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Abstract—De novo genome assembly is a fundamental problem in the field of bioinformatics, that aims to assemble the DNA sequence

of an unknown genome from numerous short DNA fragments (aka reads) obtained from it. With the advent of high-throughput

sequencing technologies, billions of reads can be generated in amatter of hours, necessitating efficient parallelization of the assembly

process.While multiple parallel solutions have been proposed in the past, conducting a large-scale assembly at scale remains a

challenging problem because of the inherent complexities associated with datamovement, and irregular access footprints of memory

and I/O operations. In this article, we present a novel algorithm, calledPaKman, to address the problem of performing large-scale

genome assemblies on a distributedmemory parallel computer. Our approach focuses on improving performance through a combination

of novel data structures and algorithmic strategies for reducing the communication and I/O footprint during the assembly process.

PaKman presents a solution for the twomost time-consuming phases in the full genome assembly pipeline, namely, k-mer counting and

contig generation. A key aspect of our algorithm is its graph data structure (PaK-Graph), which comprises fat nodes (or what we call

“macro-nodes”) that reduce the communication burden during contig generation.We present an extensive performance and qualitative

evaluation of our algorithm across a wide range of genomes (varying in both size and species group), including comparisons to other

state-of-the-art parallel assemblers. Our results demonstrate the ability to achieve near-linear speedups on up to 16K cores (tested) on

the NERSCCori supercomputer; perform better than or comparable to other state-of-the-art distributedmemory and sharedmemory

tools in terms of performance while delivering comparable (if not better) quality; and reduce time to solution significantly. For instance,

PaKman is able to generate a high-quality set of assembled contigs for complex genomes such as the human and bread wheat genomes

in under a minute on 16K cores. In addition,PaKmanwas able to successfully process a 3.1 TB simulated dataset of one of the largest

known genomes (to date)-Ambystomamexicanum (the axolotl), in just over 200 seconds on 16K cores.

Index Terms—Genome assembly, distributed memory, de bruijn graphs, k-mer counting

Ç

1 INTRODUCTION

DE novo genome assembly is a fundamental problem in
computational biology. The goal is to assemble the

DNA sequence of an unknown (target) genome using the
short fragments (called “reads”) obtained from it through
sequencing technologies. The output is a set of “contigs”
that represent contiguous portions of the target genome.
Once assembled, the contigs are scaffolded, which is a step
of ordering and orienting the contigs while accounting for
potential gaps between successive contigs.

The genome assembly problem has been a topic of inter-
est for well over three decades now, and yet the need for
new scalable approaches has never been more critical than
it is today. The factor driving this need is the continuously

evolving landscape in DNA sequencing technology. With
the advent of numerous high-throughput sequencing tech-
nologies, it has now become possible (even routine) to
sequence a genome by running multiple clonal copies of the
target or reference genome (i.e., with coverage C 2 ½10; 100�),
through a wetlab sequencing machine; and generating bil-
lions of reads (or hundreds of gigabytes to terabytes of raw
data)—–all in a matter of hours. For instance, a widely used
technology such as Illumina is capable of generating short
reads (�100 bases in length each) with an impressively low
error rate (under 1 percent). There is also a new wave of
“long read” technologies that are emerging in the commu-
nity; however their error rates are still too high for wider
adoption.

In this paper, we address the problem of generating a set
of assembled contigs using short reads sequenced from an
unknown target genome. (We do not consider the subse-
quent contig scaffolding step in this work.) There is a pleth-
ora of short read assemblers that have been developed for
well over a decade (e.g., [1], [2], [3], [4], [5]). A large fraction
of these assemblers use the de Bruijn graph, a graph data
structure built out of fixed length substrings (of length k)
contained in the reads, called k-mers, as their building
blocks (vertices). Edges are established between vertices of
any two consecutive k-mers in a read (overlapping in k� 1
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positions). In contrast to older approaches, de Bruijn graph
based approaches have demonstrated greater time-effi-
ciency and high fidelity in genome reconstruction.

Despite their advantages, an efficient parallel imple-
mentation of a de Bruijn graph-based method on distrib-
uted memory platforms has proven to be challenging for
various reasons. The input read set required to construct
a de Bruijn graph is typically stored in the file system. In
addition, many algorithms use the file system as addi-
tional space for intermediate memory-intensive algorithm
phases. This, coupled with complicated I/O patterns, can
potentially lead to an I/O bottleneck during the graph
construction phase.

Second, to prune erroneous paths or prepare the output,
a parallel implementation that uses a de Bruijn graph
should be able to manipulate the graph in distributed mem-
ory post-construction. This is complicated by the inherently
unstructured nature of the graph (as compared to, say, a
dense matrix), leading to communication imbalance issues
that necessitate specialized optimization strategies.

Finally, generating the output contigs involves performing
numerous “walks” along the graph and enumerating the base
pairs along the path as a contig. This creates multiple chal-
lenges under a distributed memory representation of the
graph, requiring frequent coordination. For instance, one
needs to ensure the same path is not repeatedly traversed by
multiple processes to avoid over-representing a path in the
contigs. This requires coordination (e.g., atomic operations)
and frequent lookup operations in a complex distributed
data-structure that could hamper parallel performance.

Contributions. In this paper, we present the PaKman algo-
rithm that addresses the above challenges. The algorithm
deviates from the state-of-the-art de Bruijn graph-based
methods, and presents a new perspective to addressing the
assembly problem. PaKman combines MPI I/O, MPI collec-
tives, and a novel graph data structure (which we name
PaK-Graph) to simplify I/O and communication patterns,
and eliminate the need for expensive distributed-memory
coordination during the walk phase. We evaluate PaKman
on both shared and distributed memory platforms, demon-
strating near-linear scaling behavior, and observe speedups
up to 3.4� over a state-of-the-art distributed memory
assembler, and up to 41� over a state-of-the-art shared

memory assembler—all while producing comparable qual-
ity in output. To summarize, the key contributions are:

� A novel distributed memory data structure that ena-
bles contig enumeration with minimal coordination.

� An optimized scalable load-balanced algorithm for
k-mer counting. We present two variants for this
method–one that uses blockingMPI calls and a second
version that utilizes MPI non-blocking collective (or
point-to-point) calls in order to overlap the compute
and communication bound regions of the phase.

� A novel contig generation algorithm with simplified
I/O and communication patterns.

� Extensive evaluation of our algorithm with numer-
ous tests spanning a wide variety of genomes diverse
in size, complexity and species type.

� Demonstration and detailed analysis of performance
and output quality (in comparison to parallel state-
of-the-art methods) on both shared and distributed
memory systems.

� Additional results comparing the efficacy of our dis-
tributed k-mer counting method with another state-
of-the-art scalable implementation.

� Evaluation of our algorithm on one of the largest
genomes to be ever sequenced– Mexican axolotl. PaK-
man generates a PaK-Graph with over 37 billion
macro-nodes (out of over 294 billion distinct k-mers),
while producing an output set of contigs in just over
200 seconds on 16,384 cores.

� Performance portability across various computing
platforms.

A preliminary version of this paper appeared in [6].1

2 OVERVIEW OF APPROACH

Fig. 1 summarizes the major steps of the proposed PaKman
framework. Our approach to efficient and scalable genome
assembly involves the following key optimizations:

Contiguous single-pass I/O: Each MPI process reads a
distinct contiguous portion of the input file (comprised of
short reads) in parallel with other processes. After the input

Fig. 1. Schematic illustration of the PaKman assembly framework. Dotted arcs: edges in our PaK-Graph (shown only for illustration and not stored in
our actual implementation); blue dotted arcs: edges internal to a process; and red dotted arcs cross process boundaries. Solid arcs: walks performed
to generate contigs in parallel with replicated copies of the final compacted PaK-Graph as shown. Ĝp: portion of PaK-Graph at process p, Ĝ: the
global copy.

1. PaKmanwill be available at https://github.com/pnnl/pakman
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is processed in one pass through the file, no further I/O is
performed. This minimal I/O requirement, coupled with
the simple I/O pattern, makes it easy to efficiently utilize
optimized I/O subsystems (parallel file systems, striping
optimizations, burst buffers, etc.).

Parallel load-balanced counting of k-mers: The input
reads are processed to generate a stream of k-mers and the
global count for each k-mer is computed. PaKman employs a
scalable load-balanced algorithm to construct the k-mer his-
togram using only three types of MPI collective calls:
MPI_Allreduce, MPI_Alltoall, and MPI_Alltoallv.
An alternative implementation utilizes non-blocking collec-
tive ( MPI_Ialltoall and MPI_Ialltoallv) or point-
to-point ( MPI_Isend and MPI_Irecv) communication; in
order to overlap the compute and communication bound
parts of the phase.

Novel data representation and iterative compaction:
PaK-Graph: While input data and the de Bruijn graph might
be space intensive, we observe that the final output of the
algorithm is only of the order of Megabytes (or a few Giga-
bytes), depending on the species. This motivated the design
of a compact representation of graph representing the
k-mer connectivity. Rather than construct a conventional de
Bruijn graph, we construct a new type of graph (which we
call PaK-Graph; defined in Section 3.2), which provides a
way to arrive at a compact representation of the k-mers.
This graph captures the k-mers and their connectivity in a
lossless fashion. While the savings are not significant ini-
tially, we iteratively compact the graph further to dramati-
cally reduce its size while preserving the total information.
We demonstrate this compaction procedure can be per-
formed efficiently in parallel.

PaK-Graph replication and parallel deterministic walks:
We compact the graph until it fits well within the memory
available in each node of a distributed memory machine.
We observe that the cost of compaction quickly decreases as
the data structure shrinks in size, making subsequent com-
paction operations inexpensive. We exploit this property to
sufficiently compact the graph to enable low-cost replication
on all compute nodes of the parallel system. Once repli-
cated, each MPI process picks a distinct set of starting points
and performs disjoint walks to generate the contigs without
any further communication or coordination. We achieve
this using a deterministic algorithm to “wire” the paths
through each vertex in a PaK-Graph to enable non-redun-
dant walks without further coordination. This approach
reduces the often complicated implementation of the walk
phase into an embarrasingly parallel procedure (starting
from each candidate k-mer) that incurs negligible time.

PaKman leverages algorithmic improvements to enable
simplified communication and I/O strategies. Going fur-
ther, the entire algorithm and its implementation rely only
on a small number of MPI I/O and MPI collective opera-
tions, greatly simplifying performance portable implemen-
tations on new systems. The algorithm is efficient enough to
outperform many shared-memory-specific de Bruijn graph
based methods on shared memory platforms.

In the rest of the paper, we describe the design and
implementation of each aforementioned step in detail and
present results evaluating PaKman across eight different
datasets varying in size and complexity of the genome.

3 METHODS

3.1 Notation and Terminology

Let r denote a read of an arbitrary length (denoted by jrj)
over the DNA alphabet A ¼ fa; c; g; tg. For ease of exposi-
tion, we index the characters in a read from 1. Let rði; jÞ
denote the substring of length j starting at index i in r, such
that iþ j� 1 � jrj. We denote the input set of n reads as
R¼ fr1; r2; . . . rng, and their total length as N (¼P

i jrij). We
use � operator to denote string concatenation.

A k-mer in a read r is a substring of length k in r, for a
given k > 0; similarly, a (k-1)-mer is a substring of length
k-1. We use the term l-mer to denote a substring of length l
that is significantly shorter than k—e.g., a typical value of k
is between 32 and 48, whereas l is between 6 and 10.

3.2 PaK-Graph: An Enhanced String Graph

In this section we introduce a new graph data structure
called PaK-Graph, that we will use in our parallel algorithm
(Section 3.3). Given an input read setR, and positive integer
constants k and l such that l < k, we define a directed graph
ĜðV;EÞ where V is the set of all “macro-nodes” and E is the
set of all edges. We call each vertex in Ĝ a “macro-node”
because of its augmented node structure as defined below.

Macro-Node. Each macro-node in Ĝ (as shown in Fig. 2a)
is defined by a distinct (k-1)-mer present in R. A macro-
node u 2 V has the following node structure:

� labelðuÞ is the (k-1)-mer corresponding to u.
� prefix extensionsðuÞ is a set of arbitrarily long

strings, each representing a candidate prefix exten-
sion of the (k-1)-mer (for an output contig).

� suffix extensionsðuÞ is a set of arbitrarily long
strings, each representing a candidate suffix exten-
sion of the (k-1)-mer (for an output contig).

Fig. 2. Macro-node structure and illustration.
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An extension with an empty string is called a terminal
(prefix or suffix) extension.

Edges in Ĝ. Edges in Ĝ are defined between a suffix extension
of one macro-node and a prefix extension of another. Specifi-
cally, there exists a directed edge e from a suffix extension x of a
macro-node u to a prefix extension y of another macro-node v if
and only if labelðuÞ � x ¼ y � labelðvÞ. Note that this implies there
can be nomore than one edge incident on each extension.

Fig. 2a represents a single macro-node identified by a
(k-1)-mer. Fig. 2b presents two macro-nodes GCA and CAT
connected by an edge such that, GCA � T ¼ G � CAT . Fig. 2c
presents an example of a PaK-Graph for a given input of
two reads for k=3. The empty extenstions (shown in red) for
the macro-nodes AG, TG, TA, and TT indicate there exists a
terminal prefix extension for nodes AG and TG and a termi-
nal suffix extension for the nodes TA and TT.

Initially, there exists one macro-node for every (k-1)-mer
in R. As for edges, for each k-mer k1 ¼ a1a2 . . . ak in R, an
edge is introduced in Ĝ from the suffix extension with string
ak of the macro-node for a1a2 . . . ak�1 to the prefix extension
with string a1 of the macro-node for a2a3 . . . ak. In this initial
state, the PaK-Graph is equivalent to the de Bruijn graph
constructed forR. However, unlike the traditional de Bruijn
graph, each macro-node through its extensions can encode
an arbitrarily long path along the de Bruijn graph in a com-
pressed manner. For this reason, our PaK-Graph can be
viewed as an enhanced version of the string graph data
structure originally introduced by Myers [7].

In the implementation, we only store the set of macro-
nodes in Ĝ . Edges are not explicitly stored because the suffix/
prefix from the extension and the (k-1)-mer can be used to
uniquely determine neighboringmacro-nodes. Sections 3.3.3–
3.3.5 further detail the implementation of Ĝ.

3.3 PaKman: Parallel Genome Assembly Algorithm

In this section, we describe PaKman, our parallel algorithm for
genome assembly. The input is a set of n readsR (made avail-
able as a single multi-sequence FASTA format file) and posi-
tive integer parameters k and l (l < k). The output is a set of
contigs representing contiguous portions of the target genome.
The number of processes is denoted by psize.

The algorithm consists ofmultiple steps as described below.

3.3.1 Input Reading

The input is loaded from the input file in a distributed man-
ner such that each process receives roughly the same
amount of sequence data (	 N

psize per process). This is
achieved by each process performing a MPI_File_get_-

size and subsequently loading its unique chunk of reads
using MPI-IO functions ( MPI_File_read_at_all), such
that no read is split among processes. Henceforth, we use
Rp to denote the read set loaded at process p (i.e.,Rp
R).

3.3.2 k-mer Counting

The goal of this stage is to generate and compute the fre-
quency of all k-mers from R. A well-known approach is to
generate all k-mers by simply sliding a window of length k
over each read and aggregating counts in a lookup table
with 4k buckets (one for each possible k-mer over the DNA

alphabet) [8]. However, the large size of k (� 32) makes this
simple approach prohibitive in space. Therefore, we use an
alternative approach based on minimizers [9]. The idea is to
use a smaller window length l (< k; e.g., l ¼ 8) to partition
k-mers into buckets, prior to obtaining the global count for
each k-mer from each bucket. For parallel processing, each
min-lmer bucket is assigned a distinct owner process. There
are several ways to implement this minimizer approach
using techniques from MinHashing based principles [10]. In
our implementation, we assign a k-mer to the bucket corre-
sponding to a least frequent l-mer occurring within that
k-mer (i.e., making it the k-mer’s choice of its min-lmer).
This way, we can expect (though not guarantee) that conse-
cutive k-mers from the same overlapping region across
reads are expected to be assigned to the same destination
process bucket, which helps reduce communication later.

Algorithm 1 outlines our k-mer counting procedure. In the
first step, each process generates all l-mers from its reads in
Rp and obtains a global count for each l-mer using an
MPI_Allreduce call. The next step implements the mini-
mizer approach described above. This step involves redistrib-
uting the k-mers generated at various processes to their
respective min-lmer buckets using MPI_Alltoallv. In our
implementation, we perform this task using multiple rounds
of communication to scale up to large input sizes (we use a
batch size of a 100million k-mers in all our experiments).

Algorithm 1. k-mer Counting

Input: Input set of reads for each process: Rp, number of
processes: psize, batch_size: b

Output: A set of distinct k-mers and their corresponding
counts.

1: Initialize lmer frequency buffer of size 4l

2: for each r 2 Rp do
3: for each l-mer i 2 r do
4: Increment lmer frequency½i� /*Update l-mer frequency*/
5: end
6: end
7: MPI_Allreduce to compute the global counts for all l-mers
8: Initialize buffer kmers per proc of size psize
9: num kmers 0
10: for each read r 2 Rp do
11: min lmer 0;min lmer count 1
12: for each k-mer k 2 r do
13: for each l-mer i 2 k do
14: if lmer frequency½i� < min lmer count then
15: min lmer i
16: min lmer count lmer frequency½i�
17: end
18: end
19: target id retrieve the process id based ofmin lmer
20: Insert k in kmers per proc½target id�
21: num kmers num kmersþ 1
22: end
23: if num kmers > b then
24: Update kmer list by transferring k-mers using MPI_

Alltoallv

25: reset num kmers 0
26: end
27: end
28: return kmer list
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At the end of this step, all processes have a set of distinct
k-mers and their respective global counts. Then, we perform
a simple threshold-based pruning: we remove k-mers that
have a count below a certain threshold t. Such k-mers are
deemed “poor quality” from the assembly perspective. We
determine t by plotting a k-mer frequency histogram for a
fixed number of top buckets (say h)—obtaining the global
counts using an MPI_Allreduce—and setting t to the
minimum over those h bucket counts. Parameter h is tun-
able and is set to 20 in our experiments.

Since the k-mer counting method is compute intensive by
nature, we further extended our implementation to account
for overlapping the computation with the multiple rounds
of communication, in order to further improve the perfor-
mance and scalability of this phase. Results for our k-mer
counting phase utilizing MPI non-blocking collective (or
point-to-point) communication is described in Section 4.2.2.

3.3.3 PaK-Graph Construction: k-mer Distribution

We now describe the distributed construction of the initial
PaK-Graph, involving just a single MPI_Alltoallv com-
munication. At the end of this step, each process p will hold
a distinct portion Ĝp (subset of macro-nodes) of the initial Ĝ.

Prior to constructing the PaK-Graph , we need to redistrib-
ute the k-mers because we need each k-mer in two places—
one corresponding to the macro-node of its prefix (k-1)-mer
and another to the suffix (k-1)-mer (as shown in Fig. 2). (If both
(k-1)-mers are identical, then the k-mer is needed only in one
place.) We identify the process id that will act as the owner for
each macro-node using a linear congruential hash function for
the macro-node’s corresponding (k-1)-mer; Subsequently,
using an MPI_Alltoallv call, the set of k-mers are redistrib-
uted among the process space such that all k-mers correspond-
ing a given macro-node are collected on a single process.
At this point, each process p has a list of tuples Kp ¼
fkmer; countg that will serve as the input to generate its Ĝp.

Fig. 3 provides an example illustrating the redistribution
of a given k-mer to two separate processes and thereafter
contributing to two distinct macro-nodes.

3.3.4 PaK-Graph Construction: Macro-Nodes

Algorithm 2 shows the steps to build Ĝ on each process p
using Kp. We make a couple of key observations here. First,
a process p constructs a macro-node only if its k-mer falls in

its domain (using the hash function). Second, as noted in
Section 3.2, the edges of Ĝ are not explicitly stored; instead,
the extensions on either side of a macro-node are sufficient
to capture all the information pertaining to its edges. How-
ever, how do we know if a particular extension exists or not
(without communicating)? To answer this question, con-
sider a valid prefix extension c � x0, where c 2 A and x0 is the
(k-1)-mer corresponding to the macro-node under construc-
tion. Then, c � x0 must be a k-mer that is also represented in
Kp (as a result of the initial MPI_Alltoallv). This is the
advantage of initially communicating k-mers to construct
the local macro-nodes. In other words, the algorithm
becomes communication-free at this step because all neces-
sary information for macro-node construction is available
from Kp.

Algorithm 2. Construct a PaK-Graph of macro-nodes

Input: Input set of tuples (k-mer, k-mer_count):Kp at process
p, AlphabetA, CoverageC

Output: The local Ĝp at process p
1: for each x 2 Kp do
2: for each (k-1)-mer x0 2 x do
3: if p is the owner for x0 and x0 =2 Ĝp then
4: Create macro-node uwith label x0

5: for each c 2 A do
/* Detect edges: prefix extensions */

6: if (c � x0Þ 2 Kpthen
7: Append c to u:prefixes
8: Set vc ceilðkmer countðc � x0Þ=CÞ
9: Set u:prefix counts fkmer countðc � x0Þ; vcg
10: Set u:prefix terminal false

11: end
/* Detect edges: suffix extensions of the

form x0 � c; Details omitted due to simi-

lar logic as above. */
12: . . .
13: end

/* set the internal wiring from prefix to suf-

fixextensions for node u */
14: wire info = setup_wiring ðuÞ
15: Append wire info to u:wire info
16: Add u to Ĝ
17: end
18: end
19: return Ĝ
20: end

There are two other steps in Algorithm 2 that need further
elaboration. First, along with each extension, a list of pairs of
the form hkmer count; visit counti is stored; where the visit_-
count represents the number of times that extension can be
allowed to be traversed while taking part in contig enumera-
tion (explained later). It is initialized to dkmer count=Ce,
where C is the sequencing coverage. At this time, we also
determinewhether a particular extension is terminal or not.

3.3.5 PaK-Graph Construction: Wiring

Next, we compute a “wiring table” that holds the mapping
from each prefix extension of themacro-node to a correspond-
ing suffix extension. Algorithm 3 walks through the essential
steps of the macro-node wiring procedure. We explain the

Fig. 3. Redistributing k-mer CTGACCATTA (with k=10) to two pro-
cesses; serving as a prefix (k-1)-mer in macro-node M2 and as a suffix
(k-1)-mer in macro-nodeM1.
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main idea of the algorithm using the simple example in Fig. 4,
which shows a macro-node for the (k-1)-mer ACCT (k ¼ 5). A
more detailed description of the wiring table contents is pre-
sented in Section 3.4.1.

Initially, this macro-node contains two prefix and four
suffix extensions (nonterminal), corresponding to a group
of six k-mers. We first calculate the sum of all the prefix (pc)
and suffix (sc) visit counts. If the suffix (prefix) total count
exceeds the prefix (suffix) total count, we introduce a new
terminal extension on the prefix (suffix) side (shown in red),
with the tuple h1; jsc� pcji as shown. Subsequently, we con-
struct a wiring table that connects each prefix extension to
one or more suffix extensions (i.e., a fan-out). Note that mul-
tiple prefix extensions may also connect to one suffix exten-
sion (i.e., a fan-in). These wiring decisions are made based
on the visit counts using a greedy heuristic. For instance, the
prefix extension corresponding to T that has the maximum
visit count (8) is considered first. This extension greedily
selects the top available suffix extensions whose total visit
counts become greater or equal to its own visit count—effec-
tively selecting the suffixes C and A as shown. Ties are bro-
ken arbitrarily (albeit deterministically). This procedure is
repeated until all extensions have been exhaustively wired.

Invariant 1. For every macro-node , the sum of all visit counts of
the prefix extensions will exactly match the sum of all visit counts
on the suffix side. Steps 3� 20 inAlgorithm 3 preserves this prop-
erty which holds true in every instance of a givenmacro-node.

Establishing a deterministic wiring strategy as described
above helps us ensure that during traversal of the macro-
nodes (in the contig generation phase), each walk is carried
out in a coordination-free/disjoint manner—–instilling maxi-
mum concurrency in the process (Section 3.3.9).

This simple greedy strategy in wiring is also motivated by
its impact on the quality of the output contig. Intuitively the
(initial) visit count of an extension represents the number of
distinct locations that particular k-mer (obtained by
concatenating that extension with the (k-1)-mer) is expected to
be present along the genome. Consequently, k-mers that are
adjacent to this k-mer can also be expected (but not guaran-
teed) to occur with approximately the same frequency (e.g., if
a k-merACCAG is present 10 times, then k-mers that represent
one character extensions such as CCAGT or TACCA (if they
exist) can also be expected to occur with similar frequency
(without guarantee)). This is the intuitive reason behind the
greedy strategy in wiring. When tested with k=32 (and l = 8),
we observed the min-lmer (calculated based on k-mer fre-
quency) across consecutive k-mers for a given read, to change
once every forty base pairs on average, thus offering further
validation for our method. We note here that our wiring

strategy is amenable for extension to incorporate other qualita-
tive information such as paired-end reads. If such information
is made available, it could potentially have a larger positive
impact on assembly quality. This is part of our futurework.

Algorithm 3.Wiring Algorithm: setup wiringðÞ
Input: Amacro node:Mn
Output: Updatedmacro node:Mnwith wire info

1: Initialize sc=0, pc=0
2: Initialize null sid=-1, null pid=-1

/* Calculate sum of all suffix visit counts of

Mn */
3: for each i 2Mn:suffixes do
4: update sc scþMn:suffix counts½i�:vc
5: end

/* Calculate sum of all prefix visit counts of

Mn */
6: for each i 2Mn:prefixes do
7: update pc pcþMn:prefix counts½i�:vc
8: end

/* initialize and assign value to null suffix of

Mn */
9: for each i 2Mn:suffixes do
10: ifMn:suffixes½i�:sizeðÞ ¼¼ 0 then
11: Set null sid i
12: SetMn:suffix counts½i�  f1; ðpc� scÞg
13: end
14: end

/* initialize and assign value to null prefix of

Mn */
15: for each i 2Mn:prefixes do
16: ifMn:prefixes½i�:sizeðÞ ¼¼ 0 then
17: Set null pid i
18: SetMn:prefix counts½i�  f1; ðsc� pcÞg
19: end
20: end
21: leftover scþMn:suffix counts½null sid�:vc

/* Initialize a wiring table for a macro-node,

to hold information pertaining to every suf-

fix connected to a given prefix */
22: Initialize

Mn:wireinfo ðlenðMn:prefixesÞþ lenðMn:suffixesÞ þ 1Þ
/* Initialize an array to maintain the offsets

within each suffix edge */
23: Initialize offset in suffix lenðMn:suffixesÞ
24: while leftover > 0 do
25: set largest pid prefix with largest visit count
26: set largest sid suffix with largest visit count
27: count minðprefix½largest pid�; suffix½largest sid�Þ
28: update Mn:wireinfo½pid�  ðlargest sid; offset in suffix

½largest sid�; countÞ
29: Decrement leftover leftover� count
30: Increment offset in suffix½largest sid�þ ¼ count
31: end

3.3.6 Contig Generation: Generate Independent Set

Using the initial Ĝ, we initiate an iterative process of compact-
ing the PaK-Graph until the total number of macro-nodes
across all processes reduces to the extent that the entire graph
will fit in the memory of each compute node. In our experi-
ments, we set this thresholdc to 100Kmacro-nodes.

Fig. 4. macro-node wiring illustration for (k-1)-mer ACCT. The pair <
kmer count; visit count > labels each extension. The red prefix exten-
sion denotes a terminal prefix.
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Algorithm 4 describes the major steps of the iterative pro-
cess. The main idea of the algorithm is to identify numerous
macro-nodes for removal, remove them in a way that their
information is captured in the macro-nodes that survive,
and iterate with the compacted graph. In the interest of
space, we include detailed algorithmic pseudocodes for the
individual functions (Generate independent set, iterate and
pack Mnode and serialize and transfer) in supplementary
material, which can be found on the Computer Society Digi-
tal Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2020.3043241; and instead summarize the main ideas
in text alongside an illustration (Fig. 5).

We formulate the problem of identifying macro-nodes to
be removed as one of identifying an independent set I of
macro-nodes in Ĝ. An independent set is a set of vertices in
which no two are adjacent to one another. To identify an I cor-
responding to a Ĝ, we use a simple distributed scheme in
which each macro-node selects itself as part of the output set
if and only if it contains the lexicographically largest (k-1)-mer
among all its immediate neighbors. We devised this simple
scheme because it enables each macro-node to make a strictly
local decision without having to communicate with any of its
neighbors. Surprisingly, we found this simple scheme also
yields significant compaction. Specifically, in our experi-
ments, we found the reduction in the number of macro-nodes
between successive iterations ranged from � 25� 28%, over
the first few iterations. Such a sustained reduction would
imply a Oðlog ðm=cÞÞ number of iterations required to con-
verge, wherem is the number ofmacro-nodes in the initial Ĝ.

Algorithm 4. IterativeAlgorithm toCompact a PaK-Graph

Input: PaK-Graph Ĝp , node_threshold: c
Output: Compacted graph

1: Initialize independent set (array) I  ;
2: num macro nodes lenð Ĝp)
3: while num macro nodes > c do
4: I  Generate independent setð Ĝp)

/* For every node u 2 I, pass u.pred_ext to u’s
successor and u.succ_ext to u’s predeces-

sor, and then delete u. iterate and pack Mnode
returns the list of neighboring macro-

nodes to be modified */
5: ðtransfer nodeInfo; pcontig listÞ  iterate and pack

MnodeðI; Ĝp)
6: new size lenðĜpÞ � lenðIÞ
7: Resize Ĝp to new size after deleting all u 2 I /* Inform

all macro-nodes that are neighbors of

deleted nodes in I so that they can update

their extensions. This is achieved using an

MPI_Alltoallv. */
8: rewire nodes list 

serialize and transferðtransfer nodeInfo; ĜÞ
9: Iterate through the list ofmodifiedmacro-nodes and re-wire

them
10: end
11: populate begin kmer list list of starting points for the

walks
12: global Ĝ MPI AllgathervðĜÞ
13: return (global Ĝ, pcontig list, begin kmer list)

Intuitively, themotivation behind iterative compaction is to
compress the graph to a state where the graph can be

replicated in the local memory of each compute node and the
contig enumeration step can be embarrassingly parallelized.
The idea of detecting and using an independent set of macro-
nodes to compact the graph at every step ensures that this
compaction is achieved in a lossless manner. This is because
no twomacro-nodes to be removed at an iteration can be adja-
cent in an independent set, and a macro-node that survives
this removal process carries forward the sequence information
preserved in the corresponding extensions of the adjacent
removedmacro-nodes—as illustrated by the example in Fig. 5.
This property holds true even in the more complex cases
wherein amacro-node to be retained hasmultiple predecessor
and successor macro-nodes (with one or more being part of
the independent set); in such a case, our wiring scheme guar-
antees a deterministic pairing of all the added extensions at the
surviving node, thereby resulting in no loss of data (details of
the wiring implementation provided in Section 3.4.1). In terms
of space complexity, with each compaction step, the removal
of macro-nodes generates significant savings in practice, not
only owing to the space constant (i.e., overhead) associated
with eachmacro-node, but also by eliminating the redundancy
that exists in the representation of k-mers among adjacent
nodes in a PaK-Graph (i.e., the (k-1)-mer label and implicit
edges).

3.3.7 Contig Generation: Iterate and Pack Nodes

In this step, the impact of removing the macro-nodes that
are part of the independent set at each iteration is communi-
cated to the surviving macro-nodes, so that they can update
their structure (described in Section 3.3.8). In the first itera-
tion of the example in Fig. 5, once the macro-node corre-
sponding to label GCGA is removed, its two corresponding
wired prefix-suffix extension pair, namely the macro-nodes
for AGCG and CGAT, need to be informed. If any of these
macro-nodes are remote, then the information about this
deleted macro-node needs to be communicated. The iterate
and pack function prepares the data to be communicated
and the next step (serialize and transfer) performs the com-
munication and macro-node update.

3.3.8 Contig Generation: (de)Serialize and Transfer

In this step for iterative graph compaction, an MPI_All-

toallv communication call relays all removed macro-node
information to the impacted processes. Subsequently, macro-
node information at the impacted processes is updated based

Fig. 5. Illustration of iterative compaction of a five-macro-node PaK-
Graph to a two-macro-node one in three iterations.

GHOSH ET AL.: PAKMAN: A SCALABLE ALGORITHM FOR GENERATING GENOMIC CONTIGS ON DISTRIBUTED MEMORY MACHINES 1197

http://doi.ieeecomputersociety.org/10.1109/TPDS.2020.3043241
http://doi.ieeecomputersociety.org/10.1109/TPDS.2020.3043241


on the macro-nodes removed from Ĝ. Consider again the
example in Fig. 5. After removal of the macro-node GCGA in
iteration 1, the neighboring macro-nodes now become imme-
diate predecessor and successor (akin to the removal of a
node in a linked list). Note that such new predecessor-succes-
sor relationship is established only between pairs of prefix-
suffix extensions that have an entry in the wiring table of the
macro-node being removed. As a result of this repacking, the
suffix and prefix extensions of the two macro-nodes (AGCG
and CGAT, respectively) should be extended as shown to
include the values from removed macro-node. Note that if
both a prefix and suffix extension wired pair for the removed
macro-node happen to be terminals, then we construct and
output the corresponding contig.

It is to be noted that the sizes of the macro-nodes in the
buffer transfer nodeInfo do not stay constant, owing to the
varying lengths of the tuple entries that get communicated.
In fact, the extensions tend to grow in size as the number of
iterations grows. As a result, we need to serialize the con-
tents of the transfer nodeInfo buffer to convert it to a byte
stream. We utilize cereal [11], a lightweight C++11 serializa-
tion library. We create a custom MPI derived datatype to
encapsulate the serialized data in the send buffer for
MPI_Alltoallv. Once the call completes, we deserialize
the receive buffer to obtain the list of tuples, which contain
the macro-nodes to be updated in Ĝ. Lastly, we add the
updated macro-nodes to a buffer (rewire list); this is to initi-
ate the rewiring of all modified macro-nodes.

3.3.9 Contig Generation: Gather and Walk

As described in Algorithm 4, at the end of the iterative
phase, we are left with a total number of macro-nodes < c

across all processes. At this stage, each process prepares a
list of distinct starting points for initiating a walk in the
compacted PaK-Graph. Entries in the begin kmer list are
identified as the (k-1)-mer of macro-nodes with a terminal
prefix (and visit count > 0). Given that the graph has been
sufficiently compacted (such that it can fit the memory of a
single node), we initiate a call to MPI_Allgatherv to col-
late and gather all remaining macro nodes from all the pro-
cesses. Thus each process now effectively receives a copy of
compacted Ĝ, i.e., global Ĝ.

The final phase of the contig generation algorithm
involves the traversal (or walk) across the nodes in global Ĝ.
As described in Algorithm 5, we begin enumerating a contig
for each entry in begin kmer list. Each MPI process initial-
izes a contig and appends to it the terminal prefix extension
followed by the macro-node, (k-1)-mer, and then initiates a
walk, wherein it looks up its corresponding suffix extension
in the wiring table and appends it to the contig. If the suffix
extension is not terminal, the process continues the walk in
a recursive fashion until a terminal suffix is encountered, at
which time the walk is completed and the contig is returned
as output. The detailed algorithmic pseudocode for the walk
function is described in Algorithm 6.

We illustrate the walking algorithm in Fig. 6, wherein we
depict the contigs enumerated across three macro-nodes.
The numbers on each wire represent the visit count for the
corresponding prefix/suffix extensions and the tuple (in
brackets) indicates the: foffset in suffix, countg on the wire.

The walking algorithm ensures that at no point during the
walk, will the same sub-range in a wire be walked more
than once. As seen in the case of contigs 1 and 2, the edge
GCATT connecting the first and second node is traversed as
part of both contigs. However, since they traverse separate
ranges within the wire, both walks are disjoint and can
occur concurrently.

Invariant 2. If we have two or more paths that reach a particular
macro-node with different ranges; then they shall never reach
any other macro-node with intersecting ranges. The steps of
Algorithm 6 preserves this property.

Lastly, we summarize the properties of the walking algo-
rithm: a) Any walk will start at a terminal prefix and end at
a terminal suffix; b) Every walk will terminate, and two
walk’s starting from two different terminal prefixes will be
guaranteed to be disjoint; c) There might be instances where
a walk may traverse the same node multiple times owing to
presence of repeat regions; and d) The algorithm does not
guarantee that all repeat regions will be reachable from a
terminal prefix, and thus covered as part of the contigs.

Algorithm 5.Walk Algorithm to Generate Final Contigs

Input: global Ĝ: compacted PaK-Graph, begin kmer list
Output: Final set of contigs

1: for each entry b 2 begin kmer list do
2: mn find b in global Ĝ
3: for each extension i 2 lenðmn:PrefixesÞ do
4: if i is terminal then
5: prefix id i
6: freq  mn:prefix counts½i�
7: Initialize contig c
8: Appendmn:prefixes½i� to c
9: Appendmn:ðk-1)-mer to c

/* A walk in global Ĝ terminates when a suffix

terminal is encountered. The final con-

tig is returned by the output function

within the call to walk */
10: walk(c; freq; 0; mn; prefix id)
11: end
12: end
13: end

3.4 Algorithm Properties

3.4.1 Macro-Node Wiring Table Implementation

As defined in Section 3.3.5, there exists for every macro-node:
a) a set of prefix extensions b) a set of suffix extensions and c)
a wiring table. For every prefix/suffix extension there exists a
corresponding tuple <k-mer count, visit count> , wherein

Fig. 6. Walk algorithm illustration.
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the k-mer count represents the number of occurrences of the
concluding k-mer (for the given extension) in the input data,
and the visit count is calculated as dkmer count=Ce, where C
is the sequencing coverage. The visit count determines the
number of times that extension can be traversed during the
‘walk’ phase at the time of contig generation.

Algorithm 6. Algorithm for the walkðÞ Function
Input: Partial contig: c, incoming frequency: freq, incoming

prefix edge offset: offset in prefix, macro_node:
mn, prefix edge index: pid

Output: list of contigs
1: partial contig size lenðcÞ
2: freq remaining freq
3: internal off ¼ 0 keeps track of which entry within len

(mn:wire info½pid�) to continue walking from
4: for each entry i 2 mn:wire info½pid� do
5: sid mn:wire info½pid�½i�:suff id
6: sz mn:wire info½pid�½i�:count
7: off in suffix mn:wire info½pid�½i�:suff off

/* internal off is always initialized to zero and

incremented bymin freq */
8: if internal off for i is exhausted then
9: continue
10: end
11: if offset in prefix > internal off
12: Set off in wire offset in prefix� internal off
13: end
14: Set next off  off in suffixþ off in wire
15: Set freq in wire 

minðfreq remaining; ðsz� off in wireÞÞ
16: AppendMn:Suffixes½sid� to c
17: ifmn:suffix terminal½sid� is terminal then

/* output contig when walk reaches terminal

suffix */
18: output(c)
19: end
20: else
21: Lookup the next macro_node next mn
22: next prefix id prefix id of next mn
23: walk(c, freq in wire, next off , next mn, next prefix id)
24: end
25: Decrement freq remaining� ¼ freq in wire
26: Resize c to partial contig size
27: Increment internal off  mn:wire info½pid�½i�:count
28: end

The wiring table designates a mapping strategy, assign-
ing each prefix extension to a corresponding suffix exten-
sion. Algorithm 3 enumerates the wiring strategy in greater
detail. In this section we elaborate on the structure of the
wiring table entries, and provide additional implementation
specific details on how the wiring decisions influence the
paths traversed in the PaK-Graph, during the ‘walk’ phase
at the time of contig generation.

There exists at least one entry for each prefix extension in
the wiring table (as shown in steps 21� 30 of Algorithm 3),
wherein the structure of an entry is defined by the following
tuple: < suffix id, offset in suffix, count > .

� suffix id is identified by the unique suffix extension
id, mapped to a given prefix extension. Wiring

decisions are made based on the visit count using a
greedy heuristic as explained in Section 3.3.5.

� offset in suffix represents the offset (or sub-range)
within the wire to be traversed by the given entry.
This value is initialized to zero, and incremented
when there exists multiple prefixes mapped to the
same suffix extension.

� count represents the frequency or the number of times
this path can be traversed, and is initialized to
�minimumfvisit count(largest prefix), visit count
(largest suffix)g. The largest prefix/suffix is deter-
mined based on the visit count upon applying the
greedy heuristic, as detailed inAlgorithm 3.

Note that multiple prefix extensions may be connected to
one suffix extension (i.e., a fan-in or join) as shown for the
macro-node in Fig. 7a. We notice that there exists multiple

Fig. 7. Illustration of wiring strategies for two separate macro-nodes with
their corresponding wiring tables, for coverage(C)=80x. The wires
labeled ‘TE’ (and in red) imply a Terminal Edge; and the number on the
dotted wires represents the value of ‘count’.
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entries in the wiring table with suffix id set to 1, thus indicat-
ing that multiple prefixes have been mapped to the same suf-
fix (denoted by id ‘1’). However for each of those entries we
observe a distinct value for the offset in suffix. The offset
value thus ensures that there exist separate ranges within a
wire, such thatmultiple disjointwalks can occur concurrently.

Invariant 3. At the instance of a fan-in (join), two or more differ-
ent branches (or paths) that connect to the same suffix, will
originate from disjoint prefixes. The visit count of an edge on
the suffix side will always correspond to the sum of all its
incoming edges from the prefix side.

The same is true in vice versa wherein a single prefix
may be connected to multiple suffix extensions (i.e., a fan-
out or fork) as shown in Fig. 7b. In this case, we observe
multiple entries in the wiring table for a given prefix id
(denoted by id ‘1’), wherein each entry is mapped to a dif-
ferent corresponding suffix id.

Invariant 4. At the instance of a fan-out (fork), two or more dif-
ferent branches (or paths) that connect to the same prefix, will
map to disjoint suffixes. The visit count of the incoming edge
on the prefix side will always match the sum of all outgoing
edges on the suffix side.

The wiring strategy described in Algorithm 3 will pre-
serve the properties of Invariants 3 and 4, which holds true
throughtout a given path traversed in the PaK-Graph.

3.4.2 PaKmanWalk Algorithm Lemmas

Lemma 1. A walk will start at a terminal prefix and always ter-
minate in a terminal suffix.

Proof. As outlined in Algorithm 5, contig enumeration
starts with a begin k-mer, which is identified as a terminal
prefix with a corresponding visit count > 0. For every
begin k-mer, we retrieve the visit count (from the macro-
node) corresponding to the terminal prefix (denoted as
pid) in the variable freq, and subsequently initiate the walk
function.

The walk function as detailed in Algorithm 6, performs
a lookup in the wiring table for pid and retrieves the cor-
responding a) suffix_id, denoting the suffix mapped to
pid, and b) offset_in_suffix, which specifies the offset in
the wire to continue the walk. The walk function is
henceforth invoked in a recursive fashion by the algo-
rithm at every instance a lookup is performed, to traverse
the next macro-node in the path; and concludes once we
span all the branches for a given pid. It is to be noted that
the freq count, ensures that a k-mer is traversed exactly
the number equivalent to its corresponding visit count.

By virtue of Invariant 2 we, know that no two paths
shall walk in overlapping ranges, therefore in the event
that multiple suffixes are mapped to the same pid, each
walk shall proceed separately, in a disjoint fashion, along
the designated offset. As a result a walk may consist of
multiple paths (akin to a rooted tree).

By virtue of the deterministic wiring strategy, every
path will encounter a terminal suffix when the freq count
has been exhausted. Thuswe can prove that awalk starting
at a terminal prefix can lead to multiple terminal suffixes,

and thereby enumeratemultiple contigs (wherein each tra-
versed path yields a distinct contig). tu

Lemma 2. The walking algorithm is deterministic and data-race
free.

Proof. Irrespective of the number the processes, each walk
begins at a distinct terminal prefix of a given macro-node.
Each prefix extension is mapped to a corresponding suffix
extension using a deterministic wiring strategy as detailed
in Algorithm 3. Macro-nodes with updated extensions at
the end of each iteration of the compaction phase are re-
wired in order to guarantee deterministic pairing of all
added extensions, thereby ensuring no loss of data. As a
result we can establish that all walks on the compacted
PaK-Graph are deterministic i.e., the algorithm generates
the same set of contigs as output for every run.

In the event that multiple processes walk the same path,
the setup of the wiring table (denoted as wireinfo in Algo-
rithm 6) ensures that each process traverses the path at a
distinct offset (off in suffix as enumerated in Algorithm
6), wherein both the visit count and offset of the subsequent
macro-node traversed is uniquely inferred at each level of
recursion as seen in lines 14-15, until the walk concludes in
a terminal suffix (as seen in lines 17� 19). As a result, we
can guarantee that walks proceeding concurrently on the
same path will do so without encountering a race-condi-
tion, since internally each process will travel at a different
offset range. tu

3.5 Limitations of the PaKman Algorithm

In this section, we discuss some of the implications of our
algorithmic choices and point to avenues for further research:

� The performance of the input reading phase depends
largely on the I/O subsystem. The absence of a good
I/O subsystem may lead to bottlenecks in perfor-
mance, reducing the overall speedupwe can obtain for
the full computational pipeline. We have studied the
impact of I/O related parameters across multiple file-
systems and have presented our analysis in Section 4.2.

� Our wiring algorithm relies on a greedy heuristic that
takes the visit count of a k-mer into account while
determining neighbors. As a result, we have observed
instances wherein a false connectionmay lead to amis-
match, thereby, contributing to unaligned regions in
the contigs. The quality of the wiring decisions made
can be potentially improved with the incorporation of
auxiliary information (such as paired-end) as available.

4 EXPERIMENTAL EVALUATION

WeevaluatedPaKmanusing the datasets shown inTable 1.All
read datasets contain single-end reads generated from the real
genome sequences, using either the ART Illumina read simu-
lator [12] or BBMap randomreads [13]. This approach is consis-
tent with practice, as the simulators record the originating
location for each read which can be later used as groundtruth
for validation.

Our distributed memory experiments were conducted on
the NERSC Cori machine (Cray XC40), where each node has
128 GBDDR4memory and is equippedwith dual 16-core 2.3
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GHz Intel Haswell processors. The nodes are interconnected
with the Cray Aries network using a Dragonfly topology.
Cori supports different file systems including: a) Lustre file
system (with 30 PB of disk and > 700 GB/second I/O band-
width), b) Burst Buffer, and c) GPFS. Our shared memory
experiments were conducted on Koothan, a single-node
machine with 6TB memory and dual 224-core 2.20 GHz Intel
Xeon(R) Platinum 8276MCPU.

All genomes presented in this study were obtained from
NCBI (www.ncbi.nlm.nih.gov). Table 1 provides greater
detail on the assembly, size and species group for each of
the reference genomes.

In Section 4.1, we compare the performance (both runtime
and output quality) of PaKman with other state-of-the-art
implementations utilizing datasets i-vi (of Table 1) on both
distributed and shared-memory systems. Section 4.2, con-
ducts an extensive evaluation and presents a phase-wise
breakdown of PaKman’s performance pipeline, analyzing the
time spent in computation versus communication. We also
include a discussion on an alternative approach to k-mer
counting utilizing non-blocking MPI collective operations in
Section 4.2.2. Section 4.3 analyzes the effect of tweaking cer-
tain input parameters on the performance of PaKman. Lastly
in Sections 4.4 and 4.5 we describe the results of evaluating

PaKman on two larger, more complex (highly repetitive)
genomes namely the bread wheat and axolotl genomes (data-
sets vii-viii) respectively.

We have used the default setting of PaKman (unless
explicitly specified) for generating all the results i.e., k = 32
and l = 8, with blocking MPI collectives.

4.1 Comparative Evaluation

4.1.1 Evaluation on Distributed Memory System

We compared the performance of PaKmanwith the latest ver-
sion of HipMer (v0.1.2.1) available on Cori, a state-of-the-art
distributedmemory genome assembly tool [14], [15].We used
the installation by the authors on the NERSC Cori system.
Parameters for HipMer were left as default, with k=31. For
HipMer we combine the execution times obtained from their
log files corresponding to the tags ‘loadfq’, ‘kcount-31’,
‘meraculous-31’ and ‘contigMerDepth-31’ and report that as
the total time. Results were obtained with ppn=16 for both
assemblers. Table 5 shows Lustre striping details.

Fig. 8 presents strong scaling results for both assemblers for
the first six datasets. The plots show that both tools exhibit
almost linear speedup under strong scaling. Although it is
interesting to note that PaKman exhibits higher scalability

TABLE 1
Input Datasets Used in Our Experiments

The read length was set to 100. bp refers to base pair.

Fig. 8. Strong scaling results for PaKman versus HipMer across multiple genomes. The readings not reported (in few cases for HipMer) indicate
either a ‘out of shared memory’ or job time out errors.
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across all the datasets, even for the smaller sized genomes at
larger core counts.

Using PaKman, we are able to assemble a complete set of con-
tigs for the full human genome in 39.1 seconds on 16K cores, with
the k-mercounting phase taking under 5 seconds.2

We also compared the performance of our k-mer counting
phase with a scalable distributed state-of-the-art k-mer count-
ing tool namely SWAPCounter [16]. Fig. 9 presents the results
of this comparison across multiple cores on both the C.elegans
and vaquita datasets. We observe that PaKman shows a
speedup over SWAPCounter by at least 1.5� (on 256 cores for
vaquita) and atmost 2.9� (on 512 cores forC.elegans).

4.1.2 Evaluation on Shared Memory System

Even though PaKman is designed for distributed memory
machines, it can also be used on shared memory systems
that support MPI. Consequently, we also performed a head-
to-head comparison of PaKman running p MPI processes
versus the shared memory tools running p threads on the
same machine (Koothan). We compared against the state-
of-the-art shared memory tool namely IDBA-UD [1].

Fig. 10 presents the results of the comparison for the C.ele-
gans dataset. As can be seen, PaKman shows near-linear scal-
ing, while IDBA-UD shows some performance improvement
only up to 64 cores. More importantly, for all core counts
tested, we observe that PaKman is considerably faster; for
instance, PaKman shows a speedup over IDBA-UD by 6.2� (8
cores) and 50� (224 cores). These improvements are signifi-
cant as these were observed despite the overheads associated
withMPI.

Fig. 11 presents the single node strong scaling results of
PaKman on the vaquita dataset. It is to be noted that using
PaKman we can produce an output set of contigs for the
vaquita dataset in just under 20 minutes on 128 cores,
whereas it takes IDBA-UD over 13 hours; i.e., a speedup of
41� (128 cores).

4.1.3 Quality Evaluation

We compared the output quality of the assemblies pro-
duced by the various tools we tested. For this purpose, we

compare the output contigs generated against the ground-
truth (known genome from which reads were generated).
The QUAST [17] tool was used for this comparison. The
quality metrics reported are as follows: total number of con-
tigs and the largest contig length; N50 contig length (larger
the better); % of genome covered (larger the better); and
largest alignment length (larger the better).

Tables 2 and 3, summarizes our qualitative evaluation. As
can be observed, PaKman generally outperforms or performs
comparably to the second best tool by almost all metrics (and
is able to retrieve over 90 percent of the smaller sized
genomes). We note here that, to enable a comparison, we did
not test inputs with that paired-end read information, where
an estimate of genomic distance is provided between pairs of
reads (at input) alongside sequence information. This is
because our tool does not yet include this feature; whereas
tools such as HipMer and IDBA-UD do. We expect that with
paired-end information these quality comparison results
could change. Yet, without paired-end information, we
observed PaKman to be competitive. It is also to be noted that
HipMer proceeds more conservatively during contig genera-
tion and is known to produce longer contigs at the end of the
scaffolding step.

4.2 PaKman: Detailed Performance Evaluation

4.2.1 Complete Pipeline Performance

To better understand the behavior of each phase at scale we
further break down the execution time. Fig. 12 presents the
strong scaling results of PaKman for the six genomes (data-
sets i-vi of Table 1), on up to 16K processes, broken down by

Fig. 9. Comparing k-mer counting results obtained for PaKman versus
SWAPCounter for the C.elegans and vaquita datasets.

Fig. 10. Single node shared memory scaling results for C.elegans across
assemblers IDBA-UD and PaKman.

Fig. 11. PaKman single node strong scaling results for vaquita genome.

2. The performance timings obtained for PaKman across the
genomes listed in Fig. 8 have been provided in the supplementary
material, available online.
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its phases. The input reading step is I/O bound, dominated
by calls to MPI-IO. For this step, while an improvement in
time can be seen with increase in the number of cores,
speedup is hardly linear. However, the runtime contribu-
tion to the total time is almost negligible (< 10 percent) in
most cases. The kmer counting phase shows near perfect liner
speedup with the number of cores across all the datasets
tested. The contig generation step, which includes most of the
communication-intensive steps such as iterative graph com-
paction, also shows near linear speedup, especially for the
smaller genomes; although for larger core sizes (> 8K cores)
the speedup shows some deterioration (as can be expected).

Fig. 13 shows PaKman’s runtime broken down by compu-
tation, communication, and I/O. We observe that our algo-
rithm scales efficiently and is noticeably compute bound,
with the contribution from communication remaining
under 20 percent even for large core counts, except at 16K

cores wherein the cost of communication and computation
is almost equal. Thus the algorithm is well-suited for mas-
sively parallel systems that offer greater support for com-
pute operations than communication bandwidth. The
current implementation uses blocking collectives. We have
implemented a version that uses non-blocking collectives,
during the k-mer counting phase. We discuss the findings for
this non-blocking version in the next section.

Because a significant fraction of contig generation phase is
spent in communication, we take a deeper look at the perfor-
mance breakdown of the individual steps within the phase.
Shown in Fig. 14, the steps Initial setup wiring and Generate
Independent set scale linearly and are almost negligible on 8K
and 16K core runs. In spite of being communication-intensive,

TABLE 2
Quality Statistics Across Assemblers

‘-’ denotes a failed run (due to tool errors or exceeding memory capacity).

Fig. 12. Strong scaling results for PaKman across multiple datasets. Total runtime corresponds to sum of all the phases.

TABLE 3
Quality Statistics Across PaKman and HipMer

for Genome Data Sets i-iii

Fig. 13. PaKman breakup of total time spent in I/O, communication and
computation for full human genome.
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the Iterate and pack nodes step also scales linearly. Scalability is
limited for the (de)serialize and transfer, as it is highly communi-
cation-bound during iterative graph compaction. The amount
of communication involved in Macro node construction and
Gather and Walk is minimal and does not impact the overall
performance.

We note here that our algorithm uses only five distinct
collectives (excluding the calls to MPI-IO), as shown in
Table 4. This is a useful property to have in MPI implemen-
tations, greatly simplifying performance portable installa-
tions on new parallel systems.

As for the I/O time, Fig. 15 shows I/O scaling of the input
reading step, for different file system configurations (Burst
Buffer, Lustre, and GPFS). In the case of Burst Buffers, we
need to scale up the number of BB nodeswith compute nodes,
to keep the BB nodes busy but not over-subscribed. The per-
formance was comparable to our Lustre runs. However, we
needed to tune the BB settings for each run. While GPFS
served well for the smaller datasets, for the full human
genome, it did not scale beyond 2,048 processes.

Table 5 shows the Lustre settings used for our PaKman
runs. We observed that, unlikeHipMer, the total time for PaK-
man responded to changesmade to the striping configuration;
this configuration can be varied and tested quickly for
improving PaKman’s performance. Furthermore, we observe
that Lustre I/O times (for the settings presented) remain con-
stant for a given dataset across all our experiments. Table 5

also lists various other statistics for PaKman. We observed that
the number of macro-nodes in the initial PaK-Graph is
roughly an order of magnitude smaller than the number of
distinct k-mers. This result shows the initial degree of com-
pression that PaKman achieves (even before graph compac-
tion) compared to standard de Bruijn graph implementations.

Fig. 16 captures the computation versus communication
breakdown for the individual steps of PaKman. We observe
that the communication time for the contig generation step
does not scale as well as the time taken for communication in
the k-mer counting phase. This is attributed to the contig genera-
tion step being far more communication-intensive and thus
more challenging to scale, owing to a much greater volume of
communication involved as compared to k-mer counting.

Fig. 17 shows the performance breakdown of the first 40
(out of 700+) iterations on the iterative phase of the contig gen-
eration step on 1K cores for the full human genome. We
observe a superlinear decrease in total time, which plateaus
after the first 20 iterations. Fig. 17a also shows the number of
macro-nodes and the independent set size, at each iteration.

Fig. 14. PaKman performance breakup of the several stages in the con-
tig generation step for the full human genome.

Fig. 15. I/O scaling of the Input Reading phase of PaKman for the full
human dataset across various file systems.

TABLE 4
List of All MPI Calls and Their Respective Counts

in Each PaKman Phase

Term ‘b’ in k-mer Counting phase denotes the number of batch rounds of
communication; term ‘i’ in Contig Generation phase denotes the number of
iterations of the (de) serialize and transfer phase in a given run.

TABLE 5
PaKman Runtime Statistics

Lustre parameters: sc denotes stripe count, ss denotes stripe size; cb denotes
the number of MPI aggregators (cb nodes).

Fig. 16. PaKman computation and communication timings for various
stages for full human genome.
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We observe that the fraction of macro-nodes included in the
independent set size at each iteration shrinks gradually from
28 to 13 percent at the end of 40 iterations, to eventually 7 per-
cent in the final iteration. Fig. 17b shows that the contributions
to runtime vastly diminish after the first 10-12 iterations.

We conducted further analysis on the volume of data
communicated (per iteration) during the compaction phase.
Figs. 18 and 19 present our findings for all 700+ iterations
executed for the full human dataset on 1,024 and 4,096 cores
respectively, wherein we report the mean, minimum, and
maximum bytes transferred in the corresponding send and

receive buffers during the calls made to MPI_Alltoallv.
In addition we also include the percentage cumulative run-
time taken to perform MPI_Alltoallv across all the itera-
tions (as represented by the y-axis on the right). For both
instances of executing PaKman on 1K and 4K cores, we
observe that the mean, minimum and maximum readings
for the message volume tend to overlap for the first 30-40
iterations, which constitutes bulk of the total time (over
70 percent of the runtime) on 1,024 cores. However, at 4,096
cores, more than half the number of iterations have been con-
sumed to reach over 70 percent of the aggregated runtime.

Fig. 17. PaKman behavior of the first 40 iterations in iterative phase of contig generation for full human genome (p = 1024).

Fig. 18. PaKman data volume communicated with corresponding cumulative percentage runtime for MPI_Alltoallv across all iterations, during
the iterative compaction phase of contig generation for full human genome with 1024 cores.

Fig. 19. PaKman data volume communicated with corresponding cumulative percentage runtime for MPI_Alltoallv across all iterations, during
the iterative compaction phase of contig generation for full human genome with 4096 cores.
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This can be attributed to a wider gap observed between the
minimum andmaximum readings for message volume.

Taking into account the observations noted above, we
would like to state that the scaling of PaKman in the iterative
compaction phase is intricately tied to the scaling ofMPI_All-
toallv itself for the underlying platform; and we have found
that our scaling for PaKman is consistent with what we
observed for a standard benchmark written solely to perform
MPI_Alltoallv, and is not specific to our implementation.

4.2.2 k-mer Counting Optimization

The k-mer counting phase involves a number of batch
rounds of communication and therefore is a good candidate
for overlapping the respective compute and communication
bound regions. In an effort to further improve the perfor-
mance of this phase, we implemented a version that executes
the work performed in this phase across a three stage pipe-
line and uses non-blocking MPI calls to overlap the commu-
nication and computation. Fig. 20 presents the performance
comparison of both the blocking (default) and non-blocking
versions of the k-mer counting phase across multiple pro-
cesses for the vaquita genome. As expected, even though
increasing the number of rounds of communication (by lim-
iting the batch size) results in a longer runtime, it allows PaK-
man to execute on machines with insufficient memory. The

performance improvement when using the non-blocking
version does not exceed 10 percent owing to some overhead
incurred in load imbalance. It is to be noted that for each data
point, when doubling the number of cores, we halved the
batch size in order to ensure that the number rounds of com-
munication remained constant; for instance at 128 cores, a
batch size of 50M k-merswas reduced to 6.25M at 1,024 cores.

4.3 Parametric Evaluation

We evaluated the effect of varying two input-based parame-
ters—viz., coverage and read length—on the performance
of PaKman. Table 6 presents the statistics across all four full
human datasets, wherein we compare the baseline dataset
(i.e., dataset i of Table 1) with three datasets of the same
genome with varying read length and coverage.

As seen in Table 6, increasing the coverage or the read
length causes an increase in total runtime. Specifically, an
increase in coverage contributes to a larger number of reads,
which subsequently increases the work during the k-mer
counting phase. We notice a similar effect for increasing the
read length, wherein despite the presence of fewer reads,
more work is needed to parse each read given its longer
length, to generate the k-mers.

While these results are to be expected,we also observed that
despite the increase in number of distinct k-mers, the number
of macro-nodes resulting from our threshold-based pruning
step (post-k-mer counting) remains relatively uniform across
the different input settings. This is a desirable property owing
to two reasons: a) Not increasing the number of macro-nodes
implies negligible impact on the contig generation time as seen
in Fig. 21a; b) Second, note that the macro-nodes capture the
key information encoded within the input reads that contribute
toward the output contigs; therefore these results show the
ability of our pruning step to capture that information in a sta-
ble manner even as the input read length or coverage changes.
Eventually, after contig generation, we see the positive impact
of increasing coverage and read length on the output quality
metrics (N50, coverage).We also note that the quality improve-
ment is better with increased read length than with increased
coverage. This is to be expected as longer reads (with a lower
error rate) are a more valuable source of information than
increased coverage (which simply increases the redundancy
in information beyond a certain value).

The effects of these two parameters on HipMer’s perfor-
mance as shown in the Fig. 21b in comparison to PaKman

Fig. 20. Performance results of PaKman’s blocking and non-blocking
implementations for the k-mer counting phase for vaquita genome.
rounds implies the number of rounds of communication executed in the
k-mer counting phase.

TABLE 6
PaKman Performance Evaluation Across Four Full Human Datasets With Varying Parameters on 2048 Processes

read_len=100, cov=100x read_len=100, cov=120x read_len=150, cov=100x read_len=250, cov=100x

baseline dataset human_cov120 human_rl150 human_rl250

File size (GB) 383 460 344 313
#reads: 2,861,320,858 3,433,578,880 1,907,540,469 1,144,527,774
#distinct k-mers: 42,182,152,288 49,242,849,348 16,394,494,176 30,368,099,909
#macro_nodes: 4,987,035,369 4,985,198,573 4,976,415,942 4,977,761,715
#iterations in compaction 728 730 733 803
Total time in secs 111.35 153.02 145.81 146.14

N50 (bp) 2683 2787 2962 2983
% genome coverage 76.82 78.13 79.79 80.29
largest contig 41,156 37,784 39,520 53,584
largest alignment 36,848 33,459 37,062 36,853
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were close, althoughHipMer’s contig generation step showed
greater scalability than that of PaKman especially for the data-
setswith larger coverage and read lengths.

4.4 PaKman Performance Evaluation
for Plant Genome

We also conducted experiments on a larger more complex
genome namely the bread wheat genome, characterized as
highly repetitive andmuch larger in size (more than three times
the size of the full human genome). The bread wheat genome
utilized in our experiments spans 9.1 Gbp (over 56 percent) of
the 16Gbp genome of hexaploidwheat, Triticum aestivum.

Fig. 22 presents strong scaling results for both PaKman and
HipMer for the breadwheat dataset. Fig. 22a presents the break-
down in time for all the distinct phases of PaKman. Fig. 22b
shows the total runtime wherein we observe that both tools
exhibit almost linear speedup. PaKman completes execution of
the bread wheat dataset in 55 seconds on 16K cores (with the
k-mer counting phase completing in under 8 seconds) and is
reported to be at-most 3.4� faster thanHipMer at 8K cores.

4.5 PaKman Performance Evaluation of Salamander
(Axolotl) Genome

Wewere able to execute runs for one of the largest genomes to
be ever sequenced- Mexican axolotl (Ambystoma mexicanum)
[18]; a key representative salamander genome used widely
for molecular investigations. Axolotl provides a powerful tool
in studying molecular basis for limb and other forms of

regeneration, including studies pertaining to severed spinal
cord and other retinal tissue. So far the complete de novo
assembly of this genome has been a challenge owing to its
sheer size: 32 billion base pairs (ten times larger than the full
human genome), as well as its inherent complexity due to the
presence of a significant number of large repetitive regions.

Table 7 presents the performance breakdown numbers
for executing the 3.1TB dataset of the axolotl genome using
PaKman on 16,384 cores (�1024 nodes) on the NERSC Cori
machine. PaKman was able to process the dataset with over
294 billion distinct k-mers and produce a full set of contigs
in just over 200 seconds with the k-mer counting phase tak-
ing merely 41.8 secs. Fig. 23 presents a pie chart illustrating
the time spent in each phase of the PaKman pipeline. We

Fig. 21. PaKman Performance across all four full human datasets with varying parameters for p=2048. rl corresponds to read length and cov corre-
sponds to coverage.

Fig. 22. Performance evaluation for the bread wheat genome.

TABLE 7
PaKman Performance Breakdown for the

Salamander (axolotl) Dataset on 16384 Cores
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observe that for genomes of this magnitude, PaKman’s con-
tig generation phase produced a higher communication
footprint, consuming nearly 34 percent of the total runtime.
This is primarily attributed to the iterative compaction
phase that took 1,336 iterations in order to condense a 37 bil-
lion macro-node PaK-Graph (to under 100,000 nodes). The
performance results for HipMer for this dataset have been
omitted owing to lack of storage available on the Cori
scratch filesystem to undergo further tests.

5 RELATED WORK

De novo genome assembly is a widely researched topic with a
number of assembly tools and algorithms developed over the
last two decades. Therefore in this section, we focus primarily
on parallel short-read assemblers. Short read assemblers corre-
spond to that subset which target reads generated from NGS
technologies (e.g., Illumina, 454 pyrosequencing, SOLiD).
Most modern day short read assemblers have widely adopted
the de Bruijn Graph-based (DBG) method of assembly, origi-
nally introduced byPevzner et al. [19]. Popular sharedmemory
DBG based assemblers include (but not limited to): Velvet [2],
ALLPATHS-LG [20], and SOAP-denovo [3], all of which uti-
lize OpenMP/Pthreads for parallelization. More recent imple-
mentations of the method include IDBA-UD [1], an iterative
DBG assembler that generates assemblies by sequentially iter-
ating from small to large k-values used in graph construction.
Although OpenMP parallelized (for a single k), this method
can be time intensive since graphs for multiple k values pro-
ceed sequentially. SPAdes [5] has support for multithreading
and produces assemblies of high quality owing to its detailed
error correction step. However, it is costly with respect to the
amount of time and memory it consumes. We were unable to
run SPAdes for our medium to large datasets owing to its sig-
nificantmemory footprint. In an attempt to reduce thememory
footprint of assembly, Chapman et al. proposed the Meracu-
lous algorithm [21]. The algorithm uses the Bloom filter [22],
which is a probabilistic data structure for answering member-
ship queries, to generate its version of the de Bruijn graph.

Notable examples of distributed memory DBG based
assemblers include Ray [23], PASHA [24] and YAGA [25].
Ray and YAGA have shown to be scalable except for the
I/O that proves to be a bottleneck when reading and writ-
ing to files. ABySS [4] is a full end-to-end assembler and is
one the first to be parallelized using MPI and was the first
software to assemble a human genome from short reads.
However their input reading step presents a bottleneck to

the overall performance. ABySS 2.0 [26] departs from using
MPI and instead employs Bloom filters to represent a de
Bruijn graph and reduce memory requirements. HipMer
[14], [15] as discussed in the previous section, also uses
Bloom filters to generate its version of the de Bruijn graph.
For parallelization, HipMer uses both MPI and the Unified
Parallel C language (UPC) [27], [28]. In our evaluation, we
observed HipMer to scale well for all sizes of input data at
high core counts. SWAP [29] and SWAP-2 [30] are also
among the newer set of assemblers that have been MPI par-
allelized for executing at large scale for large genomes.
Although the assembly output from SWAP-2 was high in
quality, we observed it failed to execute on NERSC Cori
beyond small to medium sized datasets.

There have been notable contributions in the field of dis-
tributed k-mer counting, with several standalone implemen-
tations that can perform the process at scale. Bloomfish [31] is
a memory-efficient, scalable k-mer counting tool that lever-
ages a single-node k-mer counting framework Jellyfish [32]
coupled with a MapReduce over MPI framework. Kmerind
[33] is another example that presents a generic distributed-
memory library for both k-mer counting and indexing.
SWAPCounter [16] on the other hand utilizes aMPI streaming
I/Omodule coupledwithMPI non-blocking collectives, and a
bloom filter implementation for discarding low-abundance
k-mers. We compare the performance of SWAPCounter with
PaKman’s k-mer counting phase in Section 4.1.1.

6 CONCLUSION AND FUTURE WORK

We introduced PaKman, a new algorithm for efficient scaling
of two crucial phases of the genome assembly pipeline. We
presented a new data structure—PaK-Graph—for contig gen-
eration with simplified communication requirements. Our
method demonstrated a speedup of up to 2� on average in
comparison with state-of-the-art distributed and up to 41�
compared to sharedmemory implementations, respectively.

Our goals for future work include: a) Incorporation of
paired end information toward improving quality of the final
set of contigs: although not trivial the wiring function has the
capacity to be extended for this purpose. But a space-efficient
representation will be needed to make it work as the graph
compacts.We speculate that this shallminimize the occurrence
of false connections in the wiring phase, leading to longer con-
tigs. b) Provide an end-to-end solution, by incorporating the
scaffolding phase to fully complete the assembly pipeline. c)
Extension to support new generations of sequencing technolo-
gies, particularly long reads. d) Extension to use heterogeneous
architectures–GPU’s and futuremany-coremachines.
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