristics for Grappolo evaluations, shown in Ta-

ble 3. Community detection using Louvain method is multi-phase

and there are multiple iterations within a phase (until convergence),

but we only execute the very first phase as it is the most expensive

and typically represents the full application run.

Graphs |V | |E |
MAX

degree

STDEV

degree
#Iters.

Working

set

friendster 65.6M 1.8B 5.2K 138 158 48.5 GB

moliere2016 30.2M 3.3B 2.1M 1496 21 128 GB

clueweb12 978.4M 42.5B 75.6M 13575 10 2.16 TB

uk2014 787.8M 47.6B 8.6M 1682 10 2.30 TB

Table 3: Graphs used in Grappolo evaluation.

Variants. The default variants for the different Optane configu-

rations are denoted gdram (DRAM-only), gmem (Memory) and

gkdax (AppDirect), respectively.

AppDirect mode requires determining which structures are al-

located in DRAM and PMM. Our strategy is designed to obtain high

NUMA locality by using a vertex-based distribution of parallel work

matching the CSR graph format. The target graph is allocated in

PMM because it is the dominant contributor to Grappolo’s work-

ing set and read-only within a phase. We ensure the graph’s CSR

structure is spread evenly across all sockets. This layout works

well when vertices in one NUMA domain rarely access edges in

another NUMA domain. Because of its size, we also allocate in

PMM a structure of size |V |, even though it requires |E | writes. All
other auxiliary structures are allocated in DRAM. These are thread

local, updated frequently, and should not overwhelm DRAM.

To efficiently allocate a huge input graph in PMM with the de-

sired NUMA distribution, we had to restructure the graph parser

and allocation strategy. The original graph parser assumed the en-

tire graph could be stored within DRAM in an interchange format

and then converted into Grappolo’s Compressed Sparse Row (CSR)

from within DRAM. When graphs exceeded available DRAM, the

OS’s virtual memory system used costly page-coalescing [19]within

Linux’s default buddy allocator [21]; cf. [7]. We changed Grappolo

to read an input CSR graph incrementally, using a fixed-size DRAM

buffer.

We developed an optimized variant, denoted as gdram2, gmem2

and gkdax2, to improve processor cache performance. The variant

adjusts the processor caching policy in two locations involving

access patterns with zero temporal locality over the graph’s CSR

structure. To adjust the policy, we applied non-temporal hints using

the pragma prefetch var:3. This generates prefetchnta, which

prioritizes the new line for eviction, avoiding pollution.
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Figure 4: Grappolo: Strong scaling (OpenMP threads) across application variants and memory modes.

Figure 5: Grappolo: Memorymetrics (columns) at 192 threads, per graph (rows), attributed to application variants and function

group. Each heat map’s values are scaled by the exponent over the color bar.

Execution configuration. We size AppDirect memory to ensure

PMM allocations are spread over the NUMA regions. We ensure

work and allocations are consistent with NUMA’s first-touch pol-

icy and use memkind’s MEMKIND_DAX_KMEM_PREFERRED. We execute

with OpenMP’s PLACES=cores, BIND=spread.

Results overview. Figure 4 shows Grappolo’s scaling behavior,

for both variants, across graphs and memory modes; cf. Fig. 1 for

relative performance. (Times exclude I/O because it is not parallel,

bottlenecked by a single SSD, and consumes more than 50% of

total time for very large input graphs.) Figure 5 shows memory

metrics, attributed to function group, for 192 threads. Function

groups are as follows. Each Louvain phase calculates vertex degrees

(vtx°) and invokes a parallel loop over vertices (louv). The main

hotspot is cmty, which inspects neighbors of a vertex to determine

its own best community. It is dominated by a thread-local, DRAM-

allocated C++ std::map to identify unique neighbor communities.

OpenMP overhead (locks, barriers) is represented by omp. Memory

management (malloc, free) is mem.

Our expectations are that scaling trends are affected first by

graph, somewhat by mode, and only modestly by variant. The input

graph is significant because load balance is input-dependent: since

each vertex scans its neighborhood communities, the graph’s vertex-

degree distribution determines overall work distribution. Mode

should have an effect due to memory performance characteristics

and allocation strategy. However, it is not clear that AppDirect can

improve over Memory in the context of a full application with all

cores active. We do expect the optimized variant to improve over

the default variant, but only expect a modest effect.

Scaling. The strong-scaling plots (Fig. 4; cf. Fig. 1) show the

following expected behavior. For the default variant and a given

graph, scaling trends are qualitatively similar, possibly excepting

clueweb12. For the default variant, Memory is good default option

but is always more costly than DRAM (when applicable).

For clueweb12, with the default variant and Memory (gmem),

scaling suffers at higher thread counts. clueweb12’s graph char-

acteristics — a much higher standard deviation for vertex degree
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(Table 3) — suggests that remote access can occur far more fre-

quently than with other graphs. Comparing remote accesses (same

memory mode) between uk2014 and clueweb12 (RDRAM+PMM,

Fig. 4), validates this hypothesis. Thus, graph-structure statistics can

predict the likelihood of remote acceses.

The scaling plots also show unexpected behavior. AppDirect

mode improves over memory mode by 12% for clueweb12 and uk2014.

The optimized variant can be surprisingly good (for clueweb12,

gmem2 is 25% faster than gmem) and can eliminate the gap be-

tween Memory and DRAM-only (gmem2 on friendster, moliere-

2016). For the same graph, scaling trends can qualitatively change

across variants (gmem2 for clueweb12). We discuss these results

below.

Memory. As expected, memory mode is a good default by en-

abling very large working sets and reasonable scaling without

any application changes. However, absolute performance is sacri-

ficed compared to DRAM only (Fig. 4, friendster and moliere2016).

The gap over DRAM is strongly connected to the effectiveness

of the DRAM cache. First, a load’s memory latency can increase

due to the additional step of caching PMM. This is probably why

cmty’sMem Stalls increase (Fig. 4) between DRAM-only (friend-

ster/moliere2016) and Memory (same graph). Second as NUMA-

local, the cache only benefits accesses to local PMM. Finally, as

direct-mapped, cache effectiveness can decrease with scale: with

more threads, more distinct data is accessed concurently, increasing

the probability that there will be a cache conflict.

The effects of DRAM cache policies are seen in Fig. 5. Cache

effectiveness is indicated by comparing LDRAM and LPMM. For

medium graphs (friendster, moliere), the entire PMM working set

can be cached in DRAM, so LPMM is negligable. Huge graphs

exercise the DRAM cache. For clueweb12, cmty’s ratio of accesses

to local PMM is much smaller than with uk2014, corresponding to

the actual (total) DRAM cache hit ratios of 47% and 18%, respectively.

clueweb12’s poorer DRAM-cache performance is rooted in a much

larger ratio of remote accesses (RDRAM+PMM), none of which

DRAM can cache. Thus, Memory mode is particularly sensitive to

input graph and layout when memory accesses become NUMA-

remote.

Memory mode also shows unexpected behaviors, such as sig-

nificant improvement (25%) for the optimized variant (gmem2) for

clueweb12. Observe that that processor-cache stalls (Cache Stalls)

— not just memory stalls (Mem Stalls) — can be a significant con-

tributor to performance, especially for large graphs. Depending

on the graph, the importance of bottlenecks due to memory stall vs.

processor-cache stalls changes. In uk2014, Cache Stalls dominates

Mem Stalls, whereas in clueweb12 Mem Stalls just edges Cache

Stalls. This effect is discussed below.

AppDirect (KMEM-DAX). We now disuss the two most surpris-

ing results. The first is that AppDirect mode can outperform other

modes. For medium graphs (friendster, moliere), AppDirect vari-

ants match or exceed performance of DRAM and Memory modes.

Meeting DRAM is unexpected because AppDirect has more mem-

ory resources than in DRAM mode: as our experiments are con-

ducted on one platform, AppDirect mode uses 2 modules per

channel (DRAM + PMM) vs. 1 module (DRAM + no PMM). It is

particularly notable that, for the default variant, AppDirect usu-

ally meets the best performer across all modes and all graphs. For

huge graphs (clueweb12 and uk2014), gkdax outperforms gmem

by up to 12% (even though NUMA accesses are relatively poor).

AppDirect’s performance can be explained by a surprising im-

provement in processor-cache performance (Cache Stalls). These

metrics show that cmty’s and vtx°’s AppDirect processor-cache

performance is always better than in Memory mode, though its im-

portance relative to memory stalls changes between uk2014 (higher)

and clueweb12 (lower).

The second surprise is the contrasting effect of our optimized

variant, whichwe createdwhile probing the differences in processor-

cache performance. The differences were perplexing because access

patterns remained the same across modes even if allocation loca-

tion differed. Further, processor-cache policies do not change with

mode. In particular, in Memory, a DRAM conflict miss should not

automatically invalidate a line representing local or remote PMM.

We found that Memory can cause more coherence activity. The

metric RFOCycles shows cycles in which read-for-ownership (RFO)

requests are present, which correlates extremely well to the rel-

ative change in processor-cache performance. More RFOs means

more lines are in a ‘shared’ state, resulting in more invalidation

broadcasts, wasting cache bandwidth. An analysis of access pat-

terns identified two locations where graph structure is read — a

very large memory footprint — with zero temporal locality. We ad-

justed the caching policy using non-temporal prefetch hints. This

change resulted in a significant reduction in RFO Cycles for the

optmized variant (gkdax2 and gmem2), as well as a reduction in

the number of loads that resolve in local PMM (LPMM) or any

remote socket (RDRAM+PMM). The relative benefits for vtx° and

cmty also make sense. vtx° streams through the CSR graph (|E |)
and writes to a |V |-sized structure. In contrast, cmty is dominated

by random-access reads/writes as it slowly streams through the

CSR graph. Thus, vtx° benefits significantly but cmty only mod-

estly. The slight gdram2 slowdown on friendster may be due to

prefetches stealing bandwidth from demand loads (cf.Mem Stalls

and LDRAM).

4.3.3 Ripples: Graph Influence Maximization. Our evaluation uses

five graphs of various sizes and characteristics (Table 4).

Graphs |V | |E |
MAX

degree

STDDEV

degree

Working

set

soc-SlashDot0902 82.1K 948.46K 2.5K 37.4 17.5 GB

soc-twitter-combined 456.62K 14.85M 51.2K 346.5 21.6 GB

wiki-talk 2.39M 5.02M 3.3K 11.8 41.0 GB

soc-pokec 1.63M 30.62M 13.6K 31 590 GB

wiki-topcats 1.79M 28.51M 202.2K 203.9 785 GB

Table 4: Graphs used in Ripples evaluation.

The algorithm consists of a large number of randomized BFSs

that build a collection of random reverse reachable sets (RRR) that

are then used during the seed selection process (see §3.2). Table 4

shows the number of sets (θ ) in the RRR set collection and the

final working set size when ϵ = 0.13 and k = 100. Although θ is
a good proxy for the work performed in Ripples, its scalability is

not a simple function of θ : performance is greatly influenced by the
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Figure 6: Ripples: Strong scaling (OpenMP threads) across application variants and memory modes.

Figure 7: Ripples: Memory metrics (columns) at 64 threads, per graph (rows), attributed to memory mode and function group.

Each heat map’s values are scaled by the exponent over the color bar.

irregular and non-local memory accesses over the input graph (e.g.,

randomized BFSs). We denote as rrr the functions associated with

building RRRs, the hotspot.

Variants. The default DRAM-only and Memory variants are de-

noted rdram and rmem, respectively.

The characteristics of Ripples suggest a partitioning of data

structures between DRAM and PMM. Recall that the dominant

contributors to working set (Table 4) are the RRR sets and therefore

candidates for PMM. In contrast to RRR sets, the input graph has a

small memory footprint and is frequently accessed from random

starting points, which makes it a good candidate for DRAM.

The three AppDirect variants change the allocation strategy

used by rrr’s two steps. rrr first performs randomized BSFs on

the input graph starting from a random source to generate an RRR

set. The second step sorts RRR sets by vertex IDs [32]. The three

variants are as follows: i) rkdax allocates the memory for the RRR

sets diretly in PMM and performs the BFS on the graph stored on

DRAM. The sorting algorithm uses a temporary buffer allocated in

DRAM; ii) rkdax2 is as rkdax but the final sorting step leverages

an in-place sort and, therefore, sorting occurs directly in PMM;

iii) rkdax3 is as rkdax2 but RRR sets are staged and sorted in

DRAM and then written to PMM in a single move.

Execution configuration. The later stages of the algorithm that

use RRR sets exhibit random data-dependent non-local accesses. We

minimize average NUMA distance using an interleaved memory-

allocation policy. For DRAM and Memory we use NUMA “inter-

leave” (via Linux numactl). For AppDirect, we use memkind’s

new KMEM_DAX_INTERLEAVE. We execute with PLACES=sockets,

BIND=close.

Results overview. Figure 6 shows Ripples’ scaling behavior across

graphs and memory modes; cf. Fig. 1 for relative performance.

(Times exclude I/O.) Figure 7 shows memory metrics, attributed to

function group, for 64 threads. The primary function group is rrr

(building RRRs). Other function groups represent auxiliary opera-

tions and data movement. As with Grappolo, omp and mem represent

OpenMP and memory management overhead, respectively.

Due to many random NUMA-remote accesses, we expect DRAM

to have the best performance and Memory to have modest degra-

dation over DRAM. However our scaling plots show that Memory

is surprisingly close to DRAM. We expect AppDirect variants to

be considerably slower than the other two modes. Interestingly,

AppDirect can significantly outperform Memory and DRAM (50%)

for smaller working sets.

We expect rkdax3 to provide the best AppDirect performance

because of minimizing random writes to PMM (by aggregating in

DRAM). Further with rkdax3, memory intensive operations (ran-

domized BFSs, parallel independent graph traversals, sorting) all

use DRAM’s random-access bandwidth, which is better than PMM

(see §4.2). Surprisingly, rkdax2 is the best variant.

Scaling trends and Memory mode. Figure 6 shows our scaling

results. Trends show that Ripples’ scaling depends on input. For the

smaller inputs (slash and twitter), there is insufficient work at larger

thread counts. In contrast, larger inputs offermore parallel work and

show better scaling, but they become eventually limited by remote

random access memory bandwidth (e.g., pokec at 128 threads); cf.
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Figure 8: Comparing distributed-memory performance for Ripples and Grappolo (as miniVite) with AppDirect (DRAM +

PMM). Horizontal lines are based on best AppDirect configuration.

Table 2. Scaling trends and execution times between DRAM-only

and Memory are very close. Again, the reason is that Memory

and DRAM have very similar (local and remote) random access

read bandwidth (Table 2). (Note similar values forMem Stalls and

Cache Stalls.) Interestingly, AppDirect scaling is often qualitatively

different from the other modes, ranging from substantially better

to worse, depending on input size and variant, as we discuss below.

AppDirect (KMEM-DAX). As expected, for all memory modes,

NUMA-remote loads (RDRAM+PMM) dominate NUMA-local loads.

We expected rkdax3 to be the best AppDirect variant because

memory-intensive irregular operations (randomized BFSs, parallel

independent graph traversals, sorting) all use DRAM, which has

better random access bandwidth than PMM (Table 2). However,

this causes an extra memory copy (to PMM) after staging RRR in

DRAM. The result in an overall increase in (write) memory activity

when remote access bandwidth is already saturated. Figure 7 shows

that rkdax3 has the highest number of Mem Stalls for rrr on both

pokec and topcats. By this measure, rkdax3 is up to 1.66× worse

than rkdax and up to 2.31×worse than rkdax2 on pokec and topcats.

For large working sets (pokec and topcats), Memory provides

better performance than AppDirect. Overall, AppDirect shows

substantial increase in memory stalls (Mem Stalls) and processor-

cache performance (Cache Stalls). The increases in Cache Stalls are

closely correlated with requests for ownerships (RFOs, RFO Cycles)

generated by the cache coherence protocol. Among the AppDirect

variants, rkdax2 is consistency better than rkdax1 and rkdax3.

An open question is whether there is an effective technique for

improving processor-cache performance, such as increasing work-

data locality or adjusting cache policies, similar the changes for

Grappolo’s gkdax2. A simple solution is not obvious. A hardware

solution would be for Memory’s DRAM to cache non-local data,

but that would increase complexity of memory controllers.

For smaller input graphs, AppDirect’s rkdax2 and rkdax3 vari-

ants are most beneficial. Although an interesting counterpoint, we

do not comment further because the larger working sets are more

interesting and the metrics are not of sufficiently high quality. Met-

rics are gathered by time-based multiplexing of many event sets,

and the run times at larger thread counts are too short.

4.4 Distributed Performance

To quantify tradeoffs of partitioned shared-memory vs. distributed-

memory machines for our graph applications, we compare our

single-node AppDirect executions with high quality MPI-based

distributed implementations. Ripples has a distributed-memory

implementation [32] with support for multi-GPU systems [33]. For

Grappolo, we use miniVite [11] from the ECP Proxy Application

suite [41], which is algorithmically and structurally equivalent to

Grappolo. For distributed-memory machines, we use the NERSC

Cori and OLCF Summit supercomputers, which are CPU-based and

GPU-accelerated, respectively.

Recall that the two applications were selected because they ex-

hibit several opposing characteristics. Grappolo/miniVite has fairly

good NUMA locality, whereas Ripples illustrates poor locality. Grap-

polo/miniVite suffers from synchronization overheads, whereas

Ripples is highly asynchronous and can effectively utilize accelera-

tors due to its embarassingly parallel nature.

Figure 8 shows strong scaling for each application and graph

on each supercomputer. Each plot shows per-graph comparisons

(horizontal lines) representing the partitioned configuration (i.e.,

AppDirect in FS-DAX mode using DRAM and PMM) with the

best average times. Specifically, for Grappolo, we use gkdax at 192

threads; and for Ripples we use rkdax2 at 192 threads. Observe that

these configuations are not necessarily the best times with respect

to a particular graph or thread count. The cross-over point between

the single-node and distributed curves indicates the number of

distributed nodes needed to equal single-node performance. Overall,

it usually takes several distributed nodes to match big-memory

single-node performance.

Ripples greatly benefits from distributed execution because of its

asynchrony and the higher aggregated memory bandwidth avail-

able. In distributed settings, the input graph is replicated on the

allocated nodes. This strategy is possible because the memory re-

quirements of the application are dominated by the RRR sets and

the input graph is just a minor fraction of it. However in these

settings, Ripples’ seed selection process becomes critical for scaling.

The seed selection algorithm is a greedy sequential decision process

that on distributed systems requires all-reduce communication. The

work of Minutoli et al. [33] has enabled the application to improve

scaling and leverage GPUs when available on the system. Ripples

benefits over a corresponding single-node execution as soon as the

RRR working set fits for both CPU-only and GPU-accelerated sys-

tems (see Fig. 8). In our settings, two nodes are always sufficient

on smaller graphs and on the bigger graphs (Topcats and Pokec)

on a system like the OLCF Summit (see Table 5). However, Ripples

requires at least 8 nodes for Topcats and Pokec on a more traditional

HPC cluster configuration like the NERSC Cori.
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(b) OLCF Summit Price/Performance.

Figure 9: Comparing price/performance of distributed-memory vs.. AppDirect (DRAM + PMM) for Ripples and Grappolo (as

miniVite). Horizontal lines are based on best AppDirect configuration. Distributed costs use invoice and exclude network.

In contrast, Grappolo/miniVite can require 16–32 nodes (cf. friend-

ster) to show improvement over a single node with Optane mem-

ory. Further, miniVite’s distributed-memory performance is more

dependent on the underlying process graph topology and graph

distribution. miniVite uses ghost vertices to represent remote edges.

Because of the memory required for ghost vertices, miniVite requires

at least 8 nodes to execute what are merly medium-sized graphs for

our single-node system. At scale, severe load imbalances occur due

to irregularities in process topology. In contrast, Ripples replicates

a graph across processes, without incurring the overhead of graph

distribution (graph partitioning is an NP-hard problem).

4.5 Overall Price and Performance

We now compare price/performance for single-node AppDirect

(DRAM + PMM) and distributed executions. As before, perfor-

mance is execution time. Table 5 shows pricing ($) for DDR-only

and DDR+Optane systems as well as nodes similar to the NERSC

Cori and OLCF Summit supercomputers. The $-price estimates

are obtained from multiple system vendors. For a single system,

DDR+Optane configurations provide the best price-per-memory.

Memory

Configuration
Total Memory Price

Price/

Memory-GB

4x Intel Xeon Platinum 8260L (Cascade Lake) platform [ca. 2021]

48 x 64 GB DDR4 3 TB DDR4 42,115 msrp 14

48 x 128 GB DDR4 6 TB DDR4 87,787 msrp 14.6

24 x 128 GB Optane,

24 x 32 GB DDR4

3 TB Optane +

768 GB DDR4
43,225 msrp 11.5

24 x 256 GB Optane,

24 x 64 GB DDR4

6 TB Optane +

1.5 TB DDR4
79,075 msrp 10.5

Distributed-Memory configurations Platform details

12 x 32 GB DDR4 192 GB DDR4 11,872 invoice
2x Intel Xeon 6126

(Sky Lake) [ca. 2017]

16 x 32 GB DDR4 512 GB DDR4 13,115 msrp
2x Intel Xeon Gold 6258R

(Cascade Lake) [ca. 2021]

16 x 32 GB DDR4,

6 x 16 GB HBM2,

1.6 TB NVMe Flash

512 GB DDR4 +

96 GB HBM2 +

1.6 TB NVMe

143,239 msrp

100,267 invoice

2x IBM Power9 AC922

with 6 Nvidia V100

GPUs [ca. 2021]

Table 5: Price estimates in USD (from multiple system ven-

dors). Top: Shared-memory with near-iso memory capacity;

highlight is close to our configuration (6 TB Optane, 768 GB

DDR4). Bottom: Distributed memory platforms.

Weuse the estimates in Table 5 to plot price/performance in Fig. 9.

We bias our prices in favor of the distributed-memory platforms by

excluding network switching and I/O subsystem costs and using

invoice (not MSRP) price. Since NERSC Cori uses a discontinued

CPU platform (i.e., Intel Haswell), we use the invoice price of a sim-

ilar Intel SkyLake platform node for calculating price/performance.

Recall that Fig. 8 demonstrates better performance of Ripples and

miniVite/Grappolo for distributed-memory configurations.When

considering price/performance, the assessment radically alters.

Figure 9 demonstrates substantial price/performance benefits for

single-node Optane systems. For Ripples’ larger working sets (i.e.,

pokec and topcats), an Optane-based node demonstrates 4–13×

improvement at the minimum sufficient nodes (8). For the smaller

working sets, a single-node always benefits over the GPU cluster by

at least 3×; for a CPU cluster, it benefits at 4 nodes (about 2×). For

Grappolo/miniVite, a single-node benefits by 4–10× at 8 nodes, with

the exception of friendster on Cori, which has a 1.4× degradation.

After 8 nodes, a single-node always benefits by at least 2.5×. For

GPU-based nodes, a single-node always benefits by at least 4.5×,

due to those nodes’ significantly higher cost. We note that these

benefits may not be true for other kinds of applications.

5 RELATEDWORK

The closest areas of related work are explorations of Optane on

graph analytics (below) and management of heterogeneous memo-

ries. As heterogeneous memories become more common, systems

(e.g., [1, 31]) will incorporate support for managingmultiple address

spaces, but may well expose placement hints for performance. Our

work is the first to beneficially exploit AppDirect’s partitioned

address space for graph applications. Similar to our use of non-

temporal hints to avoid cache pollution, the runtime of Alvarez et

al. [1] tracks single-use data objects.

Optane and graph analytics. Peng et al. [40] discuss the perfor-

mance of Optane on a dual-socket node with 96 threads in the

context of five graph workloads (of sizes 35–270G) taken from the

GAP benchmark [3] and Ligra framework [45]. The authors observe

that Memory mode performs 2–18× better than AppDirect modes,

but the performance diminishes with larger problem sizes. We per-

form extensive performance analysis using two graph applications

of different computational characteristics, and problem sizes of up

to 3 TB on a four-socket system, demonstrating that the AppDirect

KMEM-DAX mode can provide better or competitive performance

to DRAM and Memory modes for most of the cases (see Fig. 4 and

Fig. 6). Gill et al. [13] investigates the effect of NUMA-aware mem-

ory allocation for a number of graph kernels from Galois [36] and

GraphIt [56] frameworks, and GBBS [8] and GAP [3] benchmarks
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on a two-socket Optane system (96 threads), using large graphs.

They report competitive performance of Optane Memory mode

compared to DRAM for a variety of graph benchmark kernels. In

contrast, we also employ the AppDirect modes, notably the recent

KMEM-DAX option that uses O/S virtual memory interface, and

show competitive performance to rest of themodes. The AppDirect

modes maximizes the memory capacity, since both DRAM and the

PMM are available to the application as addressable memory.

Optane and HPCworkloads. There are a number of existingworks

on the application of Optane persistent memory in HPC workloads.

An early evaluation of Optane DC persistent memory module and

its impact on high-performance scientific applications is discussed

in [51], in the context of accelerating I/O through the AppDirect

mode, as writing to PMM is faster than file I/O on parallel file system.

Using Optane as a block device for performing I/O in the context

of MPI I/O and POSIX I/O is explored in [52]. In [39] and [38], the

authors evaluate multiple HPC applications with relatively small

footprints, exhibiting similar performance in AppDirect DRAM

andMemory modes. Christgau et al [7] are able to improve portions

of a multigrid solver in AppDirect mode, but not the overall time.

Recent work has explored dynamic data migration between DRAM

and PMM both at the runtime [26] and OS levels [9].

Optane and database analytics. In database analytics, Optane

can be beneficial when favorable access patterns can be exploited.

Designing a key-value store for read-dominated accesses can ac-

celerate algorithms using memoization or dynamic programming

[53]. However, when using persistent memory to perform data-

base joins with random accesses, AppDirect mode yields slow-

downs [44, 50, 55]. Interestingly, Shanbag et al. [44] shows that if

the hash table fits in the private L2 or shared L3 cache, there is

no performance difference between DRAM and AppDirect mode

for random accesses, as the memory boundedness is relatively low.

This is similar to our observation that improved cache locality helps

to bridge the gap between DRAM and PMM performance, as shown

in our application analysis (§4.3).

Optane benchmarking. There is a variety of research discussing

basic performance of Optane systems through empirical analysis of

benchmarks, data structures and database management systems [15,

18, 48, 54]. The worse-case PMM bandwidth and latencies relative

to DRAM as reported in these papers match with our benchmarking

analysis results (§4.2).

6 CONCLUSIONS AND FUTUREWORK

We evaluate the suitability of huge-graph analytics (working sets

up to 2.3 TB) on single-node systems with Optane as a volatile pool

(6TB Optane + 768 DRAM). We study two large-scale graph appli-

cations — Grappolo [27] for community detection and Ripples [34]

for influence maximization — with different locality, access pat-

terns, and parallelism. We compare application variants for single-

and partitioned-address spaces or Memory and AppDirect modes.

Finally, we compare against distributed executions from CPU-only

(NERSC Cori) and GPU-accelerated (OLCF Summit) supercomput-

ers and estimate cost/performance.

Single-node huge-memory systems can provide compelling price-

performance ratios for graph analytics. Although distributed execu-

tions eventually show better performance, the price-performance

of a single-node Optane system is usually at least 4–10× better. Fur-

ther a single-node Optane demonstrates reasonable performance

and scaling for huge graphs; whereas it can take 8 nodes simply to

execute medium graphs.

We demonstrate that huge-memory partitioned-address graph

analytics are feasible and can achieve good performance. We show

that Optane’s AppDirect mode can perform and scale better than

its Memory mode (12% for huge graphs), even when dominated

by irregular access patterns, as long as most accesses are NUMA-

local and Optane accesses are frequently reads. We also show that

AppDirect’s new virtual memory interface, which enables much

more flexible PMM allocations compared to the traditional file-

system interface, also has a performance advantage.

We identify surprising performance phenomena. Between Mem-

ory and AppDirect, processor-cache performance can improve

due to fewer line invalidations. Updates to the caching policy (via

non-temporal hints) can make a substantial improvement (25%) and

even remove Memory’s typical performance penalty.

There are broader lessons to our work. Many graph applications

use algorithms that are similar to Grappolo’s or Ripple’s work lo-

cality, access patterns, and parallelism. For each application class,

our study shows expectations for cost and performance trade-offs.

Assuming detailed knowledge of application characteristics and

implementations, our AppDirect variants were not difficult to im-

plement. Our work also relates to the emergence of heterogeneous

memories through HBM and scratchpads. We are particularly in-

terested in how applications can exploit the different access and

performance properties of these memory regions.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

We study the performance of a shared-memory platform equipped

with Intel Optane memory. The study starts by setting expectations

on the platform through targeted micro-benchmarks for the three

memory modes that the Intel Optane technology supports. We then

evaluate the performance of two real world application from the

data mining/graph analytics domain: community detection and

influence maximization in social networks.

The microbenchmarking study reports idle latency, sequential

and random access bandwidth for both sequential and parallel ac-

cesses. Measurements were taken using the Intel Memory Latency

Checker (MLC v3.7) and a modified version of the STREAM bench-

mark.

The study then evaluates the system performance under two

real world applications:

• Community Detection: Grappolo (shared-memory version)

and miniVite (distributed-memory version);

• Influence Maximization: Ripples (shared-memory version)

and cuRipples (distributed-memory version);

All the application codes are available open source on GitHub.

We conclude the study with a cost/performance analysis com-

paring an Intel Optane equipped shared-memory machine with

state-of-the-art HPC systems. The MSRP for all the systems consid-

ered in the study were obtained directly contacting leading HPC

system vendors.

0.0.1 Data Sets. All the data sets used in the study are publicly

available for download at:

• SNAP: https://snap.stanford.edu/data/

• LAW Dataset: http://law.di.unimi.it/datasets.php

• Suitesparse Matrix Collection: https://sparse.tamu.edu/

The input graphs are converted to a special binary format to

optimize I/O operations (the binary version allows loading the

graph into the CSR data structures, without any intermediate steps).

Instructions to convert to the binary version are provided in the

respective README documents of the community detection and in-

fluence maximization codebases. The “Experimental evaluation“

section of the paper mentions the build options.

0.0.2 Codes. Following are the links to the codebases used in this

paper:

• Ripples (shared-memory): https://github.com/pnnl/ripples

• cuRipples (distributed-memory, CPU/GPU): https://github.

com/pnnl/ripples

• Grappolo (shared-memory): https://github.com/Exa-Graph/

grappolo

• miniVite (distributed-memory, CPU/GPU): https://github.

com/Exa-Graph/miniVite

0.1 Platform-specific settings

0.1.1 Intel Optane platform. The shared memory system used in

the study is a 24-core 4-way SDP (pre-release) version of the Intel

Xeon Platinum 8260, with 2.3GHz Intel Xeon Platinum processor

from the Cascade Lake micro-architecture (192 total threads) with

32KB L1 cache, 1MB L2 private cache, and 33MB shared L3 cache.

Each processor has 6 memory channels, and 32GB DDR4 DIMMs

making a total of 768GB of DRAM. The Optane DIMMs are 256GB

each, making the total persistent memory capacity as 1.5TB per

socket, or 6TB total. There are 3 links for Intel Ultra Path Intercon-

nect (UPI) per CPU for connecting to other CPU sockets. We use

Ubuntu 19.04 with v5.1 of Linux kernel. We use Intel VTune profiler

v2021.1.0 beta10.

Ripples was compiled with GCC 8.3.0 and was configured to use

𝑒𝑝𝑠𝑖𝑙𝑜𝑛 = 0.13 and 𝑘 = 100 for all the datasets.

Grappolo was compiled with the Intel Compiler v19.0.4.243.

0.1.2 OLCF Summit. We execute our implementations on OLCF

Summit, a US Department of Energy’s leadership class machine

hosted at Oak Ridge National Laboratory. The system consists of

4,608 nodes, each equipped with two POWER9 CPUs, 6 NVIDIA

Tesla V100 GPUs, 512 GB of DDR4 RAM, and two Infiniband EDR

Network interfaces. A POWER9 CPU hosts 22 cores (1 is reserved

for system software) with 4 threads each, has a frequency of 3.07

GHz and hosts 110 MB of L3 cache. Each Volta GPU hosts 80 Stream-

ing Multiprocessors (64 FP32, 64 INT, 32 FP64 and 8 Tensor Cores

running at 1.333 GHz) with a 16 GB of HBM2 memory (1750 MHz

on a 4096-bit bus, providing 900 GB/s of bandwidth). Group of 3

GPUs are directly connected with a POWER9 CPU and among each

other with NVLINK2 connections. Each connection uses 2 of the

6 NVLINK2 channels of a Volta GPU, offering up to 100 GB/s of

bidirectional bandwidth. A group composed of 3 GPUs and a CPU

communicates with the other one through the X-Bus between the

two CPUs, providing a maximum bandwidth of 64 GB/s.

Ripples was compiled with GCC 10.2.0 and cuRipples was com-

piled with gcc 8.1.1 and CUDA 10.2.89. Both used the spectrum MPI

library 10.3.1.2-20200121. We have performed scalability studies on

2–32 nodes of the machine as detailed in the paper. Ripples and

cuRipples were configured to use 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 = 0.13 and 𝑘 = 100 on all

datasets.

miniVite was compiled with GCC 8.1 and used Spectrum MPI

library 10.3.1.2-20200121. We have performed scalability studies

on 8–64 nodes. The “omptarget” branch of miniVite, which uses

OpenMP offload model to move the computations on the GPUs

was used in this evaluation. Additionally, to maintain an equitable

graph distribution across process configurations, miniVite uses the

“-b” option which is documented in the README.

0.1.3 NERSC Cori. We executed our implementation on the

Haswell partition of Cori at the National Energy Research Sci-

entific Computing (NERSC) Center. The system consists of 2,388

nodes each equipped with two Intel Xeon Processors E5-2698 v3 at

2.3GHz, 128GB of RAM and the Cray Aries with Dragonfly topology

interconnect. A single CPU on the system hosts 16 cores with 2

threads per core.
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Ripples was compiled with GCC 8.3.0 and we used the Cray

MPICH 7.7.10. We have performed scalability studies from 2–32

nodes of the Cori Haswell partition as detailed in the paper. Ripples

was configured to use 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 = 0.13 and 𝑘 = 100 on all datasets.

miniVite was compiled with Intel compiler (Intel v19.0.3) and we

used Cray MPICH 7.7.10 as the MPI implementation. We performed

scalability studies on 8–64 nodes of the Cori Haswell partition as

detailed in the paper. Similar to the OLCF Summit platform, we use

the balanced partitioning option for miniVite.

Author-Created or Modified Artifacts:

Persistent ID: 10.5281/zenodo.4673587,

https://github.com/pnnl/ripples↩→

Artifact name: Ripples (includes cuRipples)

Persistent ID: 10.5281/zenodo.4673626,

https://github.com/Exa-Graph/grappolo↩→

Artifact name: Grappolo

Persistent ID: 10.5281/zenodo.4677693,

https://github.com/Exa-Graph/miniVite↩→

Artifact name: miniVite

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Operating systems and versions: Ubuntu 19.04 with Linux kernel
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