
Scalable Static and Dynamic Community Detection Using Grappolo

Mahantesh Halappanavar1, Hao Lu2, Ananth Kalyanaraman3, and Antonino Tumeo1

E-mail: hala@pnnl.gov, luh1@ornl.gov, ananth@eecs.wsu.edu, antonino.tumeo@pnnl.gov
1Pacific Northwest National Laboratory 2Oak Ridge National Laboratory 3Washington State University.

Abstract—Graph clustering, popularly known as community
detection, is a fundamental kernel for several applications of
relevance to the Defense Advanced Research Projects Agency’s
(DARPA) Hierarchical Identify Verify Exploit (HIVE) Pro-
gram. Clusters or communities represent natural divisions
within a network that are densely connected within a cluster
and sparsely connected to the rest of the network. The need
to compute clustering on large scale data necessitates the
development of efficient algorithms that can exploit modern
architectures that are fundamentally parallel in nature. How-
ever, due to their irregular and inherently sequential nature,
many of the current algorithms for community detection are
challenging to parallelize. In response to the HIVE Graph
Challenge, we present several parallelization heuristics for fast
community detection using the Louvain method as the serial
template. We implement all the heuristics in a software library
called Grappolo. Using the inputs from the HIVE Challenge, we
demonstrate superior performance and high quality solutions
based on four parallelization heuristics. We use Grappolo on
static graphs as the first step towards community detection on
streaming graphs.

I. INTRODUCTION

In response to the Defense Advanced Research Projects
Agency’s (DARPA) Hierarchical Identify Verify Exploit
Program (HIVE) Graph Challenge, we submit our work in
the broad category of graph clustering for static and dynamic
graphs [1]. In this work, we focus on static graphs as the first
step towards dynamic graphs. We present several heuristics
to enable parallelization of an inherently serial algorithm,
and demonstrate that these heuristics improve the overall
quality of computed solutions.

Given an undirected graph G(V,E, ω), community de-
tection aims to compute a partitioning of V into a set of
tightly-knit communities (or clusters). Community detection
has emerged as one of the most frequently used graph
structure discovery tools in a diverse set of applications [2].
We employ several heuristics to improve the performance
of an agglomerative technique based on modularity opti-
mization [3], the Louvain algorithm. We present our work
on parallelizing the widely used Louvain algorithm through
a set of heuristics that not only enable parallelization, but
also improve the quality of solutions. Our heuristics use
approximate computing to explore and derive trade-offs
between performance and quality. We present the details in
Section II.

We define a dynamic graph as a graph that changes over
time. Changes can include vertex (node) and edge (link)
addition and deletion. A snapshot (or time slice) of this

graph, Gi, consists of the vertices and edges active at a
given timestep i. Modifications from time i to i + 1 are
represented by ∆Gi.

A community, C(G), in graph G represents a subset of
vertices. Similar to the evolution of a graph, the commu-
nities also evolve. Temporal communities can have several
operations: growth (via addition of new nodes), contraction
(via elimination of nodes), merging (of two or more com-
munities), splitting (into two or more communities), birth
(of a new community), death, and resurgence (reappearance
after a period of time).

We develop two approaches for dynamic community
detection—one that computes the communities at each
timestep and another that allows a systematic propagation
of communities from the previous snapshot to the current
snapshot. The two steps involved in the latter approach are:
static community detection in the first snapshot (G0), and
propagation of communities between two snapshots (Gi and
Gi+1) by simultaneously optimizing the quality of C(Gi+1)
and its similarity to C(Gi). We detail our approach in
Section III.

We present experimental results from the execution of our
algorithm on the HIVE Challenge dataset in Section IV. We
present results on the quality as well as performance in this
section.

In summary, we make the following contributions in this
work:
• Performance evaluation and empirical validation of the

correctness of the solutions using the HIVE datasets
with ground truth.

• Design and evaluation of multiple heuristics for paral-
lelization of community detection, with a potential to
extend to other iterative graph codes; and

• Presentation of techniques for the application of scal-
able community detection on static graphs in the con-
text of dynamic graphs.

A. Related Work
Community detection is an active area of research. We

refer the reader to [2], [4] for an extensive review of
the topic. The seminal work by Newman and Girvan in
introducing the modularity metric [5], motivated the de-
velopment of divisive [5], [6] as well as agglomerative [7]
clustering methods. While a divisive method uses between-
ness centrality to identify and remove bridges between
communities, agglomerative clustering approach greedily

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

merges two communities that provide the maximum gain
in modularity. Analytically and practically, agglomerative
methods are faster than divisive, but suffer from several
limitations. The Louvain method [3] is a variant of the
agglomerative strategy, in that it is a multi-level heuristic,
and within each level it enables vertices to make decisions
independently from their current community assignments at
each step.

There also exists a large body of work on parallelizing
community detection algorithms. In [8], we presented an
extensive survey of the state of parallel methods for commu-
nity detection. Notable among these works are as follows.
As part of the DIMACS10 clustering challenge, Riedy et
al. presented a highly parallel agglomerative implementation
[9], [10] for the Clauset-Newman-Moore (CNM) algorithm
[7]. Auer and Bisseling [11] present another way to achieve
agglomerative clustering on GPUs using graph coarsening.
LaSalle and Karypis [12] present a multilevel graph cluster-
ing method for shared memory machines. Recently, Naim
et al., presented their efforts on parallelizing the Louvain
method on GPUs [13].

II. PARALLEL HEURISTICS FOR COMMUNITY
DETECTION

Given an undirected graph G(V,E, ω), where V is the
set of vertices, E is the set of edges and ω(.) is a weight
function that maps every edge in E to a non-zero, positive
weight. We use n and m to denote the number of vertices
and the sum of the weights of all edges in E respectively. We
denote the neighbor list for vertex i by Γ(i). A community
within graph G represents a subset of V .

In general terms, the goal of community detection is to
partition the vertex set V into a set of tightly knit (non-
empty) communities—i.e., the strength of intra-community
edges within each community significantly outweighs the
strength of the inter-community edges linked to that com-
munity. Neither the number of output communities nor their
size distribution is known a priori.

Let P = {C1, C2, . . . Ck} denote a set of output com-
munities in G, where 1 ≤ k ≤ n, and let the community
containing vertex i be denoted by C(i). Then, the goodness
of such a community-wise partitioning P is measured using
the modularity metric, Q, as follows [5]:

Q =
1

2m

∑
i∈V

ei→C(i) −
∑
C∈P

(
aC
2m
· aC

2m
), (1)

where ei→C(i) is the sum of the weights of all edges
connecting vertex i to its community, and aC is the sum
of the weights of all edges incident on community C. The
problem of community detection is then reduced to the
problem of modularity maximization, which is NP-Complete
[14].

The Louvain algorithm proposed by Blondel et al. [3]
is a widely-used efficient heuristic for community detection.
Grappolo was recently developed as a parallel variant of
the Louvain algorithm by Lu et al. [15]. We build on

Grappolo for this work and implement different approximate
computing techniques. In this section, we focus on the
core ideas behind incorporation of these techniques into the
Grappolo algorithm; the reader is referred to [15] for more
details about the Grappolo algorithm.

Grappolo is a multi-phase multi-iteration algorithm, where
each phase executes multiple iterations as detailed in Algo-
rithm 1. Within each iteration, vertices are considered in
parallel (Line 9) and decisions are made using information
from the previous iteration, and thus, eliminating the need
for explicit synchronization of threads. If coloring is enabled,
then vertices are partitioned using the color classes (Line 2).
The threads synchronize after processing all the vertices of
a color class (Line 7), and therefore, use partial information
from the current iteration. The algorithm iterates until the
modularity gain between successive iterations is above a
given threshold θ (Lines 17-20).

Within each iteration, the algorithm visits all vertices
in V and makes a decision—whether to change its com-
munity assignment or not. This is achieved by computing
a modularity gain function (∆Qi→t), by considering the
scenario of vertex i potentially migrating to each of its
neighboring communities (including its current community)
(t), and selecting the assignment that maximizes the gain
(Lines 11-13).

At the end of each phase, the graph is coarsened by repre-
senting all the vertices in a community as a new level “ver-
tex” in the new graph. Edges are added, either as self-edges
(an edge from a vertex to itself) with a weight representing
the strength of all intra-community edges for that commu-
nity, or between two vertices with a weight representing the
strength of all edges between those two communities. The
algorithm iterates until there is no further gain in modularity
achieved by coarsening (Lines 17-20). Our implementation
is named Grappolo. A preliminary version of the software
is available for download under the BSD 3-Clause license
at: http://hpc.pnl.gov/people/hala/grappolo.html.

A. Heuristics for parallelization

We employ four different techniques for parallelization:
(i) Vertex following and minimum label heuristic, (ii) data
caching, (iii) graph coloring, and (iv) threshold scaling.
We briefly explain each of these heuristics in the following
discussion.

Vertex following and Minimum Label heuristics: Many
real world graphs contain a large number of single-degree
vertices. It is easy to observe that there is no need to
explicitly make decisions on these vertices during an it-
eration of the Louvain algorithm. We therefore preprocess
the input and merge all single-degree vertices with their
corresponding neighbors. We make a distinction between
singleton nodes and edges, and single-degree vertices. The
neighbor of a single-degree vertex is also not a single-degree
vertex. We remove the single-degree vertices by adding a
self-edge to their respective neighbors and set the weight of
the self-edge to the weight of the edge that is removed. The

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

Algorithm 1 Implementation of our approximate computing
schemes within the parallel algorithm for community detec-
tion (Grappolo), shown for a single phase. The inputs are a
graph (G(V,E, ω)) and an array of size |V | that represents
an initial assignment of community for every vertex Cinit.
The output is the set of communities corresponding to the
last iteration (with memberships projected back onto the
original uncoarsened graph).

1: procedure PARALLEL LOUVAIN(G(V,E, ω), Cinit)
2: ColorSets ← Coloring(V), where ColorSets represents

a color-based partitioning of V . . An optional step
3: Qcurr ← 0; Qprev ← −∞ . Current & previous modularity
4: Ccurr ← Cinit

5: while true do
6: for each Vk ∈ ColorSets do
7: Cprev ← Ccurr

8: for each i ∈ Active(Vk) in parallel do
9: Ni ← Cprev[i]

10: for each j ∈ Γ(i) do Ni ← Ni ∪ {Cprev[j]}
11: target ← arg maxt∈Ni ∆Qi→t

12: if ∆Qi→target > 0 then
13: Ccurr[i]← target

14:
15: Cset ← set of communities corresponding to Ccurr

16: Qcurr ← Compute modularity as defined by Cset

17: if |Qcurr−Qprev

Qprev
| < θ then . θ is a user specified

threshold.
18: break . Phase termination
19: else
20: Qprev ← Qcurr

single-degree vertices are assigned the same community that
their neighbors get assigned at the end of execution. This
preprocessing not only helps reduce the number of vertices
that need to be considered during each iteration, but also
enables the vertices that have many single-degree neighbors
(hubs) to be the seeds of community migration decisions.
This becomes especially important in a parallel context.

For a given iteration of Algorithm 1, a vertex v can
have multiple neighboring communities yielding the same
(maximum) modularity gain. We use the minimum label
heuristic to make a decision by selecting the minimum
label among the available neighboring communities as the
destination for i’s new community. This simple heuristic
tends to minimize or prevent community swaps and local
maxima [15]. We employ vertex following and minimum
labeling in all of our experiments presented in the paper.

Data caching: Within each iteration of Algorithm 1,
a vertex considers all the available communities to join
and chooses the one with a maximum gain. In order to
store this information, we can employ ordered or unordered
maps. However, the use of map data structure can lead to
excessive memory allocation and deallocation costs along
with irregular memory access patterns. We therefore, replace
the map data structure with a vector and reuse the memory
for each iteration, but with an additional cost to compare
the existing entries. Empirically, we observe that the benefits

Time steps
ti-1 ti ti+1

Gi-1
Gi Gi+1

Figure 1. Schematic illustration of a dynamic graph.

of replacing the map data structure can lead to significant
gains in performance (up to 10×) when the number of
communities decreases rapidly. However, in some cases,
it can lead to loss of performance when the number of
communities remains large for many iterations (inputs that
converge slowly). We enable the data caching heuristic in
all of our experiments presented in the paper.

Vertex Ordering via Graph Coloring: A distance-k color-
ing of a graph is an assignment of colors (unique integers) to
vertices such that no two vertices at a distance of k hops are
assigned the same color. As a consequence, distance-1 color-
ing will generate vertex partitions such that no two vertices
in the same set are neighbors of each other. As presented
in Algorithm1, we process each vertex set concurrently and
synchronize after each color class. As demonstrated in [15],
parallel execution in this manner tends to mimic the behavior
of a serial algorithm in terms of the gain in modularity per
iteration.

Threshold Scaling: Threshold scaling is the idea of using
a successively smaller threshold value (θ in Algorithm 1) as
the algorithm progresses. In our experiments, we utilize a
value of 10−2 as the higher threshold value, and 10−6 as
the lower threshold value. We employ threshold scaling in
conjunction with the coloring heuristic by using a higher
value of threshold in the initial phases of the algorithm, and
a lower threshold value towards the end of the execution.
Empirically, we also observe that the algorithm converges
faster and evolves towards a better modularity score when
threshold scaling is combined with graph coloring [15]. We
present results from all the four heuristics in Section IV.

III. COMMUNITY DETECTION ON DYNAMIC GRAPHS

Our algorithm for community detection on dynamic
graphs uses the following model of dynamic graphs (see
Figure 1 for an illustration). Let Gi(Vi, Ei) denote a graph
observed at timestep i, where i ∈ [1, t]. Graph edits from
one timestep to the next occur in the following forms:
• edge addition: a new edge gets added between two

vertices (old or new);
• edge deletion: an existing edge gets removed between

two existing vertices.
We implement two versions of our algorithm for identi-

fying communities of a dynamic graph.
• Unseeded clustering: In this scheme, we treat the

graph at each timestep as an independent instance and

run Grappolo on it. The advantage of this scheme is
that all changes and their full impacts on clustering are
implicitly taken into account while performing the clus-
tering at each step. A potential disadvantage, however,
is in the performance—i.e., the cost of recomputing
the clustering on the entire graph regardless of how
localized and sparse the graph edits may be.

• Seeded clustering: In this scheme, we try to propagate
the community information from the previous timestep,
in the current timestep. More specifically, we initialize
the set of vertices in Gi to their community states at
the end of timestep (i−1). Subsequently, the Grappolo
algorithm is run on Gi. The advantage of this scheme
is potentially faster convergence, in that if the graph
edits are highly localized and incremental in nature,
the Grappolo algorithm is likely to converge in very
few iterations compared to the seeded version. This
scheme is also better prepared to propagate community
information from across timesteps, thereby facilitating
community tracking. A potential disadvantage of this
scheme, however, is that of biasing—i.e., the commu-
nity configuration reached at the end of timestep (i−1)
may be suboptimal as a starting point for the kinds of
edits that have accrued in timestep i.

The seeded and unseeded clustering schemes offer a trade-
off in quality and performance.

IV. EXPERIMENTAL RESULTS

In this section, we present results from the empirical
evaluation of Grappolo using the HIVE Challenge datasets.
We evaluate Grappolo using two configurations: (i) Basic:
where we enable Vertex Following, Minimum Label and
Data caching heuristics, and (i) Advanced: where we enable
all the previous heuristics along with Coloring and Threshold
Scaling heuristics.

All the experiments were executed on a shared-memory
system with two 10-core Xeon CPU E5-2680 v2 processors
operating at 2.80GHz. We disabled HyperThreading, so each
processor supports up to 10 physical threads. Each processor
has 25 MB of L3 cache, and the system has 768 GB of
DDR3 memory. We used Redhat linux operating system with
Kernel 2.6.32 and compiled our code with GCC 4.9.2 using
the ‘-Ofast’ optimization flag. To compute performance
metrics, we used the snap datasets of the DARPA HIVE
Graph Challenge.

Qualitative Assessment: In order to assess the quality of
computed solutions, we use the following metrics. Con-
sider two community assignments CT and CO, where CT

represents the community assignment provided as ground
truth, and CO is the community assignment as computed by
Grappolo. We consider all possible pairs of vertices in CT

and CO and categorize each pair (u, v) into one of the three
following bins:
• True Positive (TP) or Same-Same: if u and v belong

to the same community in both assignments;

• False Negative (FN) or Same-Diff: if u and v belong
to the same community only in assignment CT ; or

• False Positive (FP) or Diff-Same: if u and v belong
to the same community only in assignment CO;

Based on the above categorization, we define the following
metrics:
• Precision: is given by the ratio: P = TP

TP+FP ;
• Recall: is given by the ratio: R = TP

TP+FN ;
• F-Score: is given by the ratio: F = 2. P.R

P+R ;
We summarize the results on the large set of inputs with
ground truth in Table I. We note that the metrics for
precision and recall is 100% for all the small inputs. We
observe that Grappolo computes high quality solutions for
the four instances with ground truth. We plan to perform
detailed comparisons with a large number of inputs using
the reference implementation provided through the HIVE
Challenge and other instances with ground truth information.

Performance Analysis: We summarize detailed informa-
tion for Basic and Advanced variants of Grappolo in Table II.
For each input, we present runtimes using 2, 10 and 20
threads for both the variants. We also present the information
on the total number of iterations and the modularity values
at the end of the execution.

We observe that a large number of inputs from the chal-
lenge datasets are small in size, and consequently, we do not
observe meaningful speedups with larger number of threads.
We refer you to [15] for a detailed analysis of Grappolo
with larger inputs. We highlight the differences between
the Basic and Advanced variants through performance and
modularity values in Figures 2 and 3. We note that this
difference in performance is driven by coloring and threshold
scaling heuristics. We plan to extend this analysis to a set of
larger inputs and include experimental results for dynamic
community detection.

0.125

0.25

0.5

1

2

4

8

1 6 11 16 21 26 31 36 41 46

Sp
ee
du

p	
(A
dv
an
ce
d/
Ba

sic
)

Inputs	ordered	by	speedups

2	threads
20	threads

Figure 2. Speedup of Advanced relative to Basic for all the inputs from
Table II. For small inputs, we observe runtime variations due to various
reasons. We executed multiple runs and selected one particular set of runs
for reporting in this paper. The inputs are ordered based on the speedup
values.

V. CONCLUSION

Performing community detection on streaming data ne-
cessitates the development of efficient algorithms that can

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

Table I
QUALITY COMPARISONS WITH GROUND TRUTH COMMUNITY INFORMATION.

Basic Advanced
Input |V | |E| #Itrs Modularity Time(s) Precision Recall F-Score #Itrs Modularity Time(s) Precision Recall F-Score
simulated blockmodel graph 20k 2E+04 4.09E+05 14 0.793 0.20 100.00% 100.00% 1.00 9 0.793 0.20 100.00% 100.00% 1.00
simulated blockmodel graph 50k 5E+04 1.02E+06 24 0.806 0.37 100.00% 100.00% 1.00 8 0.806 0.38 100.00% 100.00% 1.00
simulated blockmodel graph 2M 2E+06 4.07E+07 16 0.700 20.04 80.94% 81.03% 0.81 11 0.830 7.11 70.29% 100.00% 0.83
simulated blockmodel graph 5M 5E+06 2.30E+08 12 0.645 111.20 84.01% 84.13% 0.84 11 0.799 40.83 100.00% 100.00% 1.00

Table II
INFORMATION FROM THE EXECUTION OF GRAPPOLO USING TWO VERSIONS – BASIC AND ADVANCED.

Input |V | |E| Basic Advanced
2T 10T 20T #Itrs Modularity 2T 10T 20T #Itrs Modularity

:amazon0302 262111 899792 1.594030 0.575909 0.407473 109 0.899163 0.545578 0.233194 0.234519 25 0.899357
amazon0312 400727 2349869 3.355239 1.253326 0.839243 96 0.873400 1.177460 0.509870 0.439975 17 0.873581
amazon0505 410236 2439437 2.337863 1.058725 0.723567 66 0.871726 1.236590 0.526230 0.379453 20 0.873681
amazon0601 403394 2443408 3.434897 1.234979 0.850175 91 0.874345 1.129834 0.530699 0.344100 21 0.876185
as20000102 6474 12572 0.007792 0.006767 0.004445 19 0.620866 0.007955 0.007762 0.010004 16 0.586251
as-caida20071105 26475 53381 0.042227 0.029995 0.023517 28 0.661544 0.036205 0.024553 0.026668 12 0.665536
ca-AstroPh 18772 198050 0.143864 0.040344 0.023732 47 0.624232 0.092194 0.045287 0.046514 14 0.618623
ca-CondMat 23133 93439 0.071300 0.024234 0.019236 41 0.723343 0.061767 0.027177 0.025508 20 0.729553
ca-GrQc 5242 14484 0.005782 0.005842 0.003798 26 0.859141 0.013306 0.013273 0.015368 15 0.858567
ca-HepPh 12008 118489 0.046765 0.034122 0.031866 32 0.660030 0.077768 0.070059 0.088119 22 0.654684
ca-HepTh 9877 25973 0.022064 0.009812 0.010530 40 0.766525 0.021360 0.013813 0.017241 16 0.762862
cit-HepPh 34546 420877 0.294538 0.092860 0.085235 54 0.724256 0.163376 0.070566 0.071163 17 0.716797
cit-HepTh 27770 352285 0.241075 0.072747 0.062652 49 0.655739 0.145852 0.069717 0.064201 23 0.651877
cit-Patents 3774768 16518947 71.402024 22.681512 16.311464 118 0.805231 17.281550 6.631884 3.950743 23 0.804871
email-Enron 36692 183831 0.121916 0.053130 0.042008 39 0.618508 0.089303 0.052349 0.070903 18 0.608604
email-EuAll 265214 364481 0.173028 0.123556 0.101028 29 0.788428 0.113796 0.064195 0.044519 14 0.792712
facebook combined 4039 88234 0.022509 0.011155 0.013245 28 0.834956 0.024431 0.023541 0.040468 12 0.834579
flickrEdges 105938 2316948 1.409969 0.992169 0.893408 51 0.674564 1.870223 0.949590 1.071839 20 0.671482
loc-brightkite edges 58228 214078 0.177203 0.078181 0.069497 42 0.686430 0.126521 0.066562 0.057419 19 0.682115
loc-gowalla edges 196591 950327 0.953243 0.788969 0.698657 39 0.697469 0.663912 0.525380 0.559011 21 0.712544
oregon1 010331 10670 22002 0.013333 0.010447 0.009839 26 0.613603 0.016347 0.014489 0.017004 19 0.629268
oregon1 010407 10729 21999 0.012964 0.011081 0.009344 24 0.619142 0.016856 0.013539 0.013532 14 0.624712
oregon1 010414 10790 22469 0.013147 0.009917 0.009392 21 0.615229 0.018040 0.015774 0.016853 20 0.619420
oregon1 010421 10859 22747 0.017085 0.014096 0.014450 35 0.616592 0.013207 0.013628 0.013694 18 0.621334
oregon1 010428 10886 22493 0.012233 0.009421 0.010540 21 0.600536 0.013919 0.011093 0.015346 11 0.618082
oregon1 010505 10943 22607 0.012686 0.010573 0.012034 25 0.603981 0.013263 0.011588 0.013072 17 0.623284
oregon1 010512 11011 22677 0.015015 0.010853 0.010742 25 0.608212 0.013349 0.011321 0.013739 12 0.622303
oregon1 010519 11051 22724 0.012360 0.009765 0.009636 22 0.603667 0.014382 0.012270 0.016990 12 0.616358
oregon1 010526 11174 23409 0.015124 0.011224 0.012906 25 0.615469 0.016460 0.015542 0.019895 13 0.620432
oregon2 010331 10900 31180 0.022094 0.014633 0.013782 31 0.646424 0.018893 0.013589 0.018552 16 0.643897
oregon2 010407 10981 30855 0.017673 0.011931 0.007927 28 0.638002 0.018679 0.014505 0.017735 16 0.638714
oregon2 010414 11019 31761 0.017283 0.010713 0.010796 25 0.625981 0.019196 0.018815 0.017356 16 0.558788
oregon2 010421 11080 31538 0.017658 0.012677 0.010512 30 0.630238 0.019607 0.016914 0.019666 19 0.633541
oregon2 010428 11113 31434 0.022977 0.015975 0.014306 31 0.632969 0.018480 0.014703 0.016873 9 0.599262
oregon2 010505 11157 30943 0.029587 0.018526 0.017147 36 0.637232 0.021033 0.019310 0.016267 17 0.633437
oregon2 010512 11260 31303 0.013736 0.010196 0.010874 23 0.637165 0.020254 0.015834 0.015848 17 0.642299
oregon2 010519 11375 32287 0.023924 0.014476 0.011805 35 0.628060 0.019832 0.016446 0.015550 17 0.630687
oregon2 010526 11461 32730 0.018611 0.014038 0.011221 28 0.627609 0.021887 0.019636 0.018576 19 0.633561
p2p-Gnutella04 10876 39994 0.043061 0.023122 0.020681 31 0.322036 0.031760 0.025478 0.022077 21 0.376288
p2p-Gnutella05 8846 31839 0.034872 0.022107 0.027617 24 0.340746 0.024005 0.020490 0.018676 18 0.394400
p2p-Gnutella06 8717 31525 0.030688 0.020862 0.017812 24 0.349240 0.027925 0.015605 0.020742 25 0.375117
p2p-Gnutella08 6301 20777 0.020831 0.015390 0.019042 23 0.395347 0.016951 0.010009 0.015693 21 0.448751
p2p-Gnutella09 8114 26013 0.024316 0.010490 0.013514 25 0.408978 0.019267 0.017100 0.016452 21 0.456839
p2p-Gnutella24 26518 65369 0.079952 0.043956 0.033449 24 0.440771 0.057971 0.025718 0.025374 22 0.456986
p2p-Gnutella25 22687 54705 0.063548 0.032649 0.030620 26 0.469230 0.050276 0.027388 0.022270 19 0.488688
p2p-Gnutella30 36682 88328 0.103806 0.038407 0.060773 29 0.480391 0.074518 0.038286 0.038340 22 0.507539
p2p-Gnutella31 62586 147892 0.181322 0.094135 0.084359 28 0.467652 0.124112 0.066190 0.065554 20 0.491227
roadNet-CA 1965206 2766607 1.152737 0.427426 0.857121 54 0.991811 1.849306 0.973869 0.891868 27 0.992137
roadNet-PA 1088092 1541898 0.708487 0.576023 0.477863 53 0.988694 0.999466 0.550691 0.360669 26 0.989183
roadNet-TX 1379917 1921660 1.005758 0.538990 0.601432 54 0.990795 1.156458 0.698840 0.643208 26 0.991194
soc-Epinions1 75879 405740 0.435763 0.199228 0.159041 49 0.447397 0.213260 0.129149 0.137088 22 0.449320
soc-Slashdot0811 77360 469180 0.255844 0.162006 0.120686 23 0.280334 0.257484 0.171831 0.197298 23 0.340628
soc-Slashdot0902 82168 504230 0.297483 0.171952 0.153559 23 0.259748 0.291204 0.161546 0.169532 21 0.342392
friendster 119432957 1799999986 - - 2519.693423 38 0.471124 - - 812.742337 20 0.556225

also exploit modern computer architectures. Towards this
end, we presented several heuristics for parallelization of
the Louvain algorithm and demonstrated their effectiveness
using the datasets from the DARPA HIVE Graph Challenge.
Our goal was to address the dual objectives of maximizing
concurrency while improving the quality with respect to
the serial implementation. We also presented our current
approach to extend the work on static graphs to enable
efficient community detection on dynamic graphs.

We plan to extend Grappolo in two directions in the
near future: (i) distributed-memory implementations, and

(ii) community detection on streaming graphs. We have
preliminary work in both of these areas with promising
results. Our current work on distributed-memory implemen-
tations includes a high performance implementation using
MPI and OpenMP with incomplete coloring and threshold
scaling heuristics. Our preliminary work on dynamic graphs
includes methods to track communities as well as to effi-
ciently seed community detection method.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6 11 16 21 26 31 36 41 46

M
od

ul
ar
ity

Inputs	ordered	by	modularity	values

Basic
Advanced

Figure 3. Modularity values for the two variants of the algorithm – Basic
and Advanced – for all the inputs from Table II. The inputs are ordered
based on the modularity values.

ACKNOWLEDGEMENTS

The research is in part supported by the U.S. Depart-
ment of Energy’s (DOE) Exascale Computing Project (Exa-
Graph), the Defense Advanced Research Projects Agency’s
(DARPA) Hierarchical Identify Verify Exploit Program and
the High Performance Data Analytics Program (HPDA) at
DOE Pacific Northwest National Laboratory (PNNL), and
by DOE award DE-SC-0006516 to WSU. PNNL is operated
by Battelle Memorial Institute under Contract DE-AC06-
76RL01830.

REFERENCES

[1] E. Kao, V. Gadepally, M. Hurley, M. Jones, J. Kepner,
S. Mohindra, P. Monticciolo, A. Reuther, S. Samsi, W. Song,
D. Staheli, and S. Smith, “Streaming Graph Challenge:
Stochastic Block Partition,” in IEEE HPEC, 2017.

[2] S. Fortunato, “Community detection in graphs,” Physics Re-
ports, vol. 486, no. 3-5, pp. 75–174, Feb. 2010.

[3] V. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre,
“Fast unfolding of communities in large networks,” Journal
of Statistical Mechanics: Theory and Experiment, p. P10008.,
2008.

[4] M. E. J. Newman, “The structure and function of complex
networks,” SIAM Review, vol. 45, pp. 167–256, 2003.

[5] M. E. J. Newman and M. Girvan, “Finding and evaluating
community structure in networks,” Physical Review E, vol. 69,
no. 2, p. 026113, 2004.

[6] M. E. J. Newman, “Analysis of weighted networks,” Phys.
Rev. E, vol. 70, no. 5, p. 056131, Nov. 2004.

[7] A. Clauset, M. E. J. Newman, and C. Moore, “Finding
community structure in very large networks,” Phys. Rev. E,
vol. 70, no. 6, p. 066111, Dec. 2004.

[8] A. Kalyanaraman, M. Halappanavar, D. Chavarrı́a-Miranda,
H. Lu, K. Duraisamy, and P. Pratim Pande, “Fast uncovering
of graph communities on a chip: Toward scalable community
detection on multicore and manycore platforms,” Found.
Trends Electron. Des. Autom., vol. 10, no. 3, pp. 145–247,
Aug. 2016.

[9] J. Riedy, D. A. Bader, and H. Meyerhenke, “Scalable multi-
threaded community detection in social networks,” in Parallel
and Distributed Processing Symposium Workshops & PhD
Forum (IPDPSW), 2012 IEEE 26th International. IEEE,
2012, pp. 1619–1628.

[10] E. J. Riedy, H. Meyerhenke, D. Ediger, and D. A. Bader,
“Parallel community detection for massive graphs,” in Par-
allel Processing and Applied Mathematics. Springer, 2012,
pp. 286–296.

[11] B. F. Auer and R. H. Bisseling, “Graph coarsening and
clustering on the GPU,” Graph Partitioning and Graph Clus-
tering, vol. 588, p. 223, 2012.

[12] D. LaSalle and G. Karypis, “Multi-threaded modularity based
graph clustering using the multilevel paradigm,” Journal of
Parallel and Distributed Computing, vol. 76, pp. 66–80, 2015.

[13] M. Naim, F. Manne, M. Halappanavar, and A. Tumeo, “Com-
munity detection on the gpu,” in 31st IEEE International
Parallel and Distributed Processing Symposium (IPDPS),
May 2017.

[14] U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer,
Z. Nikoloski, and D. Wagner, “On modularity clustering,”
Knowledge and Data Engineering, IEEE Transactions on,
vol. 20, no. 2, pp. 172–188, 2008.

[15] H. Lu, M. Halappanavar, and A. Kalyanaraman, “Parallel
heuristics for scalable community detection,” Parallel Com-
put., vol. 47, no. C, pp. 19–37, Aug. 2015.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

