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ABSTRACT 
Counting k-mers (substrings of fixed length k) in DNA and protein 
sequences generate non-uniform and irregular memory access 
patterns. Processing-in-Memory (PIM) architectures have the 
potential to significantly reduce the overheads associated with 
such frequent and irregular memory accesses. However, existing 
k-mer counting algorithms are not designed to exploit the 
advantages of PIM architectures. Furthermore, owing to thermal 
constraints, the allowable power budget is limited in conventional 
PIM designs. Moreover, k-mer counting generates unbalanced and 
long-range traffic patterns that need to be handled by an efficient 
Network-on-Chip (NoC). In this paper, we present an NoC-
enabled software/hardware co-design framework to implement 
high-performance k-mer counting. The proposed architecture 
enables more computational power, efficient communication 
between cores/memory – all without creating a thermal 
bottleneck; while the software component exposes more in-
memory opportunities to exploit the PIM and aids in the NoC 
design. Experimental results show that the proposed architecture 
outperforms a state-of-the-art software implementation of k-mer 
counting utilizing Hybrid Memory Cube (HMC), by up to 7.14X, 
while allowing significantly higher power budgets. 
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1 INTRODUCTION 
Analysis of biomolecular data such as DNA and proteins has been 
one of the primary drivers of scientific discovery in biological 
sciences. From a computational perspective, these biomolecules 
can be represented as strings (equivalently, sequences). Hence, 
sequence analysis occupies a significant portion of many 
bioinformatics workflows. One such operation is k-mer counting, 
where the goal is to determine the counts of all distinct fixed 
length substrings of length k in a large collection of input 
sequences. Computing k-mer abundance profiles is often 
necessary for several bioinformatics applications e.g., de novo 
genome assembly, repeat identification, etc.      
Challenges: From a software perspective, implementing k-mer 
counting in a resource- and time-efficient manner is a challenging 

task. Existing software-only solutions for efficient k-mer counting 
e.g. KMC2 [1], Gerbil [2], do not consider hardware limitations, 
resulting in sub-optimal performance. The counting process 
generates irregular memory accesses and sparse computations 
that results in more frequent memory read/writes. Conventional 
memory architectures provide limited bandwidth with higher 
read/write latencies. This presents a performance bottleneck for 
k-mer counting, which relies on repeated memory access. As a 
result, computing units often remain idle, as a large portion of the 
execution time is spent moving data to/from memory. Moreover, 
k-mer counting generates significant communication between the 
Processing Elements (PEs). For example, in Gerbil [2], k-mers are 
repeatedly distributed among the threads responsible for 
counting, introducing significant amount of on-chip traffic. 
Without an efficient communication backbone, this can lead to 
longer execution times as PEs would remain idle for a greater 
number of cycles waiting for data. To overcome these 
inefficiencies in conventional architectures, we posit that a 
carefully designed software/hardware co-design framework can 
be better equipped to derive the best out of both worlds. More 
specifically, in this work, we argue that the emerging paradigm of 
Processing-in-Memory (PIM), enabled by a Network-on-Chip 
(NoC), presents a promising solution to these applications.  
PIM takes advantage of emerging 3D-stacked memory + logic 
devices (such as Micron’s Hybrid Memory Cube or HMC) to 
enable high-bandwidth, low latency and low energy memory 
access [3]. However, conventional PIM architectures are restricted 
by thermal constraints as temperature impacts both memory 
retention and overall performance [4, 5]. Conventional 2.5D PIM 
and 3D PIM architectures often have limited power budget and 
computational capability before reaching the allowable 
temperature threshold [5, 6]. The role of NoC in PIM architectures 
is also understudied. Due to a single layer of logic in existing PIM 
architectures, planar NoC is used for efficient communication 
among the PEs [7]. However, 2D NoCs such as mesh, are not 
suited for long range communication that is inherent in k-mer 
counting. Moreover, k-mer counting generates unbalanced traffic 
that imposes an additional layer of design complexity. 
To overcome the above-mentioned challenges, in this paper, we 
propose an NoC enabled manycore architecture that exploits the 
benefits of emerging Monolithic 3D (M3D) integration to integrate 
multiple logic layers in PIM architectures with 3D-stacked 
memory, for high-performance k-mer counting. Experimentally, 
we show that even with multiple logic layers and higher power 
budget, the proposed architecture does not violate thermal 
constraints. The main contributions of this work are: 
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• We profile k-mer counting to extract features relevant 
to the design of a high-performance NoC and the 
overall PIM architecture for k-mer counting. 

• We present a software/hardware co-design 
framework: the hardware consists of a PIM with 
multiple logic layers enabled by M3D integration while 
the software component enables high-performance k-
mer counting by utilizing the benefits of PIM and aids 
in NoC design.  

• We perform a thorough experimental evaluation of the 
proposed co-design framework and show significant 
improvements over an appropriate baseline. 

2 RELATED WORKS 

2.1 k-mer counting 
The task of k-mer counting is memory-intensive and involves 
creating a histogram of all k-length substrings in a DNA sequence. 
KMC2 [1], DSK [8] and Gerbil [2] are some of the popular tools 
for this purpose, with Gerbil representing the state-of-the-art in 
software as it outperforms most of the other tools. However, it 
requires the repetitive use of off-chip secondary memory and 
therefore will fail to fully exploit the high-bandwidth, low latency 
memory access facilitated by PIM. Manycore CPU- and GPU- 
based platforms are the preferred choices for implementing k-mer 
counting [1, 2]. However, these works do not address the memory 
bottleneck issues. In [9], the authors designed a custom FPGA-
based architecture connected to an HMC for approximate k-mer 
counting. However, the memory (HMC) is connected to the PEs 
using serial links in a 2.5D architecture, which is not as efficient 
as completely on-chip solutions i.e. 3D PIM [3, 10].  

2.2 Processing-in-memory 
Processing-in-Memory (PIM) involves moving the computational 
units closer to memory. This allows efficient data transfer from 
memory enabled by 3D integration [3]. Prior works has mostly 
focused on Through Silicon Via (TSV)-based PIM architectures, 
which are prone to high temperatures [5, 11]. Heat from 
processing elements can significantly affect the retention time of 
DRAMs [4]. Beyond 85ᵒC, the overheads to counter lower DRAM 
retention can significantly offset the benefits of PIM [5].  
To reduce the effect of temperature, 2.5D architecture is a popular 
choice to implement PIM where PEs are placed near the memory 
and connected via interposers. However, lateral heat flow from 
PEs can significantly affect memory temperature [6]. In 3D-PIM 
architectures, memory is stacked directly on top of the PEs, which 
enables better throughput and latency [3]. However, they are 
more prone to high temperature as PEs are placed in the same 
vertical stack. In [12], the authors propose to use a mix of 2.5D + 
3D PIMs. They map the application on PEs based on its memory 
and compute requirements for best performance. However, their 
methodology assumes prior knowledge of an application, which 
is often not feasible. Memory-centric NoC, that connects multiple 
HMCs to facilitate efficient data transfer has been studied [7]. The 
role of NoC connecting different vaults of an HMC is discussed in 
[13]. However, these implementations are limited to 2D NoC 

which is inefficient in addressing the challenges posed by k-mer 
counting i.e. unbalanced traffic and long-range communication. 
To overcome these limitations, we propose an NoC-enabled PIM-
based architecture that amalgamates: (a) multiple logic layers in 
conventional PIM, (b) M3D-based vertical integration, and (c) 
efficient 3D-NoC design for high-performance k-mer counting, 
while remaining within 85ᵒC temperature. To take advantage of 
PIM’s more efficient memory access and aid NoC design, we also 
propose an alternative software approach to count k-mers that 
outperforms the Gerbil framework. 

3   High-performance k-mer counting  
Problem statement: Given a DNA sequence s of length l, a “k-
mer” is defined as a substring of length k in s (k being an integer, 
k l). All k-mers in s can be generated by simply sliding a window 
of length k over s. Given a set S of n such input sequences (aka. 
“reads”), the problem of k-mer counting is one of determining the 
total number of occurrences for each distinct k-mer that is present 
in the reads of S. In this work, we mainly focus on Gerbil [2] as 
our software baseline for k-mer counting. Gerbil is a recently 
proposed methodology that outperforms several well-known 
counters e.g. KMC2 [1] and DSK [8] for higher values of k, e.g. 
k=32, making it an appropriate software baseline to consider.  

3.1  Gerbil: Overview and Analysis 
Gerbil is a two-phase algorithmic implementation for k-mer 
counting: (a) 'Distribution' phase where the input reads are 
partitioned into multiple intermediate files on the disk, and (b) 
'Counting' phase, which reads each of these intermediate files (one 
by one) for counting. The entire procedure is designed to make 
optimal use of conventional manycore architectures. Each step in 
Gerbil operates in a pipelined fashion for high throughput 
counting. Popular techniques like load balancing and use of failure 
buffers to handle hash conflicts, etc., have also been used for better 
performance. Fig. 1 illustrates the overall workflow of Gerbil.  
Next, we thoroughly analyze Gerbil using detailed full-system 
simulations on Gem5 [14] to study relevant features that are 
crucial in designing an efficient manycore architecture. Fig. 2(a) 
shows the different categories of instructions (operations) 
involved in Gerbil with real-world inputs.  We observe that nearly 
two-thirds of Gerbil consists of integer operations. Memory 
operations (including I/O) constitute the second largest category 
(32.5%). The remaining is made up of NoOps while floating-point 
instructions are negligible.   
Traditional off-chip main-memory and secondary memory 
accesses are slower [10], which can cause significant CPU stalls. 
In Gerbil, memory and I/O operations contribute significantly to 

 
Fig. 1: Illustration of workflow in Gerbil (F: Input files, B: Buckets, 
C: CPU; ‘Buckets’ is synonymous to ‘intermediate files’ in [2]) 
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the runtime, the effect of which is captured in Fig. 2(b).  Full-
system simulations on Gem5 with 64 Intel x86 cores executing 
Gerbil shows that CPUs are utilized less than 15% of the time (Fig. 
2(b)) for any number of intermediate files. The intermediate files 
are generated after Distribution phase of Gerbil which are stored 
and then eventually read back from the slow off-chip secondary 
memory for further processing (as shown in Fig. 1). Moreover, the 
counting process involves irregular memory accesses, which 
makes caching ineffective. As a result, even though integer 
instructions constitute the majority of Gerbil operations, Fig. 2(b) 
clearly highlights that most of the execution time is spent in 
fetching/storing data rather than actual computation. The CPU 
utilization gets worse if more intermediate files are generated 
(4.5% CPU utilization in the case of 512 files) as it involves more 
off-chip memory access. This translates to a significant increase 
in runtime as observed in Fig. 2(b). Overall, it is clear that Gerbil 
does not efficiently utilize the computing resources resulting in 
sub-optimal performance. Fig. 2 also proves that slow memory 
access presents a more serious bottleneck to performance than 
computation, for k-mer counting, making it an ideal case for PIM. 
However, Gerbil’s dependence on secondary memory (Fig. 1) 
makes it inappropriate for PIM architectures as it’ll fail to fully 
exploit the high-bandwidth, low latency memory access 
facilitated by PIM. Therefore, A PIM-friendly k-mer counting 
software solution that complements the hardware is necessary.  
Fig. 3 shows the communication between every CPU (Ci) pair for 
three different input datasets in the form of a heat map. Here, we 
define amount of communication (traffic) as the number of flits 
exchanged between a pair of cores during k-mer counting as 
obtained using full-system Gem5 simulations considering a 
manycore system with 64 cores. As shown in Fig. 3, k-mer 
counting in Gerbil exhibits significant amount of data exchanges 
between cores. Darker patches (a few have been highlighted in red 
in Fig. 3(a) as examples) indicate heavier communication between 
a pair of cores. Planar logic in conventional PIM offers only a 

limited number of design and floor-planning choices. Hence, 
frequently communicating cores may get potentially placed far 
from each other, leading to long range communication. Also, we 
observe several lighter patches indicating lower communication 
in Fig. 3. This shows that the communication in Gerbil is highly 
unbalanced. Few of the cores have heavy data traffic while the rest 
have relatively negligible traffic. These heavily communicating 
cores e.g. C1 in Fig. 3(a), can become traffic hotspot during 
execution, which affects performance. Without a suitable NoC 
backbone, this can result in higher latency that in turn will 
increase execution time. It is well known that 2D NoCs (due to 
single layer of logic in conventional PIM) are not scalable and not 
suited to handle long range communication. Therefore, an 
efficient NoC is crucial for high-performance k-mer counting.  

3.2 PIM-Counter: PIM Friendly k-mer Counter  
In this section we present PIM-Counter, a PIM-friendly multi-
threaded algorithm designed to overcome the I/O bottleneck of 
Gerbil, exploit the PIM-based architecture and aid in the NoC 
design. Fig. 4 shows the workflow of PIM-Counter. As discussed 
earlier, Gerbil relies on secondary memory usage, which results in 
inefficient CPU utilization (Fig. 2) and is not suited for PIM-based 
architectures. In contrast, the proposed PIM-counter (Fig. 4), uses 
an on-chip memory-friendly approach to utilize the benefits of 
PIM. As illustrated in Fig. 4, PIM-Counter has three main steps:    
Step-1: Input loading: Instead of reading the input files in 
batches using multiple I/O passes as in Gerbil (Fig. 1), PIM-
Counter performs a single I/O pass. The inputs are then loaded 
uniformly across the PIM cubes. Here, a cube (Fig. 5, which shows 
the overall PIM architecture) is analogous to an HMC vault [13] 
that consists of both logic and memory. However unlike 
conventional HMC vaults, we also consider PEs e.g. CPUs, as part 
of the logic layer (i.e. 3D PIM). We discuss the hardware 
architecture in more details in next section. 
Step-2: Bucketing: Once the strings are loaded onto the memory, 
uniformly across the partitions (‘cubes’ in Fig. 5), the local 
thread(s) in the corresponding cubes generate all k-mers from 
each string by sliding a window of length k. To overcome the 

 
            (a)                (b)     (c) 
Fig 3: CPU-to-CPU communication profile for Gerbil in the form of heat map for input datasets (a) E. Coli, (b) Prochlococcus sp., and (c) 
Vibrio cholerae (Ci: CPUi; Red boxes highlight few of the patches of heavy communication) 
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 (a)             (b) 
Fig. 2: Gerbil: (a) Instruction types, and (b) CPU utilization and 
runtime (normalized) for varying number of intermediate files 
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Fig. 4: Illustration of workflow in proposed k-mer counting 
methodology: PIM-Counter (F: Input files, B: Buckets, C: CPU)  

On-chip Memory

C C C C
C C C C
C C C C
C C C C

Processor

Insert into 
Buckets

Local/Remote 
PIM cube

Local 
PIM cube

Input Sequences

Secondary Memory Aggregate 
Counts

Read
F

F1 FN

. . .

Input Loading

Bucketing

Counting



NOCS 19 B.K.Joardar et al. 
 

4 
 

challenge imposed by the use of a large value of k, we use the 
concept of minimizers, which was originally introduced in the 
context of building de Bruijn graphs [15]. The idea is to hash each 
k-mer using its least (or equivalently, most) frequent m-mer, 
where m<k (e.g., m=7; k=32) and migrate that k-mer to the 
minimizing m-mer’s bucket.  Here, the term bucket refers to the 
collection of all k-mers that share the same minimizer and is 
analogous to the ‘intermediate files’ used in Gerbil. However, 
unlike Gerbil, these buckets are present in the on-chip memory. 
Each cube is responsible for a different, non-overlapping set of 
buckets. The mapping of bucket to cube id is achieved using a hash 
function in linear congruential form (e.g. ((Ax+B) mod P), A, B and 
P are constants), which distributes all possible buckets across the 
different cubes. As a result, the responsible bucket for a k-mer 
could either reside on the local cube (same cube as the computing 
PE) or on a remote cube (any other cube except the local cube). For 
example, in Fig. 5, Cube-16 is a local cube to CPU-16, while Cube-
1 is remote cube to CPU-16. Memory in local cube can be accessed 
by the cores using vertical interconnects only. A remote cube, 
however, must be reached via the use of one or more planar links. 
Accessing remote cubes is costlier as data must traverse longer 
physical distance that can result in higher execution time. The 
NoC should support this data movement.  
In PIM-Counter, the data movement (traffic pattern) between PEs 
depends on the hash function which defines the mapping of k-mer 
buckets to cube-ids. Therefore, it is important to choose suitable 
values for A, B and P (and hence the hash function) such that the 
resulting traffic is balanced. Overall, our aim here is to choose a 
suitable mapping that distributes the traffic among the PEs evenly 
to avoid hotspots in the NoC during execution. We use full-system 
Gem5 simulations to determine the hash function that yield better 
traffic distribution (shown in experimental results). 
Step 3: Counting: In the final step, the thread(s) local to each 
cube aggregate the counts for each distinct k-mer represented in 
its local buckets; this is achieved using a parallel reduction. Here, 
PIM-Counter fully exploits the locality benefits of PIM as data is 
already available on each thread’s corresponding local cube (due 
to the previous bucketing phase) and can be accessed using just 
the vertical links. Due to the physical proximity of memory in 
PIM, CPU stalls are greatly reduced as data can be fetched 
relatively faster than in conventional architectures (where data is 
fetched from physically distant/off-chip memory).  
Overall, PIM-Counter presents a PIM-friendly k-mer counting 
alternative that can outperform other counting tools as it benefits 

from high-bandwidth, low-latency and low-energy memory 
access facilitated by PIM. It also enables efficient communication 
between PEs by reducing traffic hotspots.  

4 NoC-ENABLED 3D-PIM DESIGN 
In this section, we introduce the features of the proposed 3D-PIM 
enabled by M3D integration followed by the NoC design that 
supports the communication generated by k-mer counting. 

4.1  PIM-architecture for k-mer Counting 
PIM allows high bandwidth, low-latency and low-energy memory 
access by moving computation closer to memory [10]. The faster 
memory access enabled by PIM is crucial for k-mer counting as a 
large fraction of time (>85%) is spent in fetching/storing data 
to/from memory in Gerbil (Fig. 2). However, temperature presents 
an important limitation in conventional PIM architectures. DRAM 
retention capability is lowered beyond 85ᵒC. After temperature 
exceeds this threshold, refresh rate must be doubled for every 
∼10ᵒC increase in memory temperature. Higher refresh rates 
consume more power and, results in lower memory performance 
[5]. Also, traditional power management techniques are often not 
tailored for memory. Therefore, placing memory directly on top 
of (or nearby) the PEs in PIM, without addressing thermal issues, 
can be detrimental to performance.   
In [6], the authors found that 2.5D PIM architectures are prone to 
lateral heat flow from PEs even when placed 10mm farther from 
the HMC. Placing memory farther away to reduce temperature, 
also defeats the main purpose of PIM, which is to bring 
computation closer to memory. 3D PIM architectures where PEs 
are in same vertical stack as memory, are even more sensitive. 
Therefore, conventional PIM architectures (both 2.5D and 3D) 
typically use either (a) PEs with simpler architectures (as complex 
cores e.g. Out-of-Order (OoO) CPUs tend to consume more power 
[5]), (b) fewer number of cores e.g. [12], or (c) minimal computing 
power [6], (or all of the above) to remain within the temperature 
threshold. Due to these restrictions, conventional PIM 
architectures have lower computation capability that affects 
performance and are not scalable with increasing system size.  
Moreover, PIM architectures are restricted to single logic layer and 
multiple memory layers, as logic (PEs) dissipates more heat than 
memory [5]. It is well known that 2D logic provides limited floor-
planning choices and require more die area than an equivalent 3D 
counterpart. However, multiple logic layers stacked vertically in 
3D ICs are prone to higher temperatures as PEs farther away from 
the sink cannot dissipate heat easily, resulting in worse 
temperature [16]. As PEs consume more power than memory, use 
of multiple layers of logic in PIMs is typically avoided. As a result, 
only a few cores can be integrated given a fixed area constraint. 
Overall, our objective for a “suitable PIM architecture” is one that 
should: (a) allow larger volume of computation (logic) to be 
integrated without incurring extra area and thermal overheads; 
and (b) enable efficient data exchange between cores and memory.  
Taking advantage of the benefits of 3D ICs in this work, we 
propose a PIM architecture that incorporates multiple logic layers 
in conventional PIM for high-performance. Fig. 5 shows the 
proposed architecture with multiple logic layers (similar to 3D ICs 

 
Fig. 5: Proposed PIM-based architecture with multiple logic and 
memory layers enabled via M3D integration 
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[16]) and multiple memory layers. Each logic layer consists of 
multiple PEs, while the memory layers consists of conventional 
DRAM. The cores are connected using a Network-on-Chip (NoC) 
to support efficient on-chip communication between cores. We 
discuss NoC design in the next sub-section. The use of multiple 
logic layers enables a greater number of cores to be integrated 
compared to traditional PIM (single logic layer) under an “iso-
area” setting. All the layers are virtually (not physically) divided 
into several equal cubes. Each cube consists of equal amount of 
resources i.e. one core per logic layer (placed vertically on top of 
each other) and the portion of memory directly above it. For 
example, in Fig. 5 (assuming 2-logic layers and following similar 
numbering convention of CPUs), Cube-16 consists of CPU-16, 
CPU-32 and part of memory directly above it. 
Conventional TSV-based 3D architectures are susceptible to 
higher temperatures and hence cannot be used to design the 
proposed architecture (Fig. 5) [11]. Consecutive layers in TSV-
based designs are physically attached using a bonding material 
e.g. Benzocyclobutene (BCB), that exhibits poor thermal 
conductivity. This impedes the seamless flow of heat across the 
layers resulting in considerable increase in temperature in the 
layers away from the heat sink. Moreover, the relatively thicker 
silicon substrate (several micrometers) in TSV-based designs 
causes the heat to spread laterally within the substrate instead of 
vertically towards the sink. This results in higher on-chip 
temperatures, which is undesirable in PIM architectures.  
On the other hand, emerging M3D integration allows faster 
dissipation of heat than its TSV-based counterparts [16]. Absence 
of a bonding material and relatively smaller dimensions 
(nanometers as opposed to micrometers) leads to superior thermal 
characteristics than TSV-based designs. Therefore, we argue that 
we should design high-performance yet thermally viable PIM 
architectures with multiple logic (and memory) layers as shown 
in Fig. 5 using M3D integration. Experimentally, we show that 
M3D-based PIM designs are superior in terms of both 
performance and temperature, enabling higher power budgets 
compared to their TSV-based solutions. Moreover, M3D enables 
design of area- and power-efficient multi-tier logic blocks [17]. 
The possibility of multi-tier logic blocks e.g. NoC routers, enable 
design of high-performance and energy-efficient NoCs, which is 
essential to support efficient k-mer counting.  

4.2 NoC design for k-mer Counting 
For achieving high performance, the choice of overall NoC 
connectivity should be governed by the traffic pattern generated 
by the application under consideration. As shown in Fig. 3, k-mer 
counting introduces significant long-range and unbalanced traffic 
pattern that should be handled by the NoC. The unbalanced traffic 
in k-mer counting is addressed by choosing a suitable mapping to 
cubes (hash-function) in PIM-Counter as discussed in Section 3. 
PIM-Counter makes the traffic more uniform compared to Gerbil, 
reducing chances of traffic hotspots (shown later in experimental 
results section). To efficiently handle the long-range traffic 
pattern, 3D small-world (SW) NoC architecture is a suitable 
choice. The vertical links in 3D NoCs bring cores physically closer 

and enable long-range communication shortcuts necessary for 
designing high-performance SW NoC [19]. Moreover, the vertical 
connectivity in M3D is facilitated by monolithic inter-tier vias 
(MIVs), which are 100x smaller and more energy efficient than 
conventional TSVs [18]. Overall, we utilize the benefits of M3D to 
design high-performance, yet energy efficient SW NoCs.  
To design a suitable 3D SW NoC, the placement of links and 
routers need to be optimized based on the application (k-mer 
counting in this case). By optimizing the placement of the 
routers/links, it is possible to address the communication 
challenges inherent in k-mer counting (Fig. 3) effectively. We 
demonstrate that the designed NoC (executing PIM-Counter) 
outperforms Gerbil running on an equivalent platform, in later 
section. Next, we discuss the details of the NoC optimization.  
Optimization Objective: For the NoC performance evaluation, 
we consider two objectives: latency and energy. We estimate 
network latency and energy using analytical models proposed in 
[16] for optimization purpose. For an N core system, the average 
network latency is modeled as:  

𝐿𝑎𝑡 =
1

∑ 𝑓𝑖𝑗
∑ ∑(𝑟 ⋅ ℎ𝑖𝑗 + 𝑑𝑖𝑗) ⋅ 𝑓𝑖𝑗                          (1)

𝑁

𝑗=1

𝑁

𝑖=1

 

Here, 𝑓𝑖𝑗  represents the number of flits exchanged between core i 
and core j (Fig. 3) obtained from full-system k-mer counting 
simulations on Gem5. The parameter r represents the number of 
router stages, ℎ𝑖𝑗 denotes the number of hops between the two 
cores while 𝑑𝑖𝑗  incorporates the effect of physical distance that 
messages must traverse based on the routing protocol.  
The network energy is modeled using the following equations: 

𝐸𝑟𝑜𝑢𝑡𝑒𝑟 = ∑ ∑ 𝑓𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

⋅ ∑ 𝑟𝑖𝑗𝑘 ⋅ (𝐸
𝑟

⋅ 𝑃𝑘)

𝑅

𝑘=1

              (2) 

𝐸𝑙𝑖𝑛𝑘 = ∑ ∑ 𝑓𝑖𝑗 ⋅ (∑ 𝑝𝑖𝑗𝑘 ⋅ 𝑑𝑘 ⋅ E𝑝𝑙𝑎𝑛𝑎𝑟 + ∑ 𝑞𝑖𝑗𝑘 ⋅ 𝐸𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙

𝑉

𝑘=1

𝐿

𝑘=1

)

𝑁

𝑗=1

𝑁

𝑖=1

 (3) 

𝐸 = 𝐸𝑟𝑜𝑢𝑡𝑒𝑟 + 𝐸𝑙𝑖𝑛𝑘                           (4) 

 Here 𝐸𝑟 denotes the average router logic energy per port and 𝑃𝑘 
denotes the number of ports available at router k. The total link 
energy can be divided into two parts due to the different physical 
characteristics of planar and vertical links. 𝑑𝑘 represents the 
physical link length of link k. Here, 𝑞𝑖𝑗𝑘  and 𝑟𝑖𝑗𝑘  indicate if a 
vertical link or router k is utilized to communicate between core i 
and core j respectively. E𝑝𝑙𝑎𝑛𝑎𝑟  and E𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙  denote the energy 
consumed per flit by planar metal wires and vertical links (TSV or 
MIV) respectively. All the required power numbers were obtained 

 
Fig. 6: Illustration of proposed M3D-enabled SW-NoC with multi-
tier routers [17] and small-world properties [19] (The color 
contrast between Layer1 and Layer2 is for differentiation only) 
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using Synopsys Prime Power for 28nm nodes. The total network 
energy E is the sum of router logic and link energy. 
We optimize the two objectives, latency and energy, using a 
machine learning-enabled Multi-Objective Optimization (MOO) 
algorithm: MOO-STAGE [16]. By learning the search space, MOO-
STAGE can find better solutions than several conventionally used 
MOO algorithms in much less time. Hence, it is a suitable choice 
of MOO solver for optimizing the NoC. Overall, MOO-STAGE 
finds the best placement of links and routers in the SW NoC that 
achieves  good trade-off between both objectives: latency and 
energy, to enable high-performance k-mer counting To ensure 
that the optimized architectures are realistic, we make sure that 
there is always at-least one path for communication between any 
pair of cores. M3D specific design aspects, e.g. possibility of multi-
tier routers has also been incorporated in the optimization. 
Following prior designs, e.g. [17], we restrict routers to span 
across at-most two layers only. Fig, 6 shows an illustration of the 
NoC for the proposed M3D-enabled PIM  

5 EXPERIMENTAL RESULTS 
In this section, we evaluate the performance of the proposed NoC-
enabled, software/hardware co-design framework for k-mer 
counting. First, we analyze PIM-Counter (Sec. 3) in detail. Next, 
we evaluate the performance and thermal profile of the proposed 
PIM architecture and the designed NoC.     

5.1 Experimental Setup 
We use a detailed full system simulator, Gem5 [14] to characterize 
the performance of the PIM-based manycore architecture 
proposed in this work. We modify the memory and Garnet 
network models within Gem5 to implement the various memory 
and NoC architectures considered in this work. All experiments 
are performed on a 64-core system where each core is based on 
Intel x86 architecture. The memory system comprises of private 
32KB L1 instruction and data caches, shared 16MB L2 cache 
(256KB distributed L2 per core). The simulated system operates 
with a clock frequency of 2.5GHz. The CPU power profiles are 
extracted using McPAT [20] while the on-chip temperatures are 
obtained using Hotspot [21] simulations. The TSV and M3D layers 
are modeled in Hotspot based on parameters e.g. layer thickness, 
thermal conductivity, etc. as listed in [11].  For all experiments, we 
have considered DRAM-based memory. Following prior works, 
the memory is modeled as a multi-layer stack in the proposed PIM 
design. All layers in the same vertical stack have equal area i.e. 
the memory die area is assumed to be same as the logic die area 
in the proposed 3D-PIM architecture.  

For experimental evaluations, we chose ten different genomic 
sequences from across the species spectrum: six prokaryotic 
genomes including, Prochlorococcus sp. (Pro), S. pneumoniae (Str), 
V. cholerae (Vib), E. coli (Eco), B. circulans (Bac), P. vivax (Pla) and 
four eukaryotic genomes namely, A. melifera (Api), D. 
melanogaster (Dro), D. labrax (Dcn) and R. norvegicus (Rat). This 
collection represents a wide variety in genome input complexities 
(including k-mer composition and abundance levels), intended to 
help us test our framework under different input scenarios, as k-
mer counting is known to be an input-dependent problem [22].  

5.2 Performance Evaluation of PIM-Counter 
We first evaluate the performance of the proposed PIM-Counter 
framework based on its traffic pattern, types of instructions and 
CPU utilization to compare with Gerbil. We profile PIM-Counter 
using full-system simulations on Gem5 similar to Gerbil (Sec. 3). 
Fig. 7(a) shows the distribution of instructions for PIM-Counter 
(similar to Fig. 2). Interestingly, we note that integer operations 
constitute a far greater proportion i.e. 87.7% in PIM-Counter (as 
opposed to 66.5% in Gerbil (Fig. 2)). Memory (including I/O) 
instructions only contribute to 11.7% of overall instructions. 
Floating point instructions and NoOps were negligible in both 
Gerbil and PIM-Counter. Fig. 7(b) compares the actual number of 
memory (including I/O) instructions for Gerbil and the PIM-
Counter. We note that the PIM-Counter reduces the number of 
memory operations by ~2.5X compared to Gerbil. This is 
important as memory operations contribute significantly to 
execution time. Coupled with a more efficient memory access 
provided by PIM, this results in a significant improvement in CPU 
utilization – as shown in Fig. 8. On average, the CPUs are utilized 
75% of the time as opposed to <15% in Gerbil.  This shows that by 
facilitating easier memory access, we can improve hardware 
utilization significantly. This is expected as PIM-Counter reduces 
the amount of I/O operations (which are slow), while promoting 
more on-chip memory usage to take advantage of PIM.  
Next, we look at the corresponding traffic pattern generated when 
PIM-Counter is executed on a 64-core architecture. Fig. 9 (a-c) 
shows the traffic pattern between CPUs for PIM-Counter with 
three real world datasets, namely: Eco, Pro and Vib, as examples.  
Fig. 9(d) compares the standard deviation of Gerbil’s traffic 
(normalized) with respect to that of PIM-Counter for these three 
datasets. The standard deviation of traffic captures the variation 
among the number of flits associated with each PE. Higher values 
of standard deviation indicate a more unbalanced traffic which 
can lead to traffic hotspots in the NoC resulting in higher 
execution times (discussed in Sec. 3). Contrasting these traffic 
patterns with those of Gerbil shown in Fig. 3, it is clear that PIM-
Counter achieves a more balanced traffic. For instance, in the case 
of Eco, PIM-Counter generates a 69% (Fig. 9(d)) better balanced 

  
 (a)     (b) 
Fig 7: PIM-Counter: (a) Instruction types, and (b) Number of 
memory operations compared to Gerbil (normalized) 
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Fig 8: Average CPU utilization in Gerbil and PIM-Counter 
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traffic pattern. This can be attributed to the appropriate mapping 
of k-mers to cube-id in PIM-Counter. Hence, traffic hotspots are 
less likely, leading to better performance in PIM-Counter.   

5.3 Thermal Evaluation 
For any new PIM architecture, thermal feasibility is a major 
concern [5]. In Sec. 4, we argued that it is possible to integrate 
multiple layers of logic (similar to conventional 3D ICs) in PIM 
using M3D. Therefore, before performance analysis, in this 
section, we first investigate and experimentally validate the 
thermal feasibility of the proposed PIM architecture.  
Fig. 10(a) shows the variation of maximum on-chip temperature 
for k-mer counting as more logic layers are added. Each layer has 
been modeled following [11] in HotSpot. Here, we assume that the 
number of memory layers to be fixed while varying the number 
of logic layers beneath it. For all experiments, an ambient 
temperature of 45ᵒC and an inexpensive low-end cooling 
(convention resistance = 2ᵒC/W [11]) is used. Fig. 10(a) indicates 
that even with a simple cooling solution, up to four layers of logic 
can be easily integrated in M3D-based 3D-PIM without reaching 
temperature threshold of 85ᵒC. On the other hand, TSV-based PIM 
only allows a maximum of 2 logic layers for k-mer counting. 
Beyond two layers, TSV-based PIM architectures necessitate 
higher refresh rates and more expensive cooling solutions to be 
viable. Note that adding the second layer of logic results in 
temperature close to the threshold (81ᵒC) which may still 
necessitate precautions for safe operation. However, even with 
four logic layers, M3D-based PIM architecture exhibits maximum 
temperature of 74ᵒC only. Therefore, contrary to conventional 
PIM architectures, it is possible to have multiple logic layers in an 
M3D-enabled PIM without violating thermal constraints.   
Also, since core and memory power depend on several factors e.g., 
voltage-frequency settings, technology node etc., it is important 
to study the power budget available in both architectures (without 
exceeding 85ᵒC) for a complete analysis. Fig. 10(b) shows the 
amount of power budget available in both PIM architectures when 

logic and memory power is varied simultaneously to study the 
maximum on-chip temperature. From Fig. 10(b) we note that M3D 
based PIM provides a much higher power budget (up to 8W more) 
than their TSV-based counterpart under similar settings. The 
higher power budget is achieved as M3D-based architectures do 
not have layers with poor thermal conductivity and have 
relatively smaller dimensions (discussed in Sec. 4) which aide in 
quick dissipation of heat. As a result, the temperature increase is 
significantly contained allowing more power budget (and multiple 
layers of logic) in an M3D-enabled PIM without exceeding 85ᵒC.  

5.4 Performance Evaluation 
Next, we present the NoC and overall full-system performance 
evaluation. Fig. 11 shows the performance of the optimized M3D-
enabled SW-NoC for both Gerbil and PIM-Counter. The NoCs for 
both Gerbil and PIM-Counter have been designed following the 
same optimization methodology discussed in Sec. 4.2. Here, we 
assume a 64-core architecture arranged in four layers (16 cores per 
layer) with M3D-integration for both Gerbil and PIM-Counter. 
From Fig. 11, we note that the optimized NoC for PIM-Counter 
outperforms its Gerbil counterpart by 14% on average for all the 
datasets. This happens as PIM-Counter has a more balanced 
traffic, which reduces hotspots leading to faster communication. 
On the other hand, Gerbil has a handful of cores contributing 
significantly higher traffic than the rest (Fig. 3). Routers/Links 
near them experience more congestion, affecting performance.  
Moreover, it is well known that the performance of the k-mer 
counting is input-dependent [22]. Hence, it is possible that an NoC 
optimized with traffic pattern associated with one input may 
perform sub-optimally when used for a different input. However, 
it is not desirable for an NoC design to exhibit significant 
performance variation across inputs. Fig. 12 shows the NoC 
performance variation for different datasets. For this experiment, 
we consider the same NoC as in Fig. 11, which was optimized 
following the traffic pattern (fij in Eqns. (1)-(4)) of one input 
dataset (seen) e.g. Bac. This NoC is then used for executing k-mer 

(a)    (b) 
Fig 10: (a) Maximum on-chip temperatures with varying number of logic layers for k-mer 
counting, and (b) Power budget study, in TSV and M3D-based PIM architectures 
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Fig. 11: Performance of optimized M3D-based 
NoC with PIM-Counter, normalized with respect 
to Gerbil running on an equivalent platform.  
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Fig 9: CPU-to-CPU communication profile for PIM-Counter as heat map (Ci: Core i;) for input datasets (a) E. Coli (Eco), (b) Prochlococcus 
sp. (Pro), (c) Vibrio cholerae (Vib), and (d) Standard Deviation of Gerbil’s traffic normalized with respect to that of PIM-Counter (PC) 
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counting with other remaining (unseen) nine datasets i.e. 
excluding Bac, and so on. We observe from Fig. 12 that the 
designed M3D-based SW-NoCs for PIM-Counter shows minimal 
(<= 4.5%) performance variation when other datasets are tested 
for performance. This happens as PIM-Counter uniformly 
distributes traffic among the PEs for all datasets (Fig. 9), which 
reduces the input-dependent behavior. Hence, from Fig. 11 and 
Fig. 12, it is clear that PIM-Counter enables better NoC design that 
outperforms Gerbil and deliver high-performance communication 
support for all inputs tested. However, as Gerbil spends more than 
85% of the time for memory (and I/O) accesses (Fig. 2), only 
improvement in NoC performance does not capture the 
performance gain of the proposed architecture for a large portion 
of time Therefore, full system experiments are necessary.  
For full-system evaluation, we compare the execution time for the 
64-core NoC-enabled 3D-PIM architecture (similar to Fig. 5) 
running PIM-Counter (PC + 3D-PIM), with Gerbil executing on an 
equivalent 3D architecture connected to a conventional HMC 
(GHMC). The cores are equally distributed over four layers and 
connected by optimized M3D-enabled SW-NoCs (same ones 
considered in Fig. 11) for both the cases. Overall, GHMC includes 
both (a) software baseline: Gerbil, and (b) hardware baseline: 2.5D 
PIM architecture with HMC similar to [9]. Here, we do not use the 
custom FPGA-based PEs proposed in [9] as they are specifically 
designed to implement probabilistic approximate counting 
approaches, which is different than exact counting implemented 
by both PIM-Counter and Gerbil. However, please note that the 
proposed PIM architecture is generic and can incorporate any 
type of PEs (e.g. the exact counting, FPGA equivalent of [9]) 
instead of the x86 cores used here. Fig. 13 shows the full system 
runtime comparison between GHMC and PC + 3D-PIM. From Fig. 
13, we note that PC + 3D-PIM outperforms GHMC by up to 7.14X 
in runtime. The improvement is achieved as PIM-Counter avoids 
external I/O and promotes the use of on-chip memory while 
multiple layers of logic, optimized NoC and 3D-PIM enable faster 
computation, communication and easier memory access.  

6 CONCLUSION 
Counting k-mers is a memory-intensive task essential in several 
bio-informatics applications that process DNA and protein 
sequences. Existing software frameworks significantly improve 
the processing of k-mer counting. However, without proper 
architectural support, software gains cannot be fully realized. In 
this work, we proposed an NoC-enabled software/hardware co-
design that enables high-performance k-mer counting on a 3D-
PIM architecture. We show that using M3D integration, it is 
possible to design PIM with multiple logic layers and significantly 
higher power budget without violating temperature constraints. 
As a result, we upgrade the capabilities of traditional PIM 

architectures i.e. more computation capability with lesser 
footprint. Overall, the proposed architecture shows up to 7.14X 
better execution times compared to a state-of-the-art software 
framework executed on an equivalent 3D manycore system.  
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Fig. 13: Speed-up in execution time using proposed co-design 
framework over Gerbil + conventional HMC  
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Fig. 12: NoC performance variation for different inputs  
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