
miniVite: A Graph Analytics Benchmarking Tool
for Massively Parallel Systems

Sayan Ghosh∗, Mahantesh Halappanavar†, Antonino Tumeo†, Ananth Kalyanaraman∗, Assefaw H. Gebremedhin∗

∗ Washington State University, Pullman, WA, USA {sayan.ghosh, ananth, assefaw.gebremedhin}@wsu.edu
† Pacific Northwest National Laboratory, Richland, WA, USA {hala, antonino.tumeo}@pnnl.gov

Abstract—Benchmarking of high performance computing sys-
tems can help provide critical insights for efficient design of
computing systems and software applications. Although a large
number of tools for benchmarking exist, there is a lack of rep-
resentative benchmarks for the class of irregular computations
as exemplified by graph analytics. In this paper, we propose
miniVite as a representative graph analytics benchmark tool
to test a variety of distributed-memory systems.

Graph clustering, popularly known as community detection,
is a prototypical graph operation used in numerous scientific
computing and analytics applications. The goal of clustering is
to partition a graph into clusters (or communities) such that each
cluster consists of vertices that are densely connected within the
cluster and sparsely connected to the rest of the graph. Modu-
larity optimization is a popular technique for identifying clusters
in a graph. Efficient parallelization of modularity optimization-
based algorithms is challenging. One successful approach was
conceived in Vite, a distributed-memory implementation of the
Louvain algorithm that incorporates several heuristics.

We introduce miniVite as a representative but simplified
variant of Vite, to serve as a prototypical graph analytics
benchmarking tool. Unlike other graph-based methods such
as breadth-first search and betweenness centrality, miniVite
represents highly complex computational patterns stressing a
variety of system features, which can provide crucial insight for
co-design of future computing systems.

I. INTRODUCTION

Evaluating the performance of real-world applications on
high performance computing architectures is an important ac-
tivity [11, 21] that not only leads to efficient implementations,
but also allows to improve hardware features in support of the
application development. The importance of mini-app driven
co-design of architectures and algorithms has been established
as a holistic approach in assessing key performance issues
in large scientific applications [2, 9, 10, 14]. However, a
significant number of mini-apps used in HPC co-design are
characterized by regular updates to dense data structures such
as meshes and matrices. Hence, there is an urgent need to
explore mini-apps characterized by irregular memory accesses,
which is the mainstay of a large number of graph applications.
Availability of large scale datasets [4, 15, 20] has led to
the emergence of graph analytics as an important activity
on modern computer systems. However, due to the irregular
nature of memory accesses, high ratios of communication to
computation and inherently serial nature of execution, graph
algorithms pose significant challenges for efficient implemen-

tation on parallel systems [16]. We propose miniVite as a
benchmarking tool for distributed-memory parallel systems.

Consider an undirected graph G = (V,E, ω), where V is
the set of vertices, E the set of edges and ω the edge weights.
A clustering C of G is a partitioning of V into k mutually
disjoint clusters such that the vertices in a cluster Ci,∀i ∈ k
are tightly connected with other vertices in Ci but sparsely
connected to the rest of the graph. Clustering, popularly known
as community detection, is an important graph kernel used in
a number of scientific and social networking applications for
discovering higher order structures within a graph [12]. In an
earlier work, we developed Vite1 [13], which is a distributed
memory parallelization of the widely used Louvain method [3]
for graph clustering. In this work, we present a variant of
Vite as a benchmarking tool for distributed-memory systems
in the context of graph analytics.

We make the following contributions in this paper: (a)
Develop miniVite as a prototypical graph analytics bench-
marking tool (§II); (b) Characterize the key features of
miniVite and compare it with other graph workloads
(§III); (c) Compare the relative performances of different MPI
communication mechanisms (such as collective, send-recv
and RMA) used for implementing communication intensive
parts of miniVite (§V); (d) Analyze the performance of
miniVite on 1-4K processes of NERSC Cori supercomputer
(§V); and (e) Develop an efficient distributed-memory graph
generator using the random geometric graph (RGG) model for
evaluating miniVite (§IV).

II. PARALLEL CLUSTERING ALGORITHM

In this section, we provide a brief overview of the parallel
implementation of the Louvain method. We refer the reader
to Blondel et al. [3] for details on the serial algorithm,
and Ghosh et al. [13] for details on the distributed-memory
implementation.

The Louvain algorithm is a heuristic to identify a
community-wise partitioning of vertices in a graph that op-
timizes modularity [18]. The algorithm is multi-phase, multi-
iterative, where within each phase there are multiple iterations,
as summarized in Algorithm 1. Each vertex is initialized to a
distinct community. Within each iteration, each vertex makes
a greedy decision on whether to stay in its current community

1Source code: http://hpc.pnl.gov/people/hala/grappolo.html.

51

2018 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems
(PMBS)

978-1-7281-0182-8/18/$31.00 ©2018 IEEE
DOI 10.1109/PMBS.2018.00009

or migrate to a neighboring community as dictated by the
modularity gain. Modularity is calculated after every iteration
based on the current state of communities, and a phase
terminates when there is negligible gain in overall modularity
between consecutive iterations (as determined by a threshold
τ). At the end of a phase, the graph is compacted such that
each community is condensed into a “meta-vertex” and edges
are redrawn between those respective meta-vertices as per the
connections between the corresponding communities in G. The
compacted graph is passed on as input to the next phase. The
algorithm terminates when the net gain in modularity falls
below a certain threshold.

Algorithm 1: Parallel Louvain Algorithm (at rank i).
Input: Local portion Gi = (Vi, Ei) of the graph G;
threshold τ (default: 10−6).
Notation: C denotes communities, and Q denotes modu-
larity.

1: Ccurr ← {{u}|∀u ∈ V }
2: {Qcurr, Qprev} ← 0
3: while true do
4: Qcurr ← LouvainIteration(Gi, Ccurr)
5: if Qcurr −Qprev ≤ τ then
6: break and output the final set of communities
7: end if
8: NextPhase(Gi, Ccurr)
9: Qprev ← Qcurr

10: end while

Initially, the set of vertices in the graph is evenly parti-
tioned in a trivial manner, among the p processes. Edges are
distributed based on the vertex partitioning. Thus, there are
two types of edges: those that connect two vertices that reside
locally, and those that connect a local vertex to a “ghost”
vertex that resides remotely on another process. Similarly, the
set of communities is also partitioned in the same manner
where each processor receives roughly the same number of
communities at the start. Note that at the start of the Louvain
algorithm the number of communities is same as the number
of vertices in the graph. Thus, each process maintains two lists,
one for its ghost vertices and another for its ghost communities
(along with their owning process IDs).

a) Louvain iteration: Algorithm 2 lists the steps for
performing a sequence of Louvain iterations within a phase.
Since each process owns a subset of vertices and a subset of
communities, communication usually involves information on
vertices and/or communities. For each vertex owned locally, a
community ID is stored; and for each community owned lo-
cally, its incident degree is stored locally (as part of the vector
Cinfo in Algorithm 2). After every iteration (within a phase),
changes to the community membership information need to be
relayed from the corresponding owner processes to all those
processes that keep a ghost copy of those communities.
miniVite implements the very first phase of the Louvain

method, without rebuilding the graph. This allows us to
accurately assess the overhead of community detection sepa-
rately from the graph rebuilding process. miniVite can also

Algorithm 2: Algorithm for the Louvain iterations of a
phase at rank i. Output: Modularity at the end of the
phase.

1: function LOUVAINITERATION(Gi, Ccurr)
2: Vg ← Exchange ghost vertices
3: while true do
4: Exchange latest community information
5: for v ∈ Vi do
6: Compute ∆Q achieved by moving v to its neighboring

communities
7: Choose the community assignement for v that maximizes

∆Q
8: Update community information after v’s migration
9: end for

10: send updated information on ghost communities
11: Cinfo ← receive and update information on local

communities
12: Qi

curr ← Compute modularity based on Gi and Cinfo

13: Qcurr ← all-reduce:
∑

∀iQ
i
curr

14: if Qcurr −Qprev ≤ τ then
15: break
16: end if
17: Qprev ← Qcurr

18: end while
19: return Qprev

Fig. 1: Components of miniVite proxy application.

generate random geometric graphs (RGG) in parallel, thereby
making it convenient for users to parameterize synthetic graphs
(with different communication characteristics) to run the Lou-
vain algorithm. A high level diagram of miniVite proxy
application is shown in Fig. 1. The common components in
miniVite such as distributed compressed sparse row (CSR)
representation for graphs [8], data generator, and parallel
random number generator provide the requisite infrastructure
to develop other graph algorithms in the framework.

III. CHARACTERISTICS OF DISTRIBUTED-MEMORY
LOUVAIN METHOD

We argue that community detection is a better tool for
benchmarking irregular applications, because it exhibits differ-
ent characteristics in comparison to other graph traversal based
workloads. For example, the Louvain method involves floating
point arithmetic operations for computing modularity, whereas
other graph algorithms such as breadth-first search and graph
coloring do not have any floating point operations. miniVite
is also communication-intensive, as within every Louvain

52

TABLE I: First phase of Louvain method versus the last phase for real world inputs on 1K processes of NERSC Cori.

Graphs #Vertices #Edges First phase Complete execution
Iterations Modularity Time Phases Iterations Modularity Time

friendster 65.6M 1.8B 143 0.619 565.201 3 440 0.624 567.173
it-2004 41.3M 1.15B 14 0.394 45.064 4 91 0.973 45.849
nlpkkt240 27.9M 401.2M 3 0.143 3.57 5 832 0.939 21.084
sk-2005 50.6M 1.9B 11 0.314 71.562 4 83 0.971 72.94
orkut 3M 117.1M 89 0.643 59.5 3 281 0.658 59.64
sinaweibo 58.6M 261.3M 3 0.198 270.254 4 108 0.482 281.216
twitter-2010 21.2M 265M 3 0.028 209.385 4 184 0.478 386.483
uk2007 105.8M 3.3B 9 0.431 35.174 6 139 0.972 37.988
web-cc12-paylvladmin 42.8M 1.2B 31 0.541 140.493 4 159 0.687 146.92
webbase-2001 118M 1B 14 0.458 14.702 7 239 0.983 24.455

(a) Friendster (1.8B edges)
on 256 processes.

(b) Orkut (117M edges) on
64 processes.

Fig. 2: Communication volume, in terms of maximum send/recv message
sizes (bytes) exchanged between pairs of processes, for two real-world inputs.
The vertical axis represents the sender process ids and the horizontal axis
represents the receiver process ids; the top-left corner represents id zero for
both sender and receiver. Byte sizes vary from 7.30E3 (blue) to 5.46E6 (red)
for Friendster, and from 3.57E4 (blue) to 1.15E6 (red) for Orkut.

iteration, information of ghost communities (such as current
size and degree of communities) needs to be updated for
computing global modularity. As such, the overall performance
of miniVite is sensitive to the input graph (especially since
our simple graph partitioning makes no assumption about the
underlying graph structure). Fig. 2 shows the inter-process
communication volume of miniVite for two inputs on 256
and 64 processes respectively, and they exhibit significantly
different communication patterns.

Two conflicting goals – simplicity of the benchmark, and
true representation of real-world applications – drive the
choice of a good benchmarking tool. The following two
observations from the performance analysis of Vite led us to
the design of miniVite as a potential benchmarking proxy
application for the Exascale Computing Project2.

a) Louvain phase analysis: Although the Louvain
method is executed for multiple phases until convergence,
for a variety of real world inputs, we observed the first
phase to be the most expensive in terms of overall execution
time. Table I demonstrates that most of the input graphs
exhibit a cumulative difference of about 1− 5% between the
execution times of the first and the final phase. Therefore,
analyzing just the first phase provides sufficient information
about the overall performance and community structure in
most cases. Furthermore, graph rebuilding kernel complicate

2ECP Proxy Applications: https://proxyapps.exascaleproject.org

the implementation and can distort benchmarking results when
the graph sizes are small and utilize a small portion of the total
participating processors on a system.

b) Performance profiling: We profiled Vite extensively
using HPCToolkit [1] on a billion-edge graph, and ob-
served that about 60% of the time was spent in manag-
ing and communicating vertex-community information, and,
about 40% was spent on computation/communication (i.e.,
MPI_Allreduce) of global modularity. Profiling helped us
in identifying communication intensive sites in the application,
where we can apply alternate communication options such
as MPI collectives or RMA (Remote Memory Access) and
measure their impact.

IV. SYNTHETIC DATA GENERATION

A key component of miniVite is the distributed-memory
parallel random geometric graph (RGG) generation. The gen-
erator allows us to bypass the file I/O for reading an input
graph and create a synthetic graph in memory, which can
be further parameterized to affect the overall communication
intensity. We specifically chose RGGs because they are known
to naturally exhibit consistent community structure with high
modularity [6], as opposed to scale-free graphs.

An n-D random geometric graph (RGG), represented as
G(n, d), is a graph generated by randomly placing N vertices
in an n-D space and connecting pairs of vertices whose Eu-
clidean distance is less than or equal to d. In our experiments
we only consider 2D RGGs contained within a unit square,
[0, 1]2, and the Euclidean distance between two vertices is
used as the weight of the edge connecting them. We calculate
d from two quantities, as explained next. Connectivity is a
monotonic property of RGG, in 2D unit-square RGGs have a
sharp threshold at dc =

√
lnN
πN [7]. The connectivity threshold

is also the longest edge length of the minimum spanning tree
in G [19]. The thermodynamic limit when a giant component
appears with high probability is given by dt =

√
λc

πN [7], and
the value of λc is given by 2.0736 for 2D unit-square RGGs.
The particular value of d that we have used in miniVite is
dct = (dc + dt)/2.

We distribute the domain such that each process receives
N/p vertices (where p is the total number of processes). Each
process owns 1 × 1

p of the unit square, and generates that
many random numbers, between specific ranges, as shown in
Figure 3.

53

{0,0}

{0,1/p}

{0,2/p}

{0,3/p}

{1/p,1}

{2/p,1}

{3/p,1}

{4/p,1}

Fig. 3: Distribution based on [0, 1]2 on p = 4 processes and for N = 12.
1
p
> d mandates that vertices in a process can only have edges with vertices

owned by its up or down neighbor. The blocks between the parallel lines
indicate vertices owned by a process.

(a) Basic RGG input, black
spot means zero exchange.

(b) RGG input with 20%
extra edges.

Fig. 4: Communication volume, in terms of minimum send/recv message
sizes (in bytes) exchanged between pairs of processes, of miniVite with
basic RGG input vs RGG with random edges using 1024 processes. Adding
extra edges increase overall communication. The vertical axis represents the
sender process ids and the horizontal axis represents the receiver process ids;
the top-left corner represents id zero for both sender and receiver. Byte sizes
vary from 8 (blue) to 32 (red) for the figure on left, and from 8 (blue) to
3000 (red) for the figure on right.

The generated random numbers are exchanged between
neighboring processes, in order to compute Euclidean distance
between neighboring vertices. The ghost vertices are then
exchanged between neighbors. Since RGG relies on random
numbers, it is important that the sequence of numbers be
chosen from the same distribution across processes. We im-
plement the linear congruential generator (LCG) algorithm in
distributed memory. LCG is defined by a linear recurrence
relation to deterministically generate a sequence of random
numbers.
miniVite also provides an option for introducing some

noise into a RGG, by adding a percentage of total edges
randomly (following a uniform distribution) between vertices.
Adding random edges increases the likelihood of a process
communicating with other non-neighboring processes, increas-
ing the overall network congestion, and thereby creating ideal
scenarios for measuring the impact of different communica-

(a) MPI calls —
miniVite.

(b) MPI calls — Graph500
BFS.

(c) Mean message sizes —
miniVite.

(d) Mean message sizes —
Graph500 BFS.

Fig. 5: Communication volumes (in terms of send/recv invocations,
and mean send/recv message sizes exchanged between processes) of
miniVite and Graph500 BFS for 134M vertices on 1024 processes. Black
spots indicate zero communication. The vertical axis represents the sender
process ids and the horizontal axis represents the receiver process ids; the
top-left corner represents id zero for both sender and receiver. Blue represents
the minimum and Red represents maximum volume for each of the figures
at different minimum and maximum values (communication patterns are
important).

tion options. Figure 4 shows inter-process communication (as
reported by TAU profiler [22]) in miniVite between 1024
processes of NERSC Cori, using basic RGG as compared to
RGG with 20% random edges for a graph of 134M vertices
and 1.6B edges.

Figure 5 shows inter-process communication patterns be-
tween miniVite with RGG input of 134M vertices (20%
of the overall number of edges added randomly) compared to
Graph500 BFS [17] (with SCALE equal to 27). It is evident
from the figure that only a subset of processes participate in
communication for Graph500 BFS, whereas all of the pro-
cesses contribute to the overall communication in miniVite.

V. PRELIMINARY EVALUATION

We now present results from a preliminary evaluation of
miniVite. We use the following notations for different
variants of communication: i) NBSR: Uses MPI nonblocking
point-to-point communication routines.ii) SR: Uses blocking
MPI send and receive, i.e., MPI_Sendrecv. iii) COLL: Uses
MPI blocking collective operation, uses MPI_Alltoallv.
iv) RMA: Uses MPI-3 RMA for one-sided communica-
tion with passive target synchronization; uses MPI_Put or
MPI_Accumulate (only for Friendster).

a) Experimental setup: We used the NERSC Cori super-
computer for our experimental evaluations. Each node of Cori
has dual-socket Intel R© XeonTME5- 2698v3 (Haswell) CPUs
at 2.3 GHz, 32 cores, 128 GB main memory, 40 MB L3

54

TABLE II: Execution time (in secs.) and Modularity (Q) on 1-4K processes for RGG datasets with unit edge weights.

Versions
1024 processes (|V | = 134.2M) 2048 processes (|V | = 268.4M) 4096 processes (|V | = 536.8M)
|E| = 1.59B |E| = 1.9B |E| = 3.24B |E| = 3.89B |E| = 6.64B |E| = 7.97B

Time Q Time Q Time Q Time Q Time Q Time Q
NBSR 6.53 0.750 18.28 0.626 9.57 0.749 21.68 0.626 49.53 0.748 57.06 0.625
COLL 5.56 0.750 18.32 0.626 7.28 0.749 21.65 0.626 18.10 0.748 47.85 0.625
SR 13.30 0.750 28.32 0.626 31.50 0.749 49.27 0.626 94.41 0.748 115.87 0.625
RMA 5.76 0.751 19.05 0.626 8.82 0.753 23.23 0.626 47.18 0.750 60.95 0.626

TABLE III: Execution time (in secs.) and Modularity (Q) on 1-4K processes for RGG datasets with Euclidean distance weights.

Versions
1024 processes (|V | = 134.2M) 2048 processes (|V | = 268.4M) 4096 processes (|V | = 536.8M)
|E| = 1.59B |E| = 1.9B |E| = 3.24B |E| = 3.9B |E| = 6.64B |E| = 7.97B

Time Q Time Q Time Q Time Q Time Q Time Q
NBSR 5.99 0.776 13.08 0.648 9.54 0.776 17.50 0.629 30.46 0.776 20.15 0.599
COLL 5.46 0.776 12.87 0.653 7.46 0.776 14.17 0.628 15.34 0.776 21.83 0.598

SR 13.17 0.776 19.6 0.649 32.05 0.776 31.97 0.624 88.81 0.776 65.17 0.598
RMA 5.80 0.777 13.3 0.628 9.18 0.776 15.43 0.624 21.96 0.776 22.41 0.544

cache/socket and the Cray R© XCTMseries interconnect (Cray R©

AriesTMwith Dragonfly topology). We use Cray MPICH 7.6.2
as our MPI implementation, and Intel R© 18.0.1 compiler with
-O3 -xHost compilation option to build the codes. We use
16 processes per node, and 2 OpenMP [5] threads per process.
We only report the execution time for graph clustering using
the Louvain method.

A. Performance on a real-world graph—Friendster
For our analysis, we chose a real-world network that runs

for a number of iterations, and has a reasonable community
structure. Friendster is a social network graph, with 1.8B edges
and a modularity of about 0.62. In our studies, it ran for over
400 iterations until convergence, with each phase taking more
than a 100 iterations (exhibiting relatively slow modularity
growth), making Friendster an ideal real-world dataset for
clustering analysis.

TABLE IV: Number of iterations, execution time (in secs.) and Modularity
(Q) of Friendster (65.6M vertices, 1.8B edges) on 1024/2048 processes.

Versions 1024 processes 2048 processes
Itrs Time Q Itrs Time Q

NBSR 111 745.80 0.6155 127 498.89 0.6177
COLL 109 752.41 0.6159 141 554.98 0.6204
SR 111 783.94 0.6157 103 423.43 0.6191
RMA 109 782.47 0.6162 111 589.47 0.6190

From Table IV, we observe both NBSR/SR to outperform
COLL/RMA by at least 10−20% for 2K processes. For 1K pro-
cesses, the performances of NBSR and COLL are competitive,
whereas SR and RMA are about 5% slower. The primary reason
behind these fluctuations in runtime performances are due to
dissimilar number of iterations to convergence (103−141), as
shown in Table IV, which is a side effect of distributed mem-
ory implementation of Louvain method. The RMA version with
MPI_Put failed with a crash (observed on all available Cray
MPICH versions on NERSC Cori) for the Friendster input.
Hence, MPI_Put was replaced with MPI_Accumulate,
which has different ordering semantics, increasing the over-
all execution time. Since the Louvain method is inherently
sequential, the order of community updates from processes im-
pacts the overall number of iterations to convergence, making
it nondeterministic across program runs. This behavior makes

it difficult to accurately measure the effect of using different
communication models on real-world graphs.

B. Performance on random geometric graphs
Due to the distribution of a random geometric graph (RGG)

(refer to §IV), if random edges are not added, then a process
communicates with at most two neighboring processes (see
Figure 4). Therefore, we also discuss performance of the
RGG datasets with additional random edges (20% of the total
number of edges, about 0.4− 1.3B).

Table II shows the performance of miniVite on RGG
datasets of over a billion edges with unit edge weights on
1K-4K processes. When extra edges are added, execution
times increase by up to 3×, owing to an increase in overall
communication volume. However, the change in modularity
is more gradual across multi-process runs, and it declines by
about 17% when extra edges were added.

We also analyzed the impact of using real edge weights (the
Euclidean distance) between vertices, as shown in Table III.
If the Euclidean distance between a randomly selected vertex
pair is unavailable (when the respective vertices are owned
by non-neighboring processes), then we pick an edge weight
uniformly between (0, 1). We ensure the edge weight is
consistent across MPI communication models by providing a
seed to the random number generator, equivalent to a unique
hash of the vertex pair. Unlike the extra edge cases in Table II,
in Table III we observe about 3−9% variability in modularity
across MPI communication models.

In general, for the RGG graphs, comparing different MPI
communication models, performance of SR is at least 1.5−2×
worse than others for every case, potentially due to internal
message ordering overheads. Performance of COLL is consis-
tently superior, and for the largest RGG of 536.8M vertices,
COLL is about 1.2 − 5× faster than the rest. Performance of
basic RGG datasets (with no extra edges) with unit and real
edge weights are comparable, overall modularity difference
being about 3 − 6%. However, we observe a significant
difference between the two approaches for the largest case
(536.8M vertices) with the extra edges (a reduction of about
1.2 − 3× in execution time and up to 22% in modularity).
Due to a significant reduction in number of iterations to
convergence, the execution time is lesser than the basic case.

55

ACKNOWLEDGMENT

We used resources of the NERSC facility, supported by
U.S. DOE SC under Contract No. DE-AC02-05CH11231. The
research is in part supported by the U.S. DOE ExaGraph
project, a collaborative effort of U.S. DOE SC and NNSA
at DOE PNNL, NSF CAREER award IIS-1553528, NSF
award CCF 1815467, and, ECP (17-SC-20-SC). PNNL is
operated by Battelle Memorial Institute under Contract DE-
AC06-76RL01830.

We thank David Richards of Lawrence Livermore National
Laboratory for motivating us to develop miniVite.

REFERENCES

[1] Laksono Adhianto, Sinchan Banerjee, Mike Fagan, Mark Krentel,
Gabriel Marin, John Mellor-Crummey, and Nathan R Tallent. Hpc-
toolkit: Tools for performance analysis of optimized parallel programs.
Concurrency and Computation: Practice and Experience, 22(6):685–
701, 2010.

[2] Richard F Barrett, Paul S Crozier, DW Doerfler, Michael A Heroux,
Paul T Lin, HK Thornquist, TG Trucano, and Courtenay T Vaughan.
Assessing the role of mini-applications in predicting key performance
characteristics of scientific and engineering applications. Journal of
Parallel and Distributed Computing, 75:107–122, 2015.

[3] Vincent Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne
Lefebvre. Fast unfolding of communities in large networks. Journal of
Statistical Mechanics: Theory and Experiment, page P10008., 2008.

[4] Paolo Boldi and Sebastiano Vigna. The WebGraph framework I:
Compression techniques. In Proc. of the Thirteenth International World
Wide Web Conference (WWW 2004), pages 595–601, Manhattan, USA,
2004. ACM Press.

[5] Leonardo Dagum and Ramesh Menon. Openmp: an industry standard
api for shared-memory programming. IEEE computational science and
engineering, 5(1):46–55, 1998.

[6] Erik Davis and Sunder Sethuraman. Consistency of modularity clus-
tering on random geometric graphs. arXiv preprint arXiv:1604.03993,
2016.

[7] Josep Dı́az, Dieter Mitsche, and Xavier Pérez-Giménez. Large con-
nectivity for dynamic random geometric graphs. IEEE Transactions on
Mobile Computing, 8(6):821–835, 2009.

[8] Jack Dongarra. Compressed row storage. http://www.netlib.org/utk/
people/JackDongarra/etemplates/node373.html.

[9] Jack Dongarra and Michael A Heroux. Toward a new metric for ranking
high performance computing systems. Sandia Report, SAND2013-4744,
312:150, 2013.

[10] Sudip S Dosanjh, Richard F Barrett, DW Doerfler, Simon D Hammond,
Karl S Hemmert, Michael A Heroux, Paul T Lin, Kevin T Pedretti,
Arun F Rodrigues, TG Trucano, et al. Exascale design space exploration
and co-design. Future Generation Computer Systems, 30:46–58, 2014.

[11] Rudolf Eigenmann and Siamak Hassanzadeh. Benchmarking with
real industrial applications: the spec high-performance group. IEEE
Computational Science and Engineering, 3(1):18–23, 1996.

[12] Santo Fortunato. Community detection in graphs. Physics Reports,
486(3):75 – 174, 2010.

[13] Sayan Ghosh, Mahantesh Halappanavar, Antonino Tumeo, Ananth
Kalyanaraman, Hao Lu, Daniel Chavarria-Miranda, Arif Khan, and
Assefaw Gebremedhin. Distributed louvain algorithm for graph com-
munity detection. In 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 885–895. IEEE, 2018.

[14] Michael A Heroux, Douglas W Doerfler, Paul S Crozier, James M
Willenbring, H Carter Edwards, Alan Williams, Mahesh Rajan, Eric R
Keiter, Heidi K Thornquist, and Robert W Numrich. Improving
performance via mini-applications. Sandia National Laboratories, Tech.
Rep. SAND2009-5574, 3, 2009.

[15] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, June 2014.

[16] Andrew Lumsdaine, Douglas P. Gregor, Bruce Hendrickson, and
Jonathan W. Berry. Challenges in parallel graph processing. Parallel
Processing Letters, 17:5–20, 2007.

[17] Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A
Ang. Introducing the graph 500. Cray Users Group (CUG), 19:45–74,
2010.

[18] M. E. J. Newman and M. Girvan. Finding and evaluating community
structure in networks. Physical Review E, 69(2):026113, 2004.

[19] Mathew Penrose et al. Random geometric graphs. Number 5. Oxford
university press, 2003.

[20] Ryan Rossi and Nesreen Ahmed. The network data repository with
interactive graph analytics and visualization. In AAAI, volume 15, pages
4292–4293, 2015.

[21] M. Sayeed, H. Bae, Y. Zheng, B. Armstrong, R. Eigenmann, and
F. Saied. Measuring high-performance computing with real applications.
Computing in Science Engineering, 10(4):60–70, July 2008.

[22] Sameer S Shende and Allen D Malony. The tau parallel performance
system. The International Journal of High Performance Computing
Applications, 20(2):287–311, 2006.

56

