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Synonyms
Genome sequencing

Definition
Genome assembly is the computational process of
deciphering the sequence composition of the genetic
material (DNA) within the cell of an organism, using
numerous short sequences called reads derived from
different portions of the target DNA as input. The
term genome is a collective reference to all the DNA
molecules in the cell of an organism. Sequencing gener-
ally refers to the experimental (wetlab) process of deter-
mining the sequence composition of biomolecules such
as DNA, RNA, and protein. In the context of genome
assembly, however, the term is more commonly used to
refer to the experimental (wetlab) process of generat-
ing reads from the set of chromosomes that constitutes
the genome of an organism. Genome assembly is the
computational step that follows sequencing with the
objective of reconstructing the genome from its reads.

Discussion

Introduction
Deoxyribonucleic acid (or DNA) is a double-stranded
molecule which forms the genetic basis in most known
organisms. The DNA along with other molecules, such
as the ribonucleic acid (or RNA) and proteins, col-
lectively constitute the subject of study in various
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branches of biology such as molecular biology, genet-
ics, genomics, proteomics, and systems biology. A DNA
molecule is made up of two equal length strands with
opposite directionality, with the ends labeled from ′

to ′ on one and ′ to ′ on the other. Each strand
is a sequence of smaller molecules called nucleotides,
and each nucleotide contains one of the four possible
nitrogenous bases – adenine (a), cytosine (c), guanine
(g), and thymine (t). Therefore for computational pur-
poses, each strand can be represented in the form of
a string over the alphabet {a, c, g, t}, expressed always
in the direction from ′ to ′. Furthermore, the base at
a given position in one strand is related to the base at
the corresponding position in the other strand by the
following base-pairing rule (referred to as “base com-
plementarity”): a↔ t, c↔ g.Therefore, the sequence of
one strand can be directly deduced from the sequence of
the other. For example, if one strand is ′ agaccagttac ′,
then the other is ′ gtaactggtct ′.

The length of a genome is measured in the num-
ber of its base pairs (“bp”). Genomes range in length
from being just a few million base pairs in microbes to
several billions of base pairs in many eukaryotic organ-
isms. However, all sequencing technologies available till
date, since the invention of Sanger sequencing in late
s, have been limited to accurately sequencing DNA
molecules no longer than ∼ Kbp. Consequently, scien-
tists have had to deploy alternative sequencing strate-
gies for extending the reach of technology to genome
scale. The most popular strategy is the whole genome
shotgun (or WGS) strategy, where multiple copies of
a single long target genome are shredded randomly
into numerous fragments of sequenceable length and
the corresponding reads sequenced individually using
any standard technology. Another popular albeit more
expensive strategy is the hierarchical approach, where
a library of smaller molecules called Bacterial Artifi-
cial Chromosomes (or BACs) is constructed. Each BAC
is ∼ Kbp in length and they collectively provide
a minimum tiling path over the entire length of the
genome. Subsequently, the BACs are sequenced individ-
ually using the shotgun approach.

In both approaches, the information of the relative
ordering among the sequenced reads is lost during
sequencing either completely or almost completely.
Therefore, the primary information that genome assem-
blers should rely upon is the end-to-end sequence

overlap preserved between reads that were sequenced
from overlapping regions along the target genome. To
increase the chance of overlap, the target genome is typ-
ically sequenced in a redundant fashion.This is referred
to as genome coverage. A higher coverage typically tends
to provide information for a more accurate assembly,
although at increased costs of generation and analysis.
The fact that reads could have originated from an arbi-
trary strand adds another dimension to the complexity
of the reconstruction process. The process is further
complicated by other factors such as errors introduced
during read sequencing and the presence of genomic
repeats that could ambiguate overlap detection and read
placement. To partially aid the resolving of the genomic
repeat regions, sequencing is sometimes performed in
pairs from clonal insert libraries, where the genomic
distance between the two reads of a pair can be esti-
mated, typically in the – Kbp range. This technique
is called pair-end sequencing and genome assemblers
could take advantage of this information to resolve
repeats that are smaller than the specified range.

Genome assembly is a classical computational prob-
lem in the field of bioinformatics and computational
biology.More than twodecades of research has yielded a
number of approaches and algorithms and yet the prob-
lem continues to be actively pursued. This is because of
several reasons.While there are differentways of formu-
lating the genome assembly problem, all known formu-
lations are NP-Hard.Therefore, researchers continue to
work on developing improved, efficient approximation
and heuristic algorithms. However, even the best serial
algorithms take tens of thousands of CPU hours for
eukaryotic genomes owing to their: large genomic sizes,
which increase the number of reads to be analyzed; and
high genomic repeat complexity, which adds substan-
tial processing overheads. For instance, in the Celera’s
WGS version of the human genome assembly published
in , over  million reads representing .x cover-
age over the genome were assembled in about , 
CPU h.

A paradigm shift in sequencing technologies has
further aggravated the data-intensiveness of the problem
and thereby the need for continued algorithmic
development. Until the mid-s, the only available
technology for use in genome assembly projects was
Sanger sequencing, which produces reads of approx-
imate length  Kbp each. Since then, a slew of
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high-throughput sequencing technologies, collectively
referred to as the next-generation sequencing tech-
nologies, have emerged, significantly revitalizing the
sequencing community. Examples of next-generation
technologies include Roche  Life Sciences sys-
tem’s pyrosequencing (read length ∼ bp), Illumina
Genome Analyzer and HiSeq (read length ∼– bp);
Life Technologies SOLiD (read length ∼ bp) and
Helicos HeliScope (read length ∼ bp). While these
instruments generate much shorter reads than Sanger,
they do so at a much faster rate effectively producing
several hundred millions of reads in a single experi-
ment, and at significantly reduced costs (about –
times cheaper). These attractive features are essentially
democratizing the sequencing process and broaden-
ing community contribution to sequenced data. From
a genome assembly perspective, a shorter read length
could easily deteriorate the assembly quality because the
reads are more likely to exhibit false or insufficient over-
laps. To offset this shortcoming, sequencing is required
at a much higher coverage (x–x) than for Sanger
sequencing. The higher coverage has another desirable
effect in that, because of its built-in redundancy, it could
aid in a more reliable identification of real genomic
variations and their differentiation from experimental
artifacts. Detecting genomic variations such as single
nucleotide polymorphisms (SNPs) is of prime impor-
tance in comparative and population genomics.

This combination of high coverage and short read
lengths makes the short read genome assembly prob-
lem significantly more data-intensive than for Sanger
reads. For instance, any project aiming to reconstruct
a mammalian genome (e.g., human genome) de novo
using any of the current next-generation technologies
would have to contend with finding a way to assemble
several billion short reads. This changing landscape in
technology and application has led to the development
of a new generation of short read assemblers. Although
traditional developmental efforts have been targeting
serial computers, the increasing data-intensiveness and
the increasing complexity of genomes being sequenced
have gradually pushed the community toward parallel
processing, for what has now become an active branch
within the area.

In what follows, an overview of the assembly prob-
lem, with its different formulations and algorithmic
solutions is presented. This entry is not intended to be

a survey of tools for genome assembly. Rather, it will
focus on the parallelism in the problem and related
efforts in parallel algorithm development. In order to
set the stage, the key ideas from the corresponding serial
approachwill also be presented as necessary.Thebulk of
the discussionwill be onde novo assembly, which is typi-
cally the harder task of reconstructing a genome from its
reads assuming no prior knowledge about the sequence
of the genome except for its reads and as available, their
pair-end sequencing information.

Algorithmic Formulations of Genome
Assembly
The genome assembly problem: Let R = {r, r . . . rm}
denote a set of m reads sequenced from an unknown
target genome G of length g. The problem of genome
assembly is to reconstruct the sequence of genome G
from R.

As a caveat, for nearly all input scenarios, the out-
come expected is not a single assembled sequence but
a set of assembled sequences for a couple of reasons.
Typically, the genome of a species comprises of multiple
chromosomes (e.g.,  pairs in the human genome) and
therefore each chromosome can be treated as an indi-
vidual sequence target. Note that, however, the infor-
mation about the source chromosome for a read is lost
during a sequencing process such as WGS and it is left
for the assembler to detect and sort these reads by chro-
mosomes. Furthermore, any shotgun sequencing pro-
cedure tends to leave out “gaps” along the chromosomal
DNA during sampling, and therefore it is possible to
reconstruct the genomeonly for those sampled sections.
It is expected that, through incorporation of pair-end
information, at least a subset of these assembled prod-
ucts (called “contigs” in genome assembly parlance) can
be partially ordered and oriented.
Notation and terminology: Let s denote a sequence over
a fixed alphabet Σ. Unless otherwise specified, a DNA
alphabet is assumed – i.e., Σ = {a, c, g, t}. Let ∣s∣ denote
the length of s; and s[i . . . j] denote the substring of s
starting and ending at indices i and j respectively, with
the convention that string indexing starts at . A pre-
fix i (alternatively, suffix i) of s is s[ . . . i] (alternatively,
s[i . . . ∣s∣]). Let n = Σm

i=∣ri ∣ and ℓ = n
m . The sequencing

coverage c is given by g
n . The terms string and sequence

are used interchangeably. Let p denote the number of
processors in a parallel computer.
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The most simplistic formulation of genome assem-
bly is that of the Shortest Superstring Problem (SSP).
A superstring is a string that contains each input read
as a substring. The SSP formulation is NP-complete.
Furthermore, its assumptions are not realistic in prac-
tice. Reads can contain sequencing errors and hence
they need not always appear preserved as substrings
in the genome; and genomes typically are longer than
the shortest superstring due to presence of repeats and
nearly identical genic regions (called paralogs).

Among the more realistic models for genome
assembly, graph theoretic formulations have been in the
forefront. In broad terms, there are three distinct ways
to model the problem (refer to Fig. ):

() Overlap graph: Construct graph G(V ,E) from R,
where each read is represented by a unique ver-
tex in V and an edge is drawn between (ri , rj) iff
there is a significant suffix–prefix overlap between
ri and rj . Overlap is typically defined using a pair-
wise sequence alignment model (e.g., semi-global
alignment) and related metrics to assess the qual-
ity of an alignment. Given G, the genome assem-
bly problem can be reduced to the problem of
finding a Hamiltonian Path, if one exists, pro-
vided that there were no breaks (called sequencing
gaps) along the genome during sequencing. If there

were gaps during sequencing, then one Hamilto-
nian Path is sought for every connected component
in G (if it exists) and the genome can be recov-
ered as an unordered set of pieces corresponding
to the sequenced sections. This formulation using
the overlap graph model has been shown to be
NP-Hard.

() De Bruijn graph: Let a k-mer denote a string of
length k. Construct a De Bruijn graph, where the
vertex set is the set of all k-mers contained inside
the reads of R; and a directed edge is drawn from
vertices i to j, iff the k −  length suffix of the k-mer
i is identical to the k −  length prefix of the k-mer j.
Put another way, each edge in E represents a unique
k + -mer that is found in at least one of the reads
in R. Given a De Bruijn graph G, genome assem-
bly is the problem of finding a shortest Euler tour
in which each read is represented by a sub-path in
the tour.While finding an Euler tour is polynomially
solvable, the optimization problem is still NP-Hard
by reduction from SSP.

() String graph: This model is a variant of the overlap
graph in which the edges represent reads, and ver-
tices represent branching of end-to-end overlaps of
the adjoining reads. For example, if a read ri overlaps
with both rj and rk then it is represented by a vertex

agtcagt
cagttcgg

agtc gtca tcag cagt
agtt

r1 r3
r2 r4

gttc ttcg tcgg

cagtcaac

tcaa caac

Overlap graph

De Bruijn graph

String graph

Unknown 
genome

R
ea

ds

RepeatRepeat

Genome Assembly. Fig.  Illustration of the three different models for genome assembly. The top section of the figure

shows a hypothetical unknown genome and the reads sequenced from it. The dotted box shows a repetitive region within

the genome. In the overlap graph, solid lines indicate true overlaps and dotted lines show overlaps induced by the

presence of the repeat. The De Bruijn graph shows the graph for an arbitrary section involving three reads. The string

graph shows an example of a branching vertex with multiple possible entry and exit paths
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which has an inbound edge corresponding to ri and
two outbound edges representing rj and rk . Further-
more, the graph is pruned off transitively inferable
edges – e.g., if both ri and rj overlapswith rk , whereas
ri also overlaps with rj , then the overlap from rj to rk
is inferable and is therefore removed. Given a string
graph G, the assembly problem becomes one that is
equivalent of finding a constrained least cost Chi-
nese Postman tour of G. This formulation has also
been shown to be NP-Hard.

All the three formulations incorporate features to
handle sequencing errors. In the overlap graph model,
the pairwise alignment formulation used to define edges
automatically takes into account character substitu-
tions, insertions, and deletions. In the other twomodels,
an “error correction” procedure is run as a preprocess-
ing step to mask off anomalous portions of the graph
prior to performing the assembly tours.

Parallelization for the Overlap Graph
Model
Algorithms that use the overlap graph model deploy
a three-stage assembly approach of overlap–layout–
consensus. In the first stage, the overlap graph is
constructed by performing all-against-all pairwise
comparison of the reads in R. As a result, a layout for the
assembly is prepared using the pairwise overlaps and in
the third stage, a multiple sequence alignment (MSA)
of the reads is performed as dictated by the layout.
Given the large number of reads generated in a typi-
cal sequencing project, the overlap computation phase
dominates the run-time and hence is the primary target
for parallelization and performance optimization.

A brute-force way of implementing this step will be
to compare all (m) possible pairs. This approach can
also be parallelized easily, as individual alignment tasks
can be distributed in a load-balanced fashion given
the uniformity expected in the read lengths. However,
an implementation may not be practically feasible for
larger number of reads due to the quadratic increase
in alignment workload. Each alignment task executed
serially could take milliseconds of run-time. In fact, for
the assembly problem, the nature of sampling done dur-
ing sequencing guarantees that performing all-against-
all comparisons is destined to be highly wasteful.This is
because of the random shotgun approach to sequencing

which is expected to sample roughly equal number of
reads covering each genomic base and it is typically only
reads that originate from the same locus that tend to
overlap with one another, with the exception of reads
from repetitive regions of the genome.

A more scalable approach to detect pairwise over-
laps is to first shortlist pairs of sequences based on the
presence of sufficiently long exact matches (i.e., a fil-
ter built on a necessary-but-not-a-sufficient condition)
and then compute pairwise comparisons only on them.
Methods vary in the manner in which these “promising
pairs” are shortlisted. One way of generating promising
pairs is to use a string lookup table data structure that
is built to record all k-mer occurrences within the reads
in linear time. Sequence pairs that share one or more
k-mers can be subsequently considered for alignment-
based evaluation.While this approach supports a simple
implementation, it poses a few notable limitations. The
size complexity of the lookup table data structure con-
tains an exponential term O(∣Σ∣k). This restricts the
value of k in practice; for DNA alphabet, physical mem-
ory constraints demand that k ≤ . Whereas, reads
could share arbitrarily long matches, especially if the
sequencing error rates are low. Another disadvantage of
the lookup table is that it is only suited to detect pairs
with fixed length matches. An exact match of an arbi-
trary length qwill reveal itself as q− k+  smaller k-mer
matches, thus increasing computation cost. Further-
more, the distribution of entries within the lookup table
is highly data dependent and could scatter the same
sequence pair in different locations of the lookup table,
making it difficult for parallelization on distributed
memorymachines.Methods that use lookup tables sim-
ply use a high end shared memory machine for serial
generation and storage, and focus on parallelizing only
the pairwise sequence comparison step.

An alternative albeit more efficient way of enumer-
ating promising pairs based on exact matches is to use
a string indexing data structure such as suffix tree or
suffix array that will allow detection of variable length
matches. A match α between two reads ri and rj is
called left-maximal (alternatively, right-maximal) if the
characters preceding (alternatively, following) it in both
strings, if any, are different. A match α between reads
ri and rj is said to be amaximal match between the two
reads if it is both left- and right-maximal. Pairs contain-
ing maximal matches of a minimum length cutoff, say
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ψ, can be detected in optimal run-time and linear space
using a suffix tree data structure. A generalized suffix
tree of a set of strings is the compacted trie of all suf-
fixes in the strings.The pair enumeration algorithm first
builds a generalized suffix tree over all reads in R and
then navigates the tree in a bottom-up order.

Parallel Generalized Suffix Tree
Construction
For constructing a suffix tree, there are several linear
time construction serial algorithms and optimal algo-
rithms for the CRCW-PRAMmodel. However, optimal
construction under the distributed memory machine
model, where memory per processor is assumed to be
too small to store the input sequences in R, is an open
problem.Of the several approaches that have been stud-
ied, the following approach is notable as it has demon-
strated linear scaling to thousands of processors on
distributed memory supercomputers.

The major steps of the underlying algorithm are as
follows. Each step is a parallel step.The steps marked as
comm are communication-bound and the steps marked
comp are computation-bound.

S. (comp)LoadR from I/O in a distributed fashion such
that each processor receivesO( np ) characters and no
read is split across processor boundaries.

S. (comp) Slide a window of length k ≤ ψ over the
set of local reads and bucket sort locally all suffixes
of reads based on their k length prefix. Note that
for DNA alphabet, even a value as small as  for
k is expected to create over a million buckets, suffi-
cient to support parallel distribution. An alternative
to local generation of buckets is to have a master–
worker paradigm where the reads are scanned in
small-sized batches and have a dedicated master
distribute batches to workers in a load-balanced
fashion.

S. (comm) Parallel sort the buckets such that each
processor receives approximately ∼ np suffixes and
no bucket is split across processor boundaries.
While the latter cannot be theoretically guaranteed,
real-world genomic data sets typically distribute the
suffixes uniformly across buckets thereby virtually
ensuring that no bucket exceeds the O( np ) bound. If
a bucket size becomes too big to fit in the local mem-
ory, then an alternative strategy can be deployed

whereby the prefix length for bucketing is iteratively
extended until the size of the bucket fits in the local
memory.

S. (comm, comp) Each bucket in the output corre-
sponds to a unique subtree in the generalized suffix
tree rooted exactly k characters below the root. The
subtree corresponding to each bucket is then locally
constructed using a recursive bucket sort–based
method that compares characters between suffixes.
However, this step cannot be done strictly locally
because it needs the sequences of reads whose suf-
fixes are being compared. This can be achieved by
building the local set of subtrees in small-sized
batches and performing one round of communica-
tion using Alltoallv() to load the reads required to
build each batch from other processors. In order to
reduce the overhead due to read fetches, observe that
the aggregate memory on a relatively small group
of processors is typically sufficient to accommodate
the read set for most inputs in practice. For example,
even a set of  million reads each of length Kbp
needs only of the order of  GB. Even assuming
 GB per processor, this means the read set will fit
within  processors. Higher number of processors
is required only to speedup computation. One could
take advantage of this observation by partitioning
the processor space into subgroups of fixed, smaller
size, determined by the input size, and then have
the on-the-fly read fetches to seek data from pro-
cessors from within each subgroup. This improved
scheme could distribute the load of any potential hot
spots and also the overall communication could be
faster as the collective transportation primitive now
operates on a smaller number of processors.

The above approach can be implemented to run in
O( nℓp ) time and O( np ) space, where ℓ is the mean read
length. The output of the algorithm is a distributed rep-
resentation of the generalized suffix tree, with each pro-
cessor storing roughly n

p suffixes (or leaves in the tree).

The cluster-then-assembleApproach
A potential stumbling block in the overlap–layout–
consensus approach is the large amount of memory
required to store and retrieve the pairwise overlaps so
that they can be used for generating an assembly layout.
For genomes which have been sequenced at a uniform
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coverage c, the expectation is that each base along the
genome is covered by c reads on an average, thereby
implying (c) overlapping read pairs for every genomic
base. However, this theoretical linear expectation holds
for only a fraction of the target genome, whereas factors
such as genomic repeats and oversampled genic regions
could increase the number of overlapping pairs arbitrar-
ily beyond the expected level. An example case in point
is the gene-enriched sequencing of the highly repetitive
∼. billion bp maize genome.

One way to overcome this scalability bottleneck
is to use clustering as a preprocessing step to assem-
bly. This approach, referred to as cluster-then-assemble,
builds upon the assumption that any genome-scale
sequencing effort is likely to undersample the genome,
leaving out sequencing gaps along the genome length
and thereby allowing the assemblers to reconstruct the
genome in pieces – one piece for every contiguous
stretch of the genome (aka “contig” or “genomic island”)
that is fully sampled through sequencing. This assump-
tion is not unrealistic as tens of thousands of sequenc-
ing gaps have always resulted in almost all eukaryotic
genomes sequenced so far using the WGS approach.
The cluster-then-assemble takes advantage of this
assumption as follows: The set of m reads is first parti-
tioned into groups using a single-linkage transitive clo-
sure clusteringmethod, such that there exists a sequence
of overlapping pairs connecting every read to every
other read in the same cluster. Ideally, each cluster

should correspond to one genomic island, although
the presence of genomic repeats could collapse reads
belonging to different islands together. Once clustered,
each cluster represents an independent subproblem for
assembly, thereby breaking a large problem with m
reads into numerous, disjoint subproblems of signif-
icantly reduced size small enough to fit in a serial
computer. In practice, tens of thousands of clusters are
generated making the approach highly suited for trivial
parallelization after clustering.

The primary challenge is to implement the clus-
tering step in parallel, in a time- and space-efficient
manner. In graph-theoretic terms, the output produced
by a transitive closure clustering is representative of
connected components in the overlap graph, thereby
allowing the problem to be reduced to one of connected
component detection. However, generating the entire
graphG prior to detectionwould contradict the purpose
of clustering from a space complexity standpoint.

Figure  outlines an algorithm to perform sequence
clustering. The algorithm can be described as follows:
Initialize each read in a cluster of its own. In an iterative
process, generate promising pairs based on maximal
matches in a non-increasing order of their lengths using
suffix trees (as explained in the previous section). Before
assigning a promising pair for further alignment pro-
cessing, a check is made to see whether the constituent
reads are in the same cluster. If they are part of the same
cluster already, then the pair is discarded; otherwise it

Input: Read set

Algorithm 1 Read Clustering

R = {r1; r2; : : : rm}
Output: A partition C = {C1; C2; : : : Ck} of R, 1 ≤ k ≤ m

1. Initialize Clusters: ⇒ (master)
C ← { {ri} | 1 ≤ i ≤ m}

2. FOR each pair (ri; rj) with a maximal match of length ≥ Ã
generated in non-increasing order of maximal match length ⇒ (worker)
Cp ← Find(ri) ⇒ (master)
Cq ← Find(rj) ⇒ (master)
IF Cp �= Cq THEN ⇒ (master)

overlap quality ← Align(ri; rj) ⇒ (worker)
IF overlap quality is significant THEN ⇒ (master)

Union(Cp; Cq) ⇒ (worker)

3. Output C ⇒ (master)

Genome Assembly. Fig.  Pseudocode for a read clustering algorithm suited for parallelization based on the

master-worker model. The site of computation is shown in brackets. Operations on the set of clusters are performed using

the Union-Find data structure
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is aligned. If the alignment results show a satisfactory
overlap (based on user-defined alignment parameters),
then merge the clusters containing both reads into one
larger cluster.The process is repeated until all promising
pairs are exhausted or until no more merges are possi-
ble. Using the union–find data structure would ensure
the Find and Union calls to run in amortized time pro-
portional to the Inverse Ackerman function – a small
constant for all practical inputs.

There are several advantages to this clustering strat-
egy. Clustering can be achieved in at most m −  merg-
ing steps. Checking if a read pair is already clustered
before alignment is aimed at reducing the number of
pairs aligned. Generating promising pairs in a non-
increasing order of their maximal match lengths is a
heuristic that could help identify pairs that are more
likely to succeed the alignment test sooner during exe-
cution. Furthermore, promising pairs are processed as
they are generated, obviating the need to store them.
This coupled with the use of the suffix tree data struc-
ture implies an O(n) serial space complexity for the
clustering algorithm.

The parallel algorithm can be implemented using a
master–worker paradigm. A dedicated master proces-
sor can be responsible for initializing and maintaining
the clusters and also for distributing alignment work-
load to the workers in a load-balanced fashion. The
workers at first can generate a distributed representation
of the generalized suffix tree in parallel (as explained
in the previous section). Subsequently, they can gener-
ate promising pairs from their local portion of the tree
and send them to themaster. To reduce communication
overheads, pairs can be sent in arbitrary-sized batches
as demanded by the situation of the work queue buffer
at the master. The master processor can check the pairs
against the current set of clusters, filter out pairs that do
not need alignment, and add only those pairs that need
alignment to itswork queue buffer.Thepairs in thework
queue buffer can be redistributed to workers in fixed
size batches, to have the workers compute alignments
and send back the results. Communication overheads
can be masked by overlapping alignment computation
with communication waits using non-blocking calls.
The PaCE software suite implements the above paral-
lel algorithm, and it has demonstrated linear scaling
to thousands of processors on a distributed memory
supercomputer.

Short Read Assembly
The landscape of genome assembly tools has signifi-
cantly transformed itself over the last few years with
the advent of next-generation sequencing technolo-
gies. A plethora of new-generation assemblers that
collectively operate under the banner of “short read
assemblers” is continuing to emerge. Broadly speak-
ing, these tools can be grouped into two categories:
() those that follow or extend from the classical over-
lap graph model; and () those that deploy either
the De Bruijn graph or the string graph formulation.
The former category includes programs such as Edena,
Newbler, PE-Assembler, QSRA, SHARCGS, SSAKE,
and VCAKE. The programs that fall under the lat-
ter category are largely inspired by two approaches –
the De Bruijn graph formulation used in the EULER
assembler; and the string graph formulation proposed
by Myers. As of this writing, these programs include
EULER-SR, ALLPATHS, Velvet, SOAPdenovo, ABySS,
and YAGA. Either of these lists is likely to expand
in the coming years, as new implementations of short
read assemblers are continuing to emerge as are new
technologies.

In principle, the techniques developed for assem-
bling Sanger reads do not suit direct application for
short read assembly due to a combination of factors
that include shorter read length, higher sequencing cov-
erage, an increased reliance on pair-end libraries, and
idiosyncrasies in sequencing errors.

A shorter read length implies that the method has
to be more sensitive to differences to avoid potential
mis-assemblies.This alsomeans providing a robust sup-
port for incorporating the knowledge available from
pair-end libraries. In case of next-generation sequenc-
ing, pair-end libraries are typically available for different
clone insert sizes, which translates to a need to imple-
ment multiple sets of distance constraints.

A high sequencing coverage introduces complexity
at two levels. The number of short reads to assem-
ble increases linearly with increased coverage, and this
number can easily reach hundreds of millions even
for modest-sized genomes because of shorter read
length. For instance, a mid-size genome such as that
of Arabidopsis (∼ Mbp) or fruit fly (∼ Mbp)
sequenced at x coverage either using Illumina or
SOLiD would generate a couple of hundred million
reads. Secondly, the average number of overlapping read
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pairs at every given genomic location is expected to
grow quadratically (∝ (c))with the coverage depth (c).
This particularly affects the time and memory scalabil-
ity of methods that use the overlap graph model not
only because they operate at the level of pairwise read
overlaps, but also because many tools assume that such
overlaps can be stored and retrieved from local mem-
ory. Consequently, such methods take between – h
and several gigabytes of memory even for assembling
small bacterial genomes. From a parallelism perspec-
tive, a high coverage in sampling could also poten-
tially mean fewer sequencing gaps, as the probability
of a genomic base being captured by a read improves
with coverage by the Lander–Waterman model. There-
fore, divide-and-conquer–based techniques such as the
cluster-then-assemble may not be as effective in break-
ing the initial problem size down.

Short read assemblers also have to deal with tech-
nology specific errors. The error rates associated with
next-generation technologies are typically in the –%
range, and cannot be ignored as differentiating them
from real differences could be key to capturing natural
variations such as near identical paralogs.

In the current suite of tools specifically built for
short read assembly, only a handful of tools support
some degree of parallelism. These tools include PE-
Assembler, ABySS, and YAGA. Others are serial tools
that work on desktop computers and rely on high-
memory nodes for larger inputs. Even the tools that
support parallelism do so to varying degrees. PE-
Assembler, which implements a variant of the over-
lap graph model, limits parallelism to node level and
assumes that the number of parallel threads is small
(< ). It deploys a “seed-extend” strategy in which a
subset of “reliable” reads are selected as seeds and other
reads that overlap with each seed are incrementally
added to extend and build into a consensus sequence
in the ′ direction. Parallelism is supported by select-
ing multiple seeds and launching multiple threads that
assume responsibility of extending these different reads
in parallel.While the algorithmhas the advantage of not
having to build and manage large graphs, it performs
a conservative extension primarily relying on pair-end
data to collapse reads into contigs. From a parallelism
perspective, the algorithm relies on shared memory
access for managing the read set, which works well if
the number of threads is very small. Furthermore, not

all steps in the method are parallel and some steps are
disk-bound. Experimental results show that the parallel
efficiency drops drastically beyond three threads.

ABySS and YAGA are two parallel methods that
implement the De Bruijn graph model and work for
distributed memory computers. The De Bruijn and
string graph formulations are conceptually better suited
for short read assembly. These formulations allow the
algorithm to operate at a read or read’s subunit (i.e.,
k-mer) level rather than the pairwise overlap level.
Repetitive regions manifest themselves in the form of
special graph patterns, and error correction mecha-
nism could detect and reconcile anomalous graph sub-
structures prior to performing assembly tours, thereby
reducing the chance of misassemblies. The assembly
itself manifests in the form of graph traversals. Con-
structing these graphs and traversing them to produce
assembly tours (although not guaranteed to be opti-
mal due to intractability of the problem) are problems
with efficient heuristic solutions on a serial computer.
The methods ABySS and YAGA provide two different
approaches to implement the different stages in paral-
lel using De Bruijn graphs. While these methods dif-
fer in their underlying algorithmic details and in the
degree offered for parallelism, the structural layout of
their algorithms is similar consisting of these fourmajor
steps: () parallel graph construction; () error correc-
tion; () incorporation of distance constraints due to
pair-end reads; and () assembly tour and output.

In what follows, approaches to parallelize each of
these major steps are outlined, with the bulk of exposi-
tion closely mirroring the algorithm in YAGA because
its algorithm more rigorously addresses parallelization
for all the steps, and takes advantage of techniques that
are more standard and well understood among dis-
tributed memory processing codes (e.g., sorting, list
ranking). By contrast, parallelization is described only
for the initial phase of graph construction in ABySS.
Therefore, where appropriate, variations in the ABySS
algorithmic approach will be highlighted in the text.
Other than differences in their parallelization strate-
gies, the two methods also differ particularly in the type
of De Bruijn graph they construct (directed vs. bidi-
rected) and their ability to handle multiple read lengths.
Such details are omitted in an attempt to keep the text
focused on the parallel aspects of the problem. An inter-
ested reader can refer to the individual papers for details
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pertaining to the nuances of the assembly procedure
and the output quality of these assemblies.

Parallel De Bruijn Graph Construction
and Compaction
Given m reads in set R, the goal is to construct in
parallel a distributed representation of the correspond-
ing De Bruijn graph built out of k-mers, for a user-
specified value of k. Note that, once a De Bruijn graph
representation is generated, it can be transformed into
a corresponding string graph representation by com-
pressing paths whose label when concatenated spells
out the characters in a read, and by accordingly intro-
ducing branch nodes that capture overlap continuation
between adjoining reads. This can be done in a suc-
cessive stage of graph compaction, a minor variant of
which is described in the later part of this section. The
computing model assumed is p processors (or equiva-
lently, processes), each with access to a local RAM, and
connected through a network interconnect and with
access to a shared file system where the input is made
available.

To construct the De Bruijn graph, the reads in R are
initially partitioned and loaded in a distributed manner
such that each processor receives O( np ) input charac-
ters. Let Ri refer to the subset of reads in processor pi .
Through a linear scan of the reads inRi, each pi enumer-
ates the set of k-mers present in Ri. However, instead
of storing each such k-mer as a vertex of the De Bruijn
graph, the processor equivalently generates and stores
the corresponding edges connecting those vertices in
the graph. In other words, there is a bijection between
the set of edges and the set of distinct k + -mers in Ri.
In this edge-centric representation, the vertex informa-
tion connecting each edge is implicit and the count of
reads containing a given k + -mer is stored internally
at that edge. Note that after this generation process, the
same edge could be potentially generated at multiple
processor locations. To detect and merge such dupli-
cates, the algorithm simply performs a parallel sort of
the edges using the k + -mers as the key. Therefore, in
one sorting step, a distributed representation of the De
Bruijn graph is constructed. Standard parallel sort rou-
tines such as sample sort can be used here to ensure
even redistribution of the edges across processors due
to sorting.

An alternative to this edge-centric representation
is a vertex-centric representation, which is followed in
ABySS and in an earlier version of YAGA. Here, the
k-mer set corresponding to each Ri is generated by
the corresponding pi . The vertices adjacent to a given
vertex could be generated remotely by one or more
processors. Therefore, this approach necessitates pro-
cessors to communicate with one another in order to
check the validity of all edges that could be theoretically
drawn from its local set of vertices. While the number
of such edge validation queries is bounded by  per ver-
tex ({a, c, g, t} on either strand orientation), the method
runs the risk of generating false edges, e.g., if a k− -mer,
say α, occurs in exactly two places along the genome
as aαc and gαt, then the vertex-centric approach will
erroneously generate edges for aαt and gαc, which are
k + -mers nonexistent in the input. Besides this risk,
care must be taken to guarantee an even redistribution
of vertices among processors by the end of the construc-
tion process. For instance, a static allocation scheme in
which a hash function is used to map each k-mer to a
destination processor, as it is done in ABySS, runs the
risk of producing unbalanced distribution as the k-mer
concentration within reads is input dependent.
Graph compaction: Once a distributed edge-centric rep-
resentation of the De Bruijn graph is generated, the next
step is to simplify it by identifying maximal segments of
simple paths (or “chains”) and compact each of them
into a single longer edge. Edges that belong to a given
chain could be distributed and therefore this problem
of removing chains becomes a two-step process: First,
to detect the edges (or equivalently, the vertices) which
are part of chains and then perform compaction on the
individual chains. To mark the vertices that are part
of some chain, assume without loss of generality that
each edge is stored twice as < u, v > and < v,u >. Sort-
ing the edges in parallel by their first vertex it would
bring all edges incident on a vertex together on some
processor. Only those vertices that have a degree of two
can be part of chains and such vertices can be easily
marked with a special label. In the next step, the prob-
lem of compacting the vertices along each chain can be
treated as a variant of segmented parallel list ranking. A
distributed version of the list ranking algorithm can be
used to calculate the relative distances of each marked
vertex from the start and end of its respective chain.
The same procedure can also be used to determine the
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vertex identifiers of those two boundary vertices for
each marked vertex. Compaction then follows through
the operations of concatenating the edge labels along
the chain at one of the terminal edges, removing all
internal edges, and aggregating an average k + -mer
frequency of the constituent edges along the chain. All
of these operators are binary associative to allow being
implemented using calls to a segmented parallel prefix
routine.Theoutput of this step is a distributed represen-
tation of the compacted graph.

Error Correction and Variation Detection
In the De Bruijn graph representation, errors due to
sequencing manifest themselves as different subgraph
motifs which could be detected and pruned. For ease
of exposition, let us informally call an edge in the
compacted De Bruijn graph as being “strongly sup-
ported” (alternatively, “weakly supported”) if its aver-
age k + -mer frequency is relatively high (alternatively,
low). Examples of motifs are follows: () Tips are weakly
supported dead ends in the graph created due to a base
miscall occurring in a read at one of its end positions.
Because of compaction such tips occur as single edges
branching out of a strongly supported path, and can
be easily removed; () Bubbles are detours that pro-
vide alternative paths between two terminal vertices.
Due to compaction, these detours will also be single
edges. There are two types of bubbles – weakly sup-
ported bubbles are manifestations of single base miscall
occurring internal to a read and need to be removed;
whereas, bubbles that originate from the same vertex
and are supported roughly to the same degree could
be the result of natural variations such as near identical
paralogs (i.e., copies of the same gene occurring at dif-
ferent genomic loci). Such bubbles need to be retained.
() Spurious links connect twootherwise disparate paths
in the graph. Weakly supported links are manifesta-
tions of erroneous k + -mers that happen to match the
k + -mer present at a valid genomic locus, and they
can be severed by examining the supports of the other
two paths.

The first pass of error correction on the compacted
graph could reveal new instances of motifs that can be
pruned through iterative passes subsequently until no
new instances are observed.

Incorporation of Distance Constraints
Using Pair-End Information
The goal of this step is to map the information provided
by read pairs that are linked by the pair-end library onto
the compacted and error corrected De Bruijn graph.
Once mapped, this information can be used to guide
the assembly tour of the graph consistent (to the extent
possible) with the distance constraints imposed by the
pair-end information. To appreciate the value added by
this step to the assembly procedure, recall that the pair-
end information consists of a list of read pairs of the
form < ri , rj > that have originated from the same clonal
insert during sequencing. In genomic distance parlance,
this implies that the number of bases separating the
two reads is bounded by a minimum and maximum.
Also recall that an assembly from a De Bruijn graph
corresponds to a tour of the graph (possibly multiple
tours if there were gaps in the original sequencing).
Now consider a scenario where a path in the De Bruijn
graph branches into multiple separate subpaths. A cor-
rect assembly tour would have to decide which of those
branches reflect the sequence of characters along the
unknown genome. It should be easy to see how pair-end
information can be used to resolve such situations.

To incorporate the information provided in the
form of read pairs by such pair-end libraries, the
YAGA algorithm uses a cluster summarization proce-
dure, which can be outlined as follows: First, the list of
read pairs provided as input by the pair-end informa-
tion is delineated into a corresponding list of constituent
k+ -mer pairs. Note that two k+ -mers from two reads
of a pair can map to two different edges on the dis-
tributed graph. Furthermore, different positions along
the same edge could be paired with positions emanat-
ing from different edges. To this effect, the algorithm
attempts to compute a grouping of edge pairs based on
their best alignment with the imposed distance con-
straints. To achieve this, an observed distance interval
is computed between every edge pair on the graph
linked by a read pair, and then overlapping intervals
that capture roughly the same distances along the same
orientation are incrementally clustered using a greedy
heuristic. This last step is achieved using a two-phase
clustering step that primarily relies on several rounds of
parallel sorting tuples containing edge pair and interval
distance information. The formal details pertaining to
this algorithmic step has been omitted here for brevity.
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Completing the Assembly Tour
An important offshoot of the above summarization pro-
cedure is that redundant distance information captured
by edge pairs in the same cluster can be removed,
thereby allowing significant compression in the level
of information needed to store relative to the original
graph.This compression, in most practical cases, would
allow for the overall tour to be performed sequentially
on a single node.The serial assembly touring procedure
begins by using edges that have significantly longer edge
labels than the original read length as “seeds,” and then
by extending them in both directions as guided by the
pair-end summarization traversal constraints.

The YAGA assembler has demonstrated scaling on
 IBMBlueGene/L processors and performs assembly
of over a billion synthetically generated reads in under
 h. The run-time is dominated by the pair-end cluster
summarization phase. As of this writing, performance-
related information is not available for ABySS.

Future Trends
Genome sequencing and assembly is an actively
pursued, constantly evolving branch of bioinformat-
ics. Technological advancements in high-throughput
sequencing have fueled algorithmic innovation and
along with a compelling need to harness new com-
puting paradigms. With the adoption of ever faster,
cheaper, and massively parallel sequencing machines,
this application domain is becoming increasingly data-
and compute-intensive. Consequently, parallel process-
ing is destined to play a critical role in genomic
discovery.

Numerous large-scale sequencing projects includ-
ing the  assembly of the human genome to the
most recent  assembly of the maize genome have
benefited from the use of parallel processing, although
in different ad hoc ways. Heterogeneous clusters com-
prising of a mixture of a few high-end shared memory
machines along with numerous compute nodes have
been used to “farm” out tasks and accelerate the over-
lap computation phase in particular. This is justified
because nearly all of these large-scale projects used
the more traditional Sanger sequencing. A few special-
purpose projects such as the  maize gene-enriched
sequencing used more strongly coupled parallel codes
such as PaCE. However, with an aggressive adoption
of next-generation sequencing for genome sequencing

andmore complex genomes in the pipeline for sequenc-
ing (e.g., wheat, pine, metagenomic communities), this
scenario is about to change, and more strongly cou-
pled parallel codes are expected to become part of the
mainstream computing in genome assembly.

In addition to de novo sequencing, next-generation
sequencing is also increasingly being used in genome
resequencing projects, where the goal is to assemble a
genome of a particular variant strain (or subspecies) of
an already sequenced genome.The type of computation
that originates is significantly different from that of de
novo assembly. For resequencing, the reads generated
from a new strain are compared against a fully assem-
bled sequence of a reference strain. This process, some-
times called read mapping, only requires comparison
of reads against a much larger reference. Approaches
that capitalize on advanced string data structures such
as suffix trees are likely to play an active role in these
algorithms. Also, as this branch of science becomes
more data-intensive, reaching the petascale range, dif-
ferent parallel paradigms such as MapReduce need to
be explored, in addition to distributed memory and
shared memory models. The developments in genome
sequencing can be carried over to other related applica-
tions that also involve large-scale sequence analysis, e.g.,
in transcriptomics, metagenomics, and proteomics.

Fine-grain parallelism in the area of string matching
and sequence alignment has been an active pursued
topic over the last decade and there are numerous
hardware accelerators for performing sequence align-
ment on various platforms including General Pur-
pose Graphical Processing Units, Cell Broadband
Engine, Field-Programmable Gate Arrays, and Multi-
cores. These advances are yet to take their place in
mainstream sequencing projects.

Genome sequencing is at the cusp of revolution-
ary possibilities. With a rapidly advancing technology
base, the possibility of realizing landmark goals such
as personalized medicine and “$, genome” do not
look distant or far-fetched.The well-advertised $ mil-
lion Archon Genomics X PRIZE will be awarded to
the first team that sequences  human genomes in
 days, at a recurring cost of no more than $,
per genome. In , the cost for sequencing a human
genome plummeted below $, using technologies
from Illumina and SOLiD. Going past these next-
generation technologies, however, companies such as
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Pacific Biosciences are now releasing a third-generation
(“gen-”) sequencer that uses an impressive approach
called single-molecule sequencing (or “SMS”) [], and
have proclaimed grand goals such as sequencing a
human genome in min for less than $ by .
These are exciting times for genomics, and the field
is likely to continue serving as a rich reservoir for
new problems that pose interesting compute- and
data-intensive challenges which can be addressed only
through a comprehensive embrace of parallel comput-
ing.

Related Entries
�Homology to Sequence Alignment, From
�Suffix Trees

Bibliographic Notes and Further
Reading
Even though DNA sequencing technologies have been
available since the late s, it was not until the
s that they were applied at a genome scale. The
first genome to be fully sequenced and assembled was
the ∼. Mbp bacterial genome of H. influenzae in
 []. The sequencing of the more complex, ∼ bil-
lion bp long human genome followed []. Several
other notable large-scale sequencing initiatives followed
in the new millennium including that of chimpanzee,
rice, and maize (to cite a few examples). All of these
used either the WGS strategy or hierarchical strat-
egy coupled with Sanger sequencing, and their assem-
blies were performed using programs that followed the
overlap–layout–consensus model. The National Cen-
ter for Biotechnology Information (NCBI) (http://www.
ncbi.nlm.nih.gov) maintains a comprehensive database
of all sequenced genomes. More than a dozen programs
exist to perform genome assembly under the overlap–
layout–consensus model. Notable examples include
PCAP [], Phrap (http://www.phrap.org/), Arachne
[], Celera [], and TIGR assembler []. For a detailed
review of fragment assembly algorithms, refer to
[, ]. The parallel algorithm that uses the cluster-
then-assemble approach along with the suffix tree data
structure for assembly was implemented in a program
called PaCE and was first described in [] in the con-
text of clustering Expressed Sequence Tag data and then
later adapted for genome assembly []. Experiments

conducted as part of the maize genome sequencing con-
sortium demonstrated scaling of this method to over a
million reads generated fromgene-enriched fractions of
the maize genome on a , node BlueGene/L super-
computer [].Theparallel suffix tree construction algo-
rithm described in this entry was first described in []
and a variant of this method was later presented in [].
An optimal algorithm to detectmaximalmatching pairs
of reads in parallel using the suffix tree data structure is
presented in [].

The NP-completeness of the Shortest Superstring
Problem (SSP) was shown by Gallant et al. []. The
De Bruijn graph formulation for genome assembly was
first introduced by Idury and Waterman [] in the
context of a sequencing technique called sequencing-
by-hybridization, and later extended to WGS based
approaches in the EULER program by Pevzner et al.
[]. The string graph formulation was developed by
Myers []. The proof of NP-Hardness for the overlap–
layout–consensus is due to Kececioglu and Myers [].
The proofs of NP-Hardness for the De Bruijn and
string graphs models of genome assembly are due to
Medvedev et al. [].

Since the later part of s, various next-generation
sequencing technologies such as Roche 
(http://www.genome-sequencing.com/), SOLiD (http://
www.appliedbiosystems.com/), Illumina (http://www.
illumina.com/), and HeliScope (http://www.helicosbio.
com/) have emerged along side serial assemblers.
A “third” generation of machines that promise a
brand new way of sequencing (by single-molecule
sequencing) are also on their way (e.g., Pacific Bio-
sciences (http://www.pacificbiosciences.com/)). Con-
sequently, the development of short read assemblers
continue to be in hot pursuit. Edena, Newbler (http://
www..com), PE-Assembler [], QSRA [], SHAR-
CGS [], SSAKE [], and VCAKE [] are all examples
of programs that operate using the overlap graphmodel.
EULER-SR [], ALLPATHS [], Velvet [], SOAPden-
ovo [], ABySS [], and YAGA [] are programs that
use the De Bruijn graph formulation. Of these tools,
PE-Assembler, ABySS, and YAGA are parallel imple-
mentations, although to varying degrees as described in
the main text.

Acknowledgment
Study supported by NSF grant IIS-.

http://dx.doi.org/10.1007/978-0-387-09766-4_407
http://dx.doi.org/10.1007/978-0-387-09766-4_464
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.phrap.org/
http://www.genome-sequencing.com/
http://www.appliedbiosystems.com/
http://www.appliedbiosystems.com/
http://www.illumina.com/
http://www.illumina.com/
http://www.helicosbio.com/
http://www.helicosbio.com/
http://www.pacificbiosciences.com/
http://www.454.com
http://www.454.com


 G Genome Sequencing

Bibliography
. Ariyaratne P, Sung W () PE-assembler: de novo assembler
using short paired-end reads. Bioinformatics ():–

. Batzoglou S, Jaffe DB, Stanley K, Butler J et al () ARACHNE:
a whole-genome shotgun assembler. Genome Res ():–

. Bryant D, Wong W, Mockler T () QSRA – a quality-value
guided de novo short read assembler. BMC Bioinform ():

. Butler J, MacCallum L, KleberM, Shlyakhter IA et al () ALL-
PATHS: de novo assembly of whole-genome shotgun microreads.
Genome Res :–

. ChaissonMJ, Pevzner PA () Short read fragment assembly of
bacterial genomes. Genome Res :–

. Dohm J, Lottaz C, Borodina T, Himmelbaurer H () SHAR-
CGS, a fast and highly accurate short-read assembly algorithm for
de novo genomic sequencing. Genome Res ():–

. Emrich S, Kalyanaraman A, Aluru S () Chapter : algo-
rithms for large-scale clustering and assembly of biological
sequence data. In: Handbook of computational molecular biol-
ogy. CRC Press, Boca Raton

. FleischmannR,AdamsM,WhiteO,ClaytonR et al ()Whole-
genome random sequencing and assembly of Haemophilus
influenzae rd. Science ():–

. Flusberg BA, Webster DR, Lee JH, Travers KJ et al () Direct
detection of DNA methylation during single-molecule, real-time
sequencing. Nat Methods :–

. Gallant J, Maier D, Storer J () On finding minimal length
superstrings. J Comput Syst Sci :–

. Ghoting A, Makarychev K () Indexing genomic sequences
on the IBM blue gene. In: Proceedings ACM/IEEE conference on
supercomputing. Portland

. Huang X,Wang J, Aluru S, Yang S, Hiller L () PCAP: a whole-
genome assembly program. Genome Res :–

. Idury RM, Waterman MS () A new algorithm for DNA
sequence assembly. J Comput Biol ():–

. Jackson BG, Regennitter M, Yang X, Schnable PS, Aluru S
() Parallel de novo assembly of large genomes from high-
throughput short reads. In: IEEE international symposium on
parallel distributed processing, pp –

. Jeck W, Reinhardt J, Baltrus D, Hickenbotham M et al ()
Extending assembly of short DNA sequences to handle error.
Bioinformatics :–

. Kalyanaraman A, Aluru S, Brendel V, Kothari S () Space and
time efficient parallel algorithms and software for EST clustering.
IEEE Trans Parallel Distrib Syst ():–

. Kalyanaraman A, Emrich SJ, Schnable PS, Aluru S () Assem-
bling genomes on large-scale parallel computers. J Parallel Distrib
Comput ():–

. Kececioglu J, Myers E () Combinatorial algorithms for DNA
sequence assembly. Algorithmica (–):–

. Li R, Zhu H, Ruan J, Qian W et al () De novo assembly of
human genomes with massively parallel short read sequencing.
Genome Res ():–

. Medvedev P, Georgiou K, Myers G, Brudno M () Com-
putability of models for sequence assembly. Lecture notes in
computer science, vol . Springer, Heidelberg, pp –

. Myers EW () The fragment assembly string graph.
Bioinformatics, (Suppl ):ii–ii

. Myers EW, SuttonGG,DelcherAL,Dew IMet al ()AWhole-
Genome assembly of drosophila. Science ():–

. Pevzner PA, Tang H, Waterman M () An eulerian path
approach to DNA fragment assembly. In: Proceedings of the
national academy of sciences of the United States of America, vol
, pp –

. Pop M () Genome assembly reborn: recent computational
challenges. Briefings in Bioinformatics ():–

. Simpson J, Wong K, Jackman S, Schein J et al () ABySS:
a parallel assembler for short read sequence data. Genome Res
:–

. Sutton GG, White O, Adams MD, Kerlavage AR () TIGR
assembler: a new tool for assembling large shotgun sequencing
projects. Genome Sci Technol ():–

. Venter C, Adams MD, Myers EW, Li P et al () The sequence
of the human genome. Science ():–

. Warren P, Sutton G, Holt R () Assembling millions of short
DNA sequences using SSAKE. Bioinformatics :–

. Zerbino DR, Velvet BE () Algorithms for de novo short read
assembly using de bruijn graphs. Genome Res :–

Genome Sequencing

�Genome Assembly

GIO

�PCI Express

Glasgow Parallel Haskell (GpH)

Kevin Hammond
University of St. Andrews, St. Andrews, UK

Synonyms
GpH (Glasgow Parallel Haskell)

Definition
Glasgow Parallel Haskell (GpH) is a simple parallel
dialect of the purely functional programming language,
Haskell. It uses a semi-explicit model of parallelism,
where possible parallel threads are marked by the pro-
grammer, and a sophisticated runtime system then
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decides on the timing of thread creation, allocation to
processing elements,migration.There have been several
implementations of GpH, covering platforms ranging
from single multicore machines through to compu-
tational grids or clouds. The best known of these is
the GUM implementation that targets both shared-
memory and distributed-memory systems using a
sophisticated virtual shared-memory abstraction built
over a common message-passing layer, but there is
a new implementation, GHC-SMP, which directly
exploits shared-memory systems, and which targets
multicore architectures.

Discussion

Purely Functional Languages and
Parallelism
Because of the absence of side effects in purely
functional languages, it is relatively straightforward to
identify computations that can be run in parallel: any
sub-expression can be evaluated by a dedicated parallel
task. For example in the following very simple function
definition, each of the two arguments to the addition
operation can be evaluated in parallel.

f x = f i b o n a c c i x + f a c t o r i a l x

This property was already realized by the mid-s,
when there was a surge of interest both in parallel
evaluation in general, and in the novel architectural
designs that it was believed could overcome the sequen-
tial “von-Neumann bottleneck.” In fact, the main issue
in a purely functional language is not extracting enough
parallelism – it is not unusual for even a short-running
program to produce many tens of thousands of paral-
lel threads – but is rather one of identifying sufficiently
large-grained parallel tasks. If this is not done, then
thread creation and communication overheads quickly
eliminate any benefit that can be obtained from parallel
execution. This is especially important on conventional
processor architectures, which historically provided lit-
tle, if anything, in the way of hardware support for
parallel execution. The response of some parallel func-
tional language designers has therefore been to provide
very explicit parallelism mechanisms. While this usu-
ally avoids the problem of excessive parallelism, it places
a significant burden on the programmer, who must
understand the details of parallel execution as well as

the application domain, and it can lead to code that is
specialized to a specific parallel architecture, or class of
architectures. It also violates a key design principle for
most functional languages, which is to provide as much
isolation as possible from the underlying implementa-
tion. GpH is therefore designed to allow programmers
to provide information about parallel execution while
delegating issues of placement, communication, etc. to
the runtime system.

History and Development of GpH
Glasgow Parallel Haskell (GpH) was first defined in
. GpH was designed to be a simple parallel exten-
sion to the then-new nonstrict, purely functional lan-
guage Haskell [], adding only two constructs to
sequential Haskell: par and seq. Unlike most earlier lazy
functional languages, Haskell was always intended to be
parallelizable. The use of the term “non-strict” rather
than lazy reflects this: while lazy evaluation is inherently
sequential, since it fixes a specific evaluation order for
sub-expressions, under Haskell’s non-strict evaluation
model, any number of sub-expressions can be evaluated
in parallel provided that they are needed by the result of
the program.

The original GpH implementation targeted the
GRIP novel parallel architecture, using direct calls to
low-level GRIP communications primitives. GRIP was
a shared-memory machine, using custom microcoded
“intelligent memory units” to share global programdata
between off-the-shelf processing elements (Motorola
 processors, each with a private MB memory),
developed in an Alvey research project which ran from
 to . Initially, GpH built on the prototype
Haskell compiler developed by Hammond and Pey-
ton Jones in . It was subsequently ported to the
Glasgow Haskell Compiler, GHC [], that was devel-
oped at Glasgow University from  onward, and
which is now the de-facto standard compiler for Haskell
(since the focus of the maintenance effort was moved
to Microsoft Research in , GHC has also become
known as the Glorious Haskell Compiler). In ,
the communications library was redesigned to give
what became the highly portable GUM implementa-
tion []. This allowed a single parallel implementation
to target both commercial shared-memory systems and
the then-emerging class of cost-effective loosely cou-
pled networks of workstations. Initially, GUM targeted
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system-specific communication libraries, but it was
subsequently ported to PVM. There are now UDP,
PVM, MPI, and MPICH-G instances of GUM, as
well as system-specific implementations, and the same
GUM implementation runs on multicore machines,
shared-memory systems, workstation clusters, compu-
tational grids, and is being ported to large-scale high-
performance systems, such as the ,-core HECToR
system at the Edinburgh Parallel Computer Centre. Key
parts of the GUM implementation have also been used
to implement the Eden [] parallel dialect of Haskell,
and GpH is being incorporated into the latest main-
stream version of GHC.

Although the two parallelism primitives that GpH
uses are very simple, it became clear that they could
be packaged using higher-order functions to give
much higher-level parallel abstractions, such as paral-
lel pipelines, data-parallelism, etc.This led ultimately to
the development of evaluation strategies []: high-level
parallel structures that are built from the basic par and
seq primitives using standard higher-order functions.
Because they are built from simple components and
standard language technology, evaluation strategies are
highly flexible: they can be easily composed or nested;
the parallelism structure can change dynamically; and
the applications programmer can define new strategies
on an as-need basis, while still using standard strategies.

The GpHModel of Parallelism
GpH is unusual in using only two parallelism prim-
itives: par and seq. The design of the par primitive
dates back to the late s [], where it was used in
a parallel implementation of the Lazy ML (LML) com-
piler. The primitive, higher-order, function, par is used
by the programmer to mark a sub-expression as being
suitable for parallel evaluation. For example, a variant
of the function f above can be parallelized using two
instances of par.

f x =
l e t r  = f i b o n a c c i x ;
r  = f a c t o r i a l x i n
l e t r e s u l t = ( r  , r  ) i n
r  ‘ par ’ ( r  ‘ par ’ r e s u l t )

r1 and r2 can now both be evaluated in parallel with
the construction of the result pair (r1, r2). There
is no need to specify any explicit communication, since

the results of each computation are shared through the
variables r1 and r2. The runtime system also decides
on issues such as when a thread is created, where it
is placed, how much data is communicated, etc. Very
importantly, it can also decide whether a thread is cre-
ated. The parallelism model is thus semi-explicit: the
programmer marks possible sites of parallelism, but the
runtime system takes responsibility for the underly-
ing parallel control based on information about system
load, etc. This approach therefore eliminates significant
difficulties that are commonly experienced with more
explicit parallel approaches, such as raw MPI. The pro-
grammer needs to make sure there is enough scope for
parallelism, but does not need to worry about issues of
deadlock, communication, throttling, load-balancing,
etc. In the example above, it is likely that only one of
r1 or r2 (or neither) will actually be evaluated in par-
allel, since the current thread will probably need both
their values. Which of r1 or r2 is evaluated first by the
original thread will, however, depend on the context in
which it is called. It is therefore left unspecified to avoid
unnecessary sequentialization.

Lazy Thread Creation
Several different versions of the par function have
been described in the literature. The version used in
GpH is asymmetric in that it marks its first argument
as being suitable for possible execution (the expres-
sion is sparked), while continuing sequential execution
of its second argument, which forms the result of the
expression. For example, in par s e, the expression
s will be sparked for possible parallel evaluation, and
the value of e will be returned as the result of the cur-
rent thread. Since the result expression is always eval-
uated by the sparking thread, and since there can be
no side effects, it follows that it is completely safe to
ignore any spark. That is, unlike many parallel systems,
the creation of threads from sparks is entirely optional.
This fact can be used to throttle the creation of threads
from sparks in order to avoid swamping the parallel
machine. This is a lazy thread creation approach (the
term “lazy task creation” was coined later by Mohr et
al. [] to describe a similar mechanism in MultiLisp).
A corollorary is that, since sparks do not carry any exe-
cution state, they can be very lightweight. Generally, a
single pointer is adequate to record a sparked expression
in most implementations of GpH.



Glasgow Parallel Haskell (GpH) G 

G

Sparks may be chosen for conversion to threads
using a number of different strategies. One common
approach is to use the oldest spark first. If the appli-
cation is a divide-and-conquer program, this means
that the spark representing the largest amount of work
will be chosen. Alternatively, an approach may be
used where the youngest (smallest) spark is executed
locally and the oldest (largest) spark is offloaded for
remote execution. This will improve locality, but may
increase thread creation costs, since many of the locally
created threads might otherwise be subsumed into their
parent thread.

Parallel Graph Reduction
A second key issue that must be dealt with is that of
thread synchronization. Efficient sequential non-strict
functional language implementations generally use an
evaluation technique called graph reduction, where a
program builds a graph data structure representing the
work that is needed to give the result of a program
and gradually rewrites this using the functional rules
defined in the program until the graph is sufficiently
complete to yield the required result.This rewriting pro-
cess is known as reducing the graph to some normal
form (in fact weak head normal form). Each node in the
graph represents an expression in the original program.
Initially, thiswill be a single unevaluated expression cor-
responding to the result of the program (a “thunk”).
As execution proceeds, thunks are evaluated, and each
graph node is overwritten with its result. In this way,
results are automatically shared between several con-
sumers. Only graph nodes that actually contribute to
the final result need to be rewritten. This means that
unnecessary work can be avoided, a process that, in the
sequential world, allows lazy evaluation.

The same mechanism naturally lends itself to paral-
lel evaluation. Each shared node in the graph represents
a possible synchronization point between two parallel
threads. The first thread to evaluate a graph node will
lock it. Any thread that evaluates the node in paral-
lel with the thread that is evaluating it will then block
when it attempts to read the value of the node.When the
evaluating thread produces the result, the graph node
will be updated and any blocked threads will be awo-
ken. In this way, threads will automatically synchronize
through the graph representing the computation, not

just at the root of each thread, but whenever they share
any sub-expressions.

Figure  shows a simple example of a divide-and-
conquer parallel program, where the root of the compu-
tation, f 9, is rewritten using three threads: one for the
main computation and two sub-threads, one to evaluate
f 8 and one to evaluate f 7. These thunks are linked
into the addition nodes in the main computation. Hav-
ing evaluated the sparked thunks, the second and third
threads update their root nodes with the corresponding
result. Once the main thread has evaluated the remain-
ing thunk (another call to f 8, which we have assumed
is not shared with Thread #), it will incorporate these
results into its own result. The final stage of the compu-
tation is to rewrite the root of the graph (the result of
the program) with the value 89.

Evaluate-and-Die
As a thread evaluates its program graph, it may
encounter a node that has been sparked.There are three
possible cases, depending on the evaluation status of
the sparked node. If the thunk has already been eval-
uated, then its value can be used as normal. If the thunk
has not yet been evaluated, then the thread will eval-
uate it as normal, first annotating it to indicate that
it is under evaluation. Once a result is produced, the
node will be overwritten with the result value, and
any blocked threads will be reawakened. Finally, if the
node is actually under evaluation, then the thread must
be blocked until the result is produced and the node
updated with this value. This is the evaluate-and-die
execution model []. The advantage of this approach is
that it automatically absorbs sparks into already execut-
ing threads, so increasing their granularity and avoiding
thread creation overheads. If a spark refers to a thunk
that has already been evaluated then it may be discarded
without a thread ever being created.

The seq Primitive
While par is entirely adequate for identifying many
forms of parallelism, Roe and Peyton Jones discov-
ered [] that by adding a sequential combining func-
tion, called seq, much tighter control could be obtained
over parallel execution. This could be used both to
reduce the need for detailed knowledge of the underly-
ing parallel implementation and to encodemore sophis-
ticated patterns of parallel execution. For example, one
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of the par constructs in the example above can be
replaced by a seq construct, as shown below.
f x =

l e t r  = f i b o n a c c i x ;
r  = f a c t o r i a l x i n
l e t r e s u l t = ( r  , r  ) i n
r  ‘ par ’ ( r  ‘ seq ’ r e s u l t )

−− was r  ‘ par ’ r ‘ par ’ r e s u l t

The seq construct acts like ; in a conventional lan-
guage such as C: it first evaluates its first argument
(here r2), and then returns its second argument (here
result). So in the example above, rather than cre-
ating two sparks as before, now only one is created.
Previously, depending on the order in which threads
were scheduled, either the parent thread would have
blocked when it evaluated r1 or r2, because these

were already under evaluation, or one or both of the
sparked threads would have blocked, because they
were being evaluated (or had been evaluated) by the
parent thread. Now, however, the only possible syn-
chronization is between the thread evaluating r1 and
the parent thread. Note that it is not possible to use
either of the simpler forms of par r1 (r1, r2)
or par r2 (r1, r2) to achieve the same effect, as
might be expected. Because the implementation is free
to evaluate the pair (r1, r2) in whichever order it
prefers, there is a % probability that the spark will
block on the parent thread.

This is not the only use of seq. For example, eval-
uation strategies (discussed below) also make heavy
use of this primitive to give precise control over
evaluation order.While not absolutely essential for par-
allel evaluation, it is thus very useful to provide a finer
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degree of control than can be achieved using seq alone.
However, there are two major costs to the use of seq.
The first is that the strictness properties of the program
may be changed – this means that some thunks may be
evaluated that were previously not needed, and that the
termination properties of the program may therefore
be changed. The second is that parallel programs may
become speculative.

Speculative Evaluation
As described above, in GpH it is safe to spark any sub-
expession that is needed by the result of the parallel
computation. However, nothing prevents the program-
mer from sparking a sub-expression that is not known
to be needed. This therefore allows speculative evalua-
tion. Although there was some early experimentation
with mechanisms to control speculation, these were
found to be very difficult to implement, and current
implementations of GpH do not provide facilities to kill
created threads, change priorities dynamically, etc., as is
necessary to support safe speculation. For example,

spe c x y = x ‘ par ’ y

defines a new function spec that sparks x and continues
execution of y. If x is not definitely needed by y, or is
a completely independent expression, this will spark x
speculatively. If a thread is created to evaluate x, it will
terminate either when it has completed evaluation of x,
or when themain program terminates, having produced
its own result, or if it evaluates an undefined value.
In the latter case, it may cause the entire program to
fail. Moreover, it is theoretically possible to prevent any
progress on the main computation by flooding the run-
time system with useless speculative threads. For these
reasons, any speculative evaluation has to be treated
carefully: if the program is to terminate, speculative
sub-expressions should terminate in finite time without
an error, and there should not be too many speculative
sparks.

Evaluation Strategies
As discussed above, it is possible to construct higher-
level parallel abstractions from basic seq/par constructs
using standard Haskell programming constructs. These
parallel abstractions can be associated with computa-
tion functions using higher-order definitions.This is the
evaluation strategy approach.The key idea of evaluation

strategies to separate what is to be evaluated fromhow it
could be evaluated in parallel []. For example, a sim-
ple sequential ray tracing function could be defined as
follows:

r a y t r a c e r : : I n t −> In t −> Scene −>
[ L i g h t ] −> [ [ Vec tor ] ]
r a y t r a c e r x l im y l im sc ene l i g h t s =
map t r a c e l i n e [  . . yl im −  ]

where t r a c e l i n e y = [ t r a c e p i x e l s c en e
l i g h t s x y | x <− [  . . xl im −  ] ]

Given a visible image with maximum x and y dimen-
sions of xlim and ylim, the raytracer function
applies the traceline function to each line in the
image (bymapping it across each value of y in the range
0..ylim-1), and hence applies the tracepixel
function to each pixel using the specified scene and
lighting model.The raytracer function may be par-
allelized, for example, by adding the parMap strategy
to parallelize each line as follows:

r a y t r a c e r : : I n t −> In t −> Scene −>
[ L i g h t ] −> [ [ Vec tor ] ]
r a y t r a c e r x l im y l im sc ene l i g h t s = map
t r a c e l i n e [  . . yl im −  ] ‘ u s ing ’ parMap r n f

Here, parMap is a strategy that specifies that each
element of its value argument should be evaluated in
parallel. It is parameterized on another strategy that
specifies what to do with each element. Here, rnf indi-
cates that each element should be evaluated as far as
possible (rnf stands for “reduce to normal form”). The
using function simply applies its second argument (an
evaluation strategy) to its first argument (a functional
value), and returns the value. It can be easily defined
using higher-order functions and the seq primitive as
follows:

u s i ng : : a −> S t r a t e g y a −> a
x ‘ u s ing ’ s = s x ‘ seq ’ x

So, when a strategy is applied to an expression by the
using operation, the strategy is first applied to the
value of the expression, and once this has completed,
the value is returned.This allows the use of both parallel
and sequential strategies.

In fact, any list strategymay be used to parallelize the
raytracer function instead of parMap. For exam-
ple, a task farm could be used, or the list could be
divided into equally sized chunks as shown below.
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r a y t r a c e r : : I n t −> In t −> Scene −>
[ L i g h t ] −> [ [ Vec tor ] ]
r a y t r a c e r x l im y l im sc ene l i g h t s = . . .
‘ u s ing ’ pa rL i s tChunk chunkS i z e r n f

Evaluation strategies have proved to be very pow-
erful and flexible, having been successfully applied to
several large programs, including symbolic programs
with irregular patterns of parallelism []. Typically, only
a few lines need to be changed at key points by adding
appropriate using clauses. In abstracting parallel pat-
terns from sequential computations, evaluation strate-
gies have some similarities with algorithmic skeletons.
The key differences between evaluation strategies and
typical skeleton approaches is that evaluation strate-
gies do not mandate a specific parallel implementation
(since they rely on semi-explicit parallelism, they pro-
vide hints to the runtime system rather than directives);
and that they are completely user-programmable –
everything above the par and seq primitives is pro-
grammed using standard Haskell code. Unlike most
skeleton approaches, they may also be easily composed
to give irregular nested parallel structures or phased
parallel computations, for example.

The GUM Implementation of GpH
GUM is the original and most general implemen-
tation of GpH. It provides a virtual shared-memory
abstraction for parallel graph reduction, using a
message-passing implementation to target both physi-
cally shared-memory and distributed-memory systems.
In the GUMmodel, the graph representing the program
that is being evaluated is distributed among the set of
processor elements (PEs) that are available to execute
the program.These PEs usually correspond to the cores
or processors that are available to execute the parallel
program, but it is possible to map PEs onto multiple
processes on the same core/processor, if required. Each
PE manages its own execution environment, with its
own local pools of sparks and threads, which it sched-
ules as required. Sparks and threads are offloaded on
demand to maintain good work balance.

A key feature of GUM is that it uses a two-level
memory model: each PE has its own private heap
that contains unshared program graph created by local
threads. Within this heap, some graph nodes may be

shared with other PEs. These nodes are given global
addresses, which identify the owner of the graph node.
The advantage of this model is that it allows com-
pletely independent memory management: by keep-
ing tables of global in-pointers, which are used as
garbage collection roots into the local heap, each PE
can garbage-collect its own local heap independently
of all other PEs. This local garbage collection is con-
servative, as required, since even if a global in-pointer
is no longer referenced by any other PE, it will still be
treated as a garbage collection root. In order to col-
lect global garbage, a separate scheme is used, based
on distributed reference counting. Since the major-
ity of the program graph never needs to be shared,
this approach brings major efficiency gains over typi-
cal single-levelmemorymanagement. In addition to the
reduced need for synchronization during garbage col-
lection, there is also no need to maintain global locks
across purely local graph. Within each PE, GUM uses
the same efficient (and sequential) garbage collector as
the standard GHC implementation. This is currently a
stop-and-copy generational collector based on Appel’s
collector.

Visualizing the Behavior of GpH Programs
Good visualization is an essential part of understanding
parallel behavior. Runtime information can be visual-
ized at a variety of levels to give progressively more
detailed information. For example, Fig.  visualizes the
overall and per-PE parallel activity for a -PE system
running the soda application (a simple crossword-
puzzle solver). Apart from the clear phase-transition
about % into the execution, very few threads are
blocked; and there are very few runnable, but not run-
ning threads. Those that are runnable are migrated to
balance overall system load.The profile also reveals that
relatively little time is spent fetching nonlocal data. The
per-PE profile gives a more detailed view. It is obvious
that the workload is well balanced and that the work-
stealing mechanism is effective in distributing work.
The example also shows where PEs are idle for repeated
periods, and that only the main PE is active at the
end of the computation (collating results to be written
as the output of the program). It thus clearly identi-
fies places where improvements could be made to the
parallel program.
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The GHC-SMP Implementation of GpH
A recent development is the GHC-SMP [] implemen-
tation of GpH from Microsoft Research Labs, Cam-
bridge, UK, which is integrated into the standard GHC
distribution. This provides an implementation of GpH
that specifically targets shared-memory and multicore
systems. It uses a similar model of PEs and threads to
the GUM implementation, including spark pools and
runnable thread pools, and implements a similar spark-
stealing model. The key difference from GUM is that
GHC-SMP uses a physically shared heap, rather than a
virtual shared heapwith an underlyingmessage-passing
implementation. This heap is garbage-collected using
a global stop-and-copy collector that requires the syn-
chronization of all PEs, but whichmay itself be executed
in parallel using the available processor cores. Also,
unlike GUM, GHC-SMP exports threads to remote PEs
based on the load of the local core, rather than on
demand.

GRID-GUM and the SymGrid System
By replacing the low-level communications library
with MPICH-G, it is possible to execute GUM (or
Eden – see below) not only on standard clusters of
workstations, but also on wide-area computational
grids, coordinated by the standard Globus grid middle-
ware. The GRID-GUM and grid-enabled Eden imple-
mentations form the basis for the SymGrid-Par mid-
dleware [], which aims to provide high-level support
for computational grids for a variety of symbolic com-
puting systems. The middleware coordinates symbolic
computing engines into a coherent parallel system, pro-
viding high-level skeletons.The systemuses a high-level
data-exchange protocol (SCSCP) based on the stan-
dard OpenMath XML format for mathematical data.
Results have been very promising to date, with superlin-
ear performance being achievable for somemathemati-
cal applications, without changing any of the sequential
symbolic computing engines.

The GranSim Simulator
The GranSim parallel simulator was developed in
 [] as an efficient and accurate simulator for
GpH running on a sequential machine, specifically to
expose granularity issues. It is unusual in modifying
the sequential GHC runtime system so that evaluat-
ing graph nodes also triggers the addition of sparks,

and simulates inter-PE communication. It thus fol-
lows the actual GUM implementation very precisely.
It allows a range of communication costs to be sim-
ulated for a specific parallel application, ranging from
zero (ideal communication) to costs that are similar to
those Programexecution times are also simulated, using
a cost model that takes architectural characteristics into
account. One of the key uses of GranSim is as the core
of a parallel program development methodology, where
a GpH program is first simulated under ideal parallel
conditions, and then under communication cost set-
tings for specific parallel machines: shared-memory,
distributed-memory, etc. This allows the program to be
gradually tuned for a specific parallel setting without
needing access to the actual parallel machine, and in
a way that is repeatable, can be easily debugged, and
which provides detailed metrics.

GdH andMobile Haskell
GdH [] is a distributed Haskell dialect that builds
on GpH. It adds explicit constructs for task creation
on specific processors, with inter-processor commu-
nication through explicit mutable shared variables,
that can be written on one processor and read on
another. Internally, each processor runs a number of
threads. The GdH implementation extends the GUM
implementation with a number of explicit constructs.
The main construct is revalIO, which constructs
a new task on a specific procesor. In conjunction
with mutable variables, this can be used to construct
higher-level constructs. For example, theshowSystem
definition below prints the names of all available
PEs. The getAllHostNames function maps the
hostName function over the list of all processor iden-
tifiers, returning an IO action that obtains the environ-
ment variable HOST on the specified PE. This is used
in the showSystem IO operation which first obtains
a list of all host names, then outputs them as a sorted
list, with duplicates eliminated using the standard nub
function.

ge tA l lHos tNames : : IO [ S t r i n g ]
ge tA l lHos tNames = mapM hostName a l l P E I d

hostName : : PEId −> IO S t r i n g
hostName pe = r e v a l IO ( ge tEnv ‘ ‘HOST ’ ’ ) pe

showSystem = do { hostnames <=
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ge tA l lHos tNames ; showHostNames hostnames }
where

showHostNames names = pu t S t r Ln
( show ( s o r t ( nub names ) ) )

At the language level, GdH is similar to Concurrent
Haskell, which is designed to execute explicit concur-
rent threads on a single PE.The key language difference
is the inclusion of an explicit PEId to allocate tasks to
PEs, supported by a distributed runtime environment.
GdH is also broadly similar to the industrial Erlang
language, targeting a similar area of distributed pro-
gramming, but is non-strict rather than strict and, since
it is a research language, does not have the range of
telecommunications-specific libraries that Erlang sup-
ports in the form of the Erlang/OTP development plat-
form. Mobile Haskell [] similarly extends Concurrent
Haskell, adding higher-order communication channels
(known as Mobile Channels), to support mobile com-
putations across dynamically evolving distributed sys-
tems. The system uses a bytecode implementation to
ensure portability, and serializes arbitrary Haskell val-
ues including (higher-order) functions, IO actions, and
even mobile channels.

Eden
Eden [] (described in a separate encyclopedia entry)
is closely related to GpH. Like GpH, it uses an
implicit communication mechanism, sharing values
through program graph nodes. However, it uses an
explictprocess construct to create new processes and
explicit process application to pass streams of values to
each process. Unlike GpH, all data that is passed to an
Eden process must be evaluated before it is communi-
cated. There is also no automatic work-stealing mech-
anism, task migration, granularity agglomeration, or
virtual shared graph mechanism. Eden, does, however,
provide additional threading support: each output from
the process is evaluated using its own parallel thread. It
also providesmechanisms to allow explicit communica-
tion channels to be passed as first-class objects between
processes.

Eden has been used to implement both algorith-
mic skeletons and evaluation strategies, where it has
the advantage of providing more controllable paral-
lelism but the disadvantage of losing adaptivity. One

particularly useful technique is to use Eden to imple-
ment a master–worker evaluation strategy, where a set
of dynamically generated worker functions is allocated
to a fixed set of worker processors using an explicitly
programmed scheduler. This allows Eden to deal with
varying thread granularities, without using a lazy thread
creation mechanism, as in GpH.

While it does not need the advanced adaptivity
mechanisms thatGUMprovides, the Eden implementa-
tion shares several basic components, in particular, the
communication library and scheduler have very similar
implementations.

Current Status
GpH has been adopted as a significant part of the
Haskell community effort on parallelism. The evalua-
tion strategies library has just been released as part of
the mainstream GHC compiler release, building on the
GHC-SMP implementation, and there has also been
significant recent effort on visualization with the release
of the EdenTV and ThreadScope visualizers for Eden
and GHC-SMP, respectively. Work is currently under-
way to integrate GUM and GHC-SMP to give a wide-
spectrum implementatation for GpH, and Eden will
also form part of this effort. The SymGrid-Par system
is being developed as part of a major UK project to
provide support for high-performance computing on
massively parallel machines, such as HECToR.

Future Directions
The advent of multicore computers and the promise of
manycore computers have changed the nature of par-
allel computing. The GpH model of lightweight mul-
tithreaded parallelism is well suited to this new order,
offering the ability to easily generate large amounts of
parallelism. The adaptivity mechanisms built into the
GUM implementation mean that the parallel program
can dynamically, and automatically, change its behavior
to increase parallelism, improve locality, or throttle back
parallelism as required.

Future parallel systems are likely to be built more
hierarchically than present ones, with processors built
from heteregeneous combinations of general-purpose
cores, graphics processing units, and other special-
ist units, using several communication networks and
a complex memory hierarchy. Proponents of many-
core architectures anticipate that a single processor
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will involve hundreds or even thousands of such units.
Because of the cost of maintaining a uniform mem-
ory model across large numbers of systems, when
deployed on a large scale these processors are likely
to be combined hierarchically into multiple levels of
clusters. These systems may then be used to form high
performance “clouds.” Future parallel languages and
implementations must therefore be highly flexible and
adaptable, capable of dealing with multiple levels of
communication latency and internal parallel structure,
and perhaps fault tolerance.TheGpHmodelwith evalu-
ation strategies, supported by adaptive implementations
such as GUM forms a good basis for this, but it will be
necessary to extend the existing models and implemen-
tations to cover more heterogeneous processor types,
to deal with multiple levels of parallelism and addi-
tional program structure, and to focus more directly on
locality issues.

Related Entries
�Eden
�Fortress (Sun HPCS Language)
�Functional Languages
�Futures
�MPI (Message Passing Interface)
�MultiLisp
�NESL
�Parallel Skeletons
�Processes, Tasks, and Threads
�Profiling
�PVM (Parallel Virtual Machine)
�Shared-Memory Multiprocessors
�Sisal
�Speculation, Thread-Level

Bibliographic Notes and Further
Reading
The main venues for publication on GpH and other
parallel functional languages are the International
Conference on Functional Programming (ICFP) and
its satellite events including the Haskell Sympo-
sium; the International Symposium on Implementa-
tion and Application of Functional Languages (IFL);
the International Conference on Programming Lan-
guage Design and Implementation (PLDI); and the
Symposium on Trends in Functional Programming

(TFP). Papers also frequently appear in the Jour-
nal of Functional Programming (JFP). A survey of
Haskell-based parallel languages and implementations,
as of , can be found in [], and a general
introduction to research in parallel functional pro-
gramming, as of , can be found in []. Some
examples of the use of GpH in larger applications
can be found in []. Much of this entry is based on
private notes, e-mails, and final reports on the vari-
ous research projects that have used GpH. The main
paper on evaluation strategies is []. The main paper
on the GUM implementation is [], and the main
paper on the GranSim similator is []. Many subse-
quent papers have used these systems and ideas. For
example, one recent paper describes the SymGrid-Par
system []. Further material may be found on the GpH
web page at http://www.macs.hw.ac.uk/~dsg/gph/, on
the GdH web page at http://www.macs.hw.ac.uk/~dsg/
gdh/, on the GHC web page at http://www.haskell.
org/ghc, on the SCIEnce project web page at http://
www.symbolic-computation.org, on the Eden web page
at http://www.mathematik.uni-marburg.de/~eden, and
on the contributor’s web page at http://www-fp.cs.
st-andrews.ac.uk/~kh.
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Definition
Global Arrays is a high-performance programming
model for scalable, distributed-memory, parallel com-
puter systems. Global Arrays is based on the concept of
globally accessible dense arrays that are logically shared,
yet physically distributed onto the memories of a par-
allel distributed computer system (Fig.  illustrates this
concept).

Discussion

Introduction
Global Arrays (GA) is a high-performance program-
ming model for scalable, distributed-memory, paral-
lel computer systems. GA is a library-based Parti-
tioned Global Address Space (PGAS) programming
model. The underlying supported sequential languages
are Fortran, C, C++, and Python. GA provides global
view access to very large dense arrays through API
functions implemented for those languages, under
a Single Program Multiple Data (SPMD) execution
environment.

GA was originally developed as part of the under-
lying software infrastructure for the US Department
of Energy’s NWChem computational chemistry soft-
ware package. Over time, it has been developed into
a standalone package with a rich set of API functions
(+) that cater tomany needs in scientific application
development. GA has been used to enable scalable

Physically distributed data

Single, shared data structure

Global Arrays Parallel Programming Toolkit. Fig.  Dual

view of Global Arrays data structures
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parallel execution for several major scientific applica-
tions including NWChem (computational chemistry,
specifically electronic structure calculation), STOMP
(Subsurface Transport Over Multiple Phases, a subsur-
face flow and transport simulator), ScalaBLAST (amore
scalable, higher-performance version of BLAST), Mol-
pro (quantum chemistry), TETHYS (unstructured,
implicit CFD and coupled fluid/solid mechanics finite
volume code), Pagoda (Parallel Analysis of Geodesic
Data), COLUMBUS (computational chemistry), and
GAMESS-UK (computational chemistry).

GA’s development has occurred over the last two
decades. For this reason, the number of people involved
and their contributions is large. GA’s original devel-
opment occurred as a co-design effort between the
NWChem team and the computer science team focused
on GA. The main designer and original developer of
GA was Jarek Nieplocha. Robert Harrison led the main
effort in the development of NWChem.

Basic Global Arrays
There are three classes of operations in Global Arrays:
core operations, task parallel operations, and data-
parallel operations. These operations have multiple lan-
guage bindings, but provide the same functionality
independent of the language. The current GA library
contains approximately  operations that provide
a rich set of functionality related to data manage-
ment and computations involving distributed arrays.
GA is interoperable with MPI, enabling the develop-
ment of hybrid programs that use both programming
models.

The basic components of the Global Arrays toolkit
are function calls to create global arrays, copy data
to, from, and between global arrays, and identify and
access the portions of the global array data that are
held locally. There are also functions to destroy arrays
and free up the memory originally allocated to them.
The basic function call for creating new global arrays is
nga_create.The arguments to this function include
the dimension of the array, the number of indices along
each of the coordinate axes, and the type of data (inte-
ger, float, double, etc.) that each array element repre-
sents. The function returns an integer handle that can
be used to reference the array in all subsequent opera-
tions.The allocation of data can be left completely to the
toolkit, but if it is desirable to control the distribution

of data for load balancing or other reasons, additional
versions of the nga_create function are available
that allow the user to specify in detail how data is dis-
tributed between processors. The basic nga_create
call provides a simple mechanism to control data dis-
tribution via the specification of an array that indicates
the minimum dimensions of a block of data on each
processor.

One of the most important features of Global Arrays
is the ability to easily move blocks of data between
global arrays and local buffers. The data in the global
array can be referred to using a global indexing scheme
and data can be moved in a single function call, even
if it represents data distributed over several proces-
sors. The nga_get function can be used to move a
block of distributed data from a global array to a local
buffer. The arguments consist of the array handle for
the array that data is being taken from, two integer
arrays representing the lower and upper indices that
bound the block of distributed data that is going to
be moved, a pointer to the local buffer or a location
in the local buffer that is to receive the data, and an
array of strides for the local data. The nga_put call is
similar and can be used to move data in the opposite
direction.

The number of basic GA operations is fairly small
andmany parallel programs can be written with just the
following ten routines:

● GA_Initialize(): Initialize the GA library.
● GA_Terminate(): Release internal resources

and finalize execution of a GA program.
● GA_Nnodes(): Return the number of GA com-

pute processes (corresponds to the SPMD execution
environment).

● GA_Nodeid(): Return the GA process ID of the
calling compute process, this is a number between 
and GA_Nnodes() – 1.

● NGA_Create(): Create an n-dimensional glob-
ally accessible dense array (global array instance).

● NGA_Destroy(): Deallocate memory and re-
sources associated with a global array instance.

● NGA_Put(): Copy data from a local buffer to an
array section within a global array instance in a one-
sided manner.

● NGA_Get(): Copy data from an array section
within a global array instance to a local buffer in a
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Global Arrays Parallel Programming Toolkit. Fig.  Left: GA_Get flow chart. Right: An example: Process P issues GA_Get

to get a chunk of data, which is distributed (partially) among P, P, P, and P (owners of the chunk)

one-sided manner (see Fig.  for a detailed descrip-
tion of how get() operates).

● GA_Sync(): Synchronize compute processes via a
barrier and ensure that all pending GA operations
are complete (in accordance to the GA consistency
model).

● NGA_Distribution(): Returns the array sec-
tion owned by a specified compute process.

Example GA Program
We present a parallel matrix multiplication program
written in Global Arrays using the Fortran language
interface. It uses most of the basic GA calls described
before, in addition to some more advanced calls to
create global array instances with specified data dis-
tributions. The program computes the result of C =
A×B. Some variable declarations have been omitted for
brevity.

Discussion on the Example Program
The program is (mostly) a fully functional GA code,
except for omitted variable declarations. It creates global
array instances with specific data distributions, illus-
trates the use of the nga_put() and nga_get()
primitives, as well as locality information through the
nga_distribution() call. The code includes calls
to initialize and terminate the MPI library, which are
needed to provide the SPMD execution environment to
the GA application. (It is possible to write a GA applica-
tion that does not call the MPI library through the use
of the TCGMSG simple message-passing environment
included with GA.) The code includes the creation and
use of local buffers to be used as sources and targets for
put and get operations (lA, lB, lC), which in this
case were allocated as Fortran  dynamic arrays.

Lines – contain the principal part of the
example code and illustrate several of the features of
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1 program matmul
2 integer :: sz
3 integer :: i, j, k, pos, g_a, g_b, g_c
4 integer :: nproc, me, ierr
5 integer, dimension(2) :: dims, nblock, chunks
6 integer, dimension(1) :: lead
7 double precision, dimension(:,:), pointer :: lA, lB
8 double precision, dimension(:,:), pointer :: lC
9 call mpi_init(ierr)

10 call ga_initialize()
11 nproc = ga_nnodes()
12 me = ga_nodeid()

13 if (me .eq. 0) then
14 write (∗, ∗) ’Running on: ’, nproc, ’ processors’
15 end if

16 dims(:) = sz
17 chunks(:) = sz/sqrt(dble(nproc)) ! only runs on a perfect square number

of processors
18 nblock(1) = sz/chunks(1)
19 nblock(2) = sz/chunks(2)
20 allocate(dmap(nblock(1) + nblock(2)))

21 pos = 1
22 do i = 1, sz - 1, chunks(1) ! compute beginning coordinate of each

partition in the 1stdimension
23 dmap(pos) = i
24 pos = pos + 1
25 end do

26 do j = 1, sz - 1, chunks(2) ! compute beginning coordinate of each
partition in the 2nd dimension

27 dmap(pos) = j
28 pos = pos + 1
29 end do

30 ret = nga_create_irreg(MT_DBL,ubound(dims),dims, ’A’, dmap, nblock, g_a)!
create a global array instance with specified data distribution

31 ret = ga_duplicate(g_a, g_b, ’B’) ! duplicate same data distribution for
array B

32 ret = ga_duplicate(g_a, g_c, ’C’) ! and C

33 allocate(lA(chunks(1), chunks(2)), lB(chunks(1), chunks(2)),
lC(chunks(1), chunks(2)))

34 lA(:, :) = 1.0
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35 lB(:, :) = 2.0
36 lC(:, :) = 0.0
37 lead(1) = chunks(2)

38 call nga_distribution(g_a, me, tcoordsl, tcoordsh)

39 ! initialize global array instances to respective values
40 call nga_put(g_a, tcoordsl, tcoordsh, lA(1, 1), lead)
41 call nga_put(g_b, tcoordsl, tcoordsh, lB(1, 1), lead)
42 call nga_put(g_c, tcoordsl, tcoordsh, lC(1, 1), lead)

43 ! obtain all blocks in the row of the A matrix
44 tcoordsl1(1) = 1
45 tcoordsl1(2) = tcoordsl(2)
46 tcoordsh1(1) = chunks(1)
47 tcoordsh1(2) = tcoordsh(2)

48 ! obtain all blocks in the column of the B matrix
49 tcoordsl2(1) = tcoordsl(1)
50 tcoordsl2(2) = 1
51 tcoordsh2(1) = tcoordsh(1)
52 tcoordsh2(2) = chunks(2)

53 do pos = 1, nblock(1) ! matrix is square
54 call nga_get(g_a, tcoordsl1, tcoordsh1, lA(1, 1), lead)
55 call nga_get(g_b, tcoordsl2, tcoordsh2, lB(1, 1), lead)

56 do j = 1, n
57 do k = 1, n
58 do i = 1, n
59 lC(i, j) = lC(i, j) + lA(i, k) * lB(k, j)
60 end do
61 end do

62 ! advance coordinates for blocks
63 tcoordsl1(1) = tcoordsl1(1) + chunks(1)
64 tcoordsh1(1) = tcoordsh1(1) + chunks(1)

65 tcoordsl2(2) = tcoordsl2(2) + chunks(2)
66 tcoordsh2(2) = tcoordsh2(2) + chunks(2)
67 end do
68 ! lC contains the final result for the block owned by the process
69 call nga_put(g_c, tcoordsl, tcoordsh, lC(1, 1), lead)

70 ! do something with the result
71 call ga_print(g_c)
72 deallocate(dmap, lA, lB, lC)
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73 ret = ga_destroy(g_a)
74 ret = ga_destroy(g_b)
75 ret = ga_destroy(g_c)
76 call ga_terminate()
77 call mpi_finalize(ierr)

78 end program matmul

GA: data is being accessed using global coordinates
(lines – and –) that correspond to the global
size of the global array instances that were created pre-
viously; in addition, the access to the global array data
for arrays g_a and g_b in lines  and  is done with-
out requiring the participation of the process where that
data is allocated (one-sided access). Figure  illustrates
the concept of one-sided access.

Global Arrays Concepts
GA allows the programmer to control data distribution
and makes the locality information readily available to
be exploited for performance optimization. For exam-
ple, global arrays can be created by: () allowing the

Process X
ga_get(a, 100, 200,

17, 20, buf, 100)

Process Y
ga_get(a, 180, 210,

23, 40, buf, 30)

Process Z
ga_get(a, 175, 185,

19, 70, buf, 10)

Global Arrays Parallel Programming Toolkit. Fig.  Any

part of GA data can be accessed independently by any

process at any time

library to determine the array distribution, () speci-
fying the decomposition for only one array dimension
and allowing the library to determine the others, ()
specifying the distribution block size for all dimensions,
or () specifying an irregular distribution as a Carte-
sian product of irregular distributions for each axis. The
distribution and locality information is always available
through interfaces that allow the application developer
to query: () which data portion is held by a given pro-
cess, () which process owns a particular array element,
and () a list of processes and the blocks of data owned
by each process corresponding to a given section of
an array.

The primary mechanisms provided by GA for
accessing data are block copy operations that trans-
fer data between layers of memory hierarchy, namely,
global memory (distributed array) and local memory.
Further, extending the benefits of using blocked data
accesses and copying remote locations into contigu-
ous local memory can improve cache performance by
reducing both conflict and capacity misses []. In addi-
tion, each process is able to access directly the data held
in a section of a Global Array that is locally assigned to
that process. Data representing sections of the Global
Array owned by other processes on SMP clusters can
also be accessed directly using the GA interface, if
desired. Atomic operations are provided that can be
used to implement synchronization and assure correct-
ness of an accumulate operation (floating-point sum
reduction that combines local and remote data) exe-
cuted concurrently by multiple processes and targeting
overlapping array sections.

GA is extensible as well. New operations can
be defined exploiting the low-level interfaces dealing
with distribution, locality, and providing direct mem-
ory access (nga_distribution, nga_locate_
region, nga_access, nga_release, nga_
release_update).These, e.g., were used to provide
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additional linear algebra capabilities by interfacing with
third-party libraries, e.g., ScaLAPACK [].

Global Arrays Memory Consistency Model
In shared-memory programming, one of the issues cen-
tral to performance and scalability is memory consis-
tency. Although the sequential consistency model []
is straightforward to use, weaker consistency models
[] can offer higher performance on modern archi-
tectures and they have been implemented on actual
hardware. GA’s nature as a one-sided, global-view pro-
gramming model requires similar attention to memory
consistency issues. TheGA approach is to use a weaker-
than-sequential consistency model that is still relatively
straightforward to understand by an application pro-
grammer. The main characteristics of the GA approach
include:
● GA distinguishes two types of completion of the

store operations (i.e., put, scatter) targeting global
shared memory: local and remote. The block-
ing store operation returns after the operation is
completed locally, i.e., the user buffer containing
the source of the data can be reused. The opera-
tion completes remotely after either amemory fence
operation or a barrier synchronization is called. The
fence operation is required in critical sections of the
user code, if the globally visible data is modified.

● The blocking operations (get/put) are ordered only
if they target overlapping sections of global arrays.
Operations that do not overlap or access different
arrays can complete in arbitrary order.

● The nonblocking get/put operations complete in
arbitrary order. The programmer uses wait/test
operations to order completion of these operations,
if desired.

Global Arrays Extensions
To allow the user to exploit data locality, the toolkit
provides functions identifying the data from the global
array that is held locally on a given processor. Two func-
tions are used to identify local data. The first is the
nga_distribution function, which takes a pro-
cessor ID and an array handle as its arguments and
returns a set of lower and upper indices in the global
address space representing the local data block.The sec-
ond is the nga_access function, which returns an
array index and an array of strides to the locally held

data. In Fortran, this can be converted to an array by
passing it through a subroutine call.TheC interface pro-
vides a function call that directly returns a pointer to the
local data.

In addition to the communication operations that
support task parallelism, the GA toolkit includes a set of
interfaces that operate on either entire arrays or sections
of arrays in the data-parallel style. These are collective
data-parallel operations that are called by all processes
in the parallel job. For example, movement of data
between different arrays can be accomplished using a
single function call. The nga_copy_patch function
can be used to move a patch, identified by a set of lower
and upper indices in the global index space, from one
global array to a patch located within another global
array. The only constraints on the two patches are that
they contain equal numbers of elements. In particu-
lar, the array distributions do not have to be identical,
and the implementation can perform, as needed, the
necessary data reorganization (the so-calledMxNprob-
lem []). In addition, this interface supports an optional
transpose operation for the transferred data. If the copy
is from one patch to another on the same global array,
there is an additional constraint that the patches do not
overlap.

Historical Development and Comparison
with Other Programming Models
The original GA package [–] offered basic one-sided
communication operations, along with a limited set of
collective operations on arrays in the style of BLAS
[]. Only two-dimensional arrays and two data types
were supported.The underlying communication mech-
anisms were implemented on top of vendor-specific
interfaces. In the course of  years, the package evolved
substantially and the underlying code was completely
rewritten. This included separation of the GA internal
one-sided communication engine from the high-level
data structure. A new portable, general, and GA-
independent communication library calledARMCIwas
created []. New capabilities were later added to GA
without the need to modify the ARMCI interfaces. The
GA toolkit evolved in multiple directions:

● Adding support for a wide range of data types and
virtually arbitrary array ranks.

● Adding advanced or specialized capabilities that
address the needs of some new application areas,
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e.g., ghost cells or operations for sparse data
structures.

● Expansion and generalization of the existing basic
functionality. For example, mutex and lock oper-
ations were added to better support the develop-
ment of shared-memory-style application codes.
They have proven useful for applications that per-
form complex transformations of shared data in
task parallel algorithms, such as compressed data
storage in the multireference configuration interac-
tion calculation in the COLUMBUS package [].

● Increased language interoperability and interfaces.
In addition to the original Fortran interface, C,
Python, and a C++ class library were developed.

● Developing additional interfaces to third-party
libraries that expand the capabilities of GA, espe-
cially in the parallel linear algebra area: ScaLAPACK
[] and SUMMA []. Interfaces to the TAO opti-
mization toolkit have also been developed [].

● Developed support for multilevel parallelism based
on processor groups in the context of a shared-
memory programming model, as implemented in
GA [, ].

These advances generalized the capabilities of the GA
toolkit and expanded its appeal to a broader set of appli-
cations. At the same time, the programming model,
with its emphasis on a shared-memory view of the data
structures in the context of distributed memory systems
with a hierarchical memory, is as relevant today as it was
in  when the project started.

Comparison with Other ProgrammingModels
The two predominant classes of programming models
for parallel computers are distributed-memory, shared-
nothing, and Uniform Memory Access (UMA) shared-
everything models. Both the shared-everything and
fully distributed models have advantages and short-
comings. The UMA shared-memory model is easier to
use but it ignores data locality/placement. Given the
hierarchical nature of the memory subsystems in mod-
ern computers, this characteristic can have a negative
impact on performance and scalability. Careful code
restructuring to increase data reuse and replacing fine-
grained load/stores with block access to shared data can
address the problem and yield performance for shared
memory that is competitive with message passing [].

However, this performance comes at the cost of com-
promising the ease of use that theUMAshared-memory
model posits. Distributed, shared-nothing memory
models, such as message-passing or one-sided commu-
nication, offer performance and scalability but they are
more difficult to program. The classic message-passing
paradigm not only transfers data but also synchronizes
the sender and receiver. Asynchronous (nonblocking)
send/receive operations can be used to diffuse the syn-
chronization point, but cooperation between sender
and receiver is still required. The synchronization effect
is beneficial in certain classes of algorithms, such as
parallel linear algebra, where data transfer usually indi-
cates completion of some computational phase; in these
algorithms, the synchronizing messages can often carry
both the results and a required dependency. For other
algorithms, this synchronization can be unnecessary
and undesirable, and a source of performance degrada-
tion and programming complexity.

TheGlobal Arrays toolkit [–] attempts to offer the
best features of both models. It implements a global-
view programming model, based on one-sided com-
munication, in which data locality is managed by the
programmer. This management is achieved by calls to
functions that transfer data between a global address
space (a distributed array) and local storage. In this
respect, the GAmodel has similarities to the distributed
shared-memory models that provide, e.g., an explicit
acquire/release protocol []. However, the GA model
acknowledges that remote data is slower to access than
local data and allows data locality to be specified by
the programmer and hence managed. GA is related
to the global address space languages such as UPC
[], Titanium [], and, to a lesser extent, Co-Array
Fortran []. In addition, by providing a set of data-
parallel operations, GA is also related to data-parallel
languages such as HPF [], ZPL [], and Data Par-
allel C []. However, the Global Array programming
model is implemented as a library that works with
most languages used for technical computing and does
not rely on compiler technology for achieving paral-
lel efficiency. It also supports a combination of task
and data parallelism and is fully interoperable with the
message-passing (MPI) model. The GA model exposes
to the programmer the hierarchical memory of modern
high-performance computer systems [], and by rec-
ognizing the communication overhead for remote data
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transfers, it promotes data reuse and locality of refer-
ence. Virtually all scalable architectures possess nonuni-
form memory access characteristics that reflect their
multilevel memory hierarchies. These hierarchies typ-
ically comprise processor registers, multiple levels of
cache, local memory, and remote memory. Over time,
both the number of levels and the cost (in processor
cycles) of accessing deeper levels have been increasing.
Scalable programming models must address memory
hierarchy since it is critical to the efficient execution of
applications.

Related Entries
�Coarray Fortran
�MPI (Message Passing Interface)
�PGAS (Partitioned Global Address Space) Languages
�UPC

Bibliographic Notes and Further
Reading
Amore detailed version of this entry has been published
in the International Journal of High Performance Com-
puting Applications, vol. , no. , May  by SAGE
Publications, Inc., All rights reserved. © .

Bibliography
. Lam MS, Rothberg EE, Wolf ME () Cache performance and
optimizations of blocked algorithms. In: Proceedings of the th
international conference on architectural support for program-
ming languages and operating systems, Santa Clara, – Apr 

. Blackford LS, Choi J, Cleary A, D’Azevedo E, Demmel J, Dhillon
I, Dongarra J, Hammarling S, Henry G, Petitet A, Stanley K,
Walker D, Whaley RC () ScaLAPACK: a linear algebra
library for message-passing computers. In: Proceedings of eighth
SIAM conference on parallel processing for scientific computing,
Minneapolis

. Scheurich C, Dubois M () Correct memory operation of
cache-based multiprocessors. In: Proceedings of th annual
international symposium on computer architecture, Pittsburgh

. DuboisM, Scheurich C, Briggs F () Memory access buffering
in multiprocessors. In: Proceedings of th annual international
symposium on Computer architecture, Tokyo, Japan

. CCA-Forum. Common component architecture forum. http://
www.cca-forum.org

. Nieplocha J, Harrison RJ, Littlefield RJ () Global arrays: a
portable shared memory programming model for distributed
memory computers. In: Proceedings of Supercomputing,
Washington, DC, pp –

. Nieplocha J, Harrison RJ, Littlefield RJ () Global arrays:
A nonuniform memory access programming model for high-
performance computers. J Supercomput :–

. Nieplocha J, Harrison RJ, Krishnan M, Palmer B, Tipparaju V
() Combining shared and distributed memory models: Evo-
lution and recent advancements of the Global Array Toolkit. In:
Proceedings of POHLL’  workshop of ICS-, New York

. Dongarra JJ, Croz JD, Hammarling S, Duff I () Set of level 
basic linear algebra subprograms. ACMTrans Math Softw :–

. Nieplocha J, Carpenter B () ARMCI: a portable remotemem-
ory copy library for distributed array libraries and compiler run-
time systems. In: Proceedings of RTSPP of IPPS/SDP’, San
Juan, Puerto Rico

. Dachsel H, Nieplocha J, Harrison RJ () An out-of-core
implementation of the COLUMBUS massively-parallel multiref-
erence configuration interaction program. In: Proceedings of
high performance networking and computing conference, SC’,
Orlando

. VanDeGeijn RA, Watts J () SUMMA: Scalable universal
matrix multiplication algorithm. Concurr Pract Exp :–

. Benson S,McInnes L,Moré JJ Toolkit for AdvancedOptimization
(TAO). http://www.mcs.anl.gov/tao

. Nieplocha J, KrishnanM, Palmer B, Tipparaju V, Zhang Y ()
Exploiting processor groups to extend scalability of theGA shared
memory programming model. In: Proceedings of ACM comput-
ing frontiers, Italy

. Krishnan M, Alexeev Y, Windus TL, Nieplocha J () Mul-
tilevel parallelism in computational chemistry using common
component architecture and global arrays. In: Proceedings of
Supercomputing, Seattle

. Shan H, Singh JP () A comparison of three programming
models for adaptive applications on the origin. In: Proceed-
ings of supercomputing, Dallas

. Zhou Y, Iftode L, Li K () Performance evaluation of two
home-based lazy release consistency protocols for shared virtual
memory systems. In: Proceedings of operating systems design
and implementation symposium, Seattle, pp –

. Carlson WW, Draper JM, Culler DE, Yelick K, Brooks E,
Warren K () Introduction toUPCand language specification.
Center for Computing Sciences CCS-TR--, IDA Center for
Computing Sciences, Bowie

. Yelick K, Semenzato L, Pike G, Miyamoto C, Liblit B, Krishna-
murthyA,Hilfinger P, GrahamS,GayD, Colella P, AikenA ()
Titanium: A high-performance Java dialect. Concurr Pract Exp
:–

. Numrich RW, Reid JK () Co-array Fortran for parallel pro-
gramming. ACM Fortran Forum :–

. High Performance Fortran Forum () High Performance For-
tran Language Specification, version .. Sci Program ():–

. Snyder L () A programmer’s guide to ZPL. MIT Press,
Cambridge

. Hatcher PJ, Quinn MJ () Data-parallel programming on
MIMD computers. MIT Press, Cambridge

. Nieplocha J, Harrison RJ, Foster I () Explicit management of
memory hierarchy. Adv High Perform Comput –

http://dx.doi.org/10.1007/978-0-387-09766-4_477
http://dx.doi.org/10.1007/978-0-387-09766-4_222
http://dx.doi.org/10.1007/978-0-387-09766-4_210
http://dx.doi.org/10.1007/978-0-387-09766-4_271
http://www.cca-forum.org
http://www.cca-forum.org
http://www.mcs.anl.gov/tao


 G GpH (Glasgow Parallel Haskell)

Gossiping

�Allgather

GpH (Glasgow Parallel Haskell)

�Glasgow Parallel Haskell (GpH)

GRAPE

Junichiro Makino
National Astronomical Observatory of Japan, Tokyo,
Japan

Definition
GRAPE (GRAvity PipE) is the name of a series of
special-purpose computers designed for the numerical
simulation of gravitational many-body systems. Most of
GRAPEmachines consist of hardwired pipeline proces-
sors to calculate the gravitational interaction between
particles and programmable computers to handle all
other works. GRAPE-DR (Greatly Reduced Array of
Processor Elements with Data Reduction) replaced the
hardwired pipeline by simple SIMD programmable
processors.

Discussion

Introduction
The improvement in the speed of computers has been
a factor of  in every decade, for the last  years. In
these  years, however, the computer architecture has
become more and more complex. Pipelined architec-
ture were introduced in s, and vector architectures
became the mainstream in s. In s, a num-
ber of parallel architectures appeared, but in the s
and s, distributed memory parallel computers built
from microprocessors have taken over.

The technological driving force of this evolution
of computer architecture has been the increase of the
number of available transistors in integrated circuits, at
least after the invention of integrated circuits in s.
In the case of CMOS LSIs, the number of transistors in

a chip doubles in every  months. Under the assump-
tion of so-called CMOS scaling, this means that the
switching speed doubles in every  months. In the last
 years, the number of transistors available on an LSI
chip increased by roughly a factor of one million.

One way to make use of this huge number
of transistors is to implement application-specific
pipeline processors into a chip. The GRAPE series
of special-purpose computers is one of such efforts
to make efficient use of large number of transistors
available on LSIs.

In many scientific simulations, it is necessary to
solve N-body problems numerically. The gravitational
N-body problem is one such example, which describes
the evolution of many astronomical objects from the
solar system to the entire universe. In some cases, it
is important to treat non-gravitational effects such as
the hydrodynamical interaction, radiation, and mag-
netic fields, but the gravity is the primary driving force
that shapes the universe.

To solve the gravitational N-body problem, one
needs to calculate the gravitational force on each body
(particle) in the system from all other particles in the
system. There are many ways to do so, and if relatively
low accuracy is sufficient, one can use the Barnes–
Hut tree algorithm [] or FMM []. Even with these
schemes, the calculation of the gravitational interaction
between particles (or particles and multipole expan-
sions of groups of particles) is themost time-consuming
part of the calculation. Thus, one can greatly improve
the speed of the entire simulation, just by accelerating
the speed of the calculation of particle–particle interac-
tion. This is the basic idea behind GRAPE computers.

The basic idea is shown in Fig. . The system con-
sists of a host computer and special-purpose hardware,
and the special-purpose hardware handles the calcula-
tion of gravitational interaction between particles. The
host computer performs other calculations such as the
time integration of particles, I/O, and diagnostics.

Host
computer GRAPE

Position, mass

Acceleration,
potential

GRAPE. Fig.  Basic structure of a GRAPE system

http://dx.doi.org/10.1007/978-0-387-09766-4_525
http://dx.doi.org/10.1007/978-0-387-09766-4_46
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This architecture accelerates not only the simple
algorithm in which the force on a particle is calcu-
lated by taking the summation of forces from all other
particles in the system, but also the Barnes–Hut tree
algorithms and FMM. Moreover, it can be used with
individual timestep algorithms [], in which particles
have their own times and timesteps and integrated in
an event-driven fashion. The use of individual timestep
is critical in simulations of many systems including star
clusters and planetary systems, where close encounters
and physical collisions of two particles require very
small timesteps for a small number of particles.

History
The GRAPE project started in . The first machine
completed, the GRAPE- [], was a single-board unit
on which around  IC and LSI chips were mounted
and wire-wrapped. The pipeline processor of GRAPE-
was implemented using commercially available IC and
LSI chips. It was a natural consequence of the fact that
project members lacked both money and experience
to design custom LSI chips. In fact, none of the orig-
inal design and development team of GRAPE- had
the knowledge of electronic circuit more than what
was learned in basic undergraduate course for physics
students.

For GRAPE-, an unusually short word format was
used, to make the hardware as simple as possible. The
input coordinates are expressed in -bit fixed point
format. After subtraction, the result is converted to
-bit logarithmic format, in which  bit are used for
the “fractional” part. This format is used for all follow-
ing operations except for the final accumulation. The
final accumulation was done in -bit fixed point, to
avoid overflow and underflow. The advantage of the
short word format is that ROM chips can be used to
implement complex functions that require two inputs.
Any function of two -bit words can be implemented
by one ROM chip with -bit address input. Thus, all
operations other than the initial subtraction of the coor-
dinates and final accumulation of the force were imple-
mented by ROM chips.

The use of extremely short word format in GRAPE-
was based on the detailed theoretical analysis of error
propagation and numerical experiment []. There are
three dominant sources of error in numerical simula-
tions of gravitational many-body systems. The first one

is the error in the numerical integration of orbits of
particles. The second one is the error in the calculated
accelerations themselves. The third one comes from the
fact that in many cases, the number of particles used
is much smaller than the number of stars in the real
systems such as a galaxy.

Whether or not the third one should be regarded
as the source of error depends on the problem one
wants to study. If the problem is, for example, merg-
ing of two galaxies, which takes place in relatively short
timescale (compared to the orbital period of typical
stars in galaxies), the effect of small number of particles
can be, and should be, regarded as the numerical error.

On the other hand, if we want to study long-term
evolution of a star cluster, which takes place in the
timescale much longer than the orbital timescale, the
evolution of orbits of individual stars is driven by close
encounters with other stars. In this case, the effect of
small (or finite) number of particles is not an numerical
error but what is there in real systems.

Thus, the required accuracy of pairwise force cal-
culation depends on the nature of the problem. In the
case of the study of the merging of two galaxies, the
average error can be as large as % of the pairwise
force, if the error is guaranteed to be random.The aver-
age error of interaction calculated by GRAPE- is less
than %, which was good enough for many problems.
In the number format used in GRAPE-, the positions
of particles are expressed in the -bit fixed-point for-
mat, so that the force between two nearby particles,
both far from the origin of coordinates, is still expressed
with sufficient accuracy. Also, the accumulation of the
forces fromdifferent particles is done in the -bit fixed-
point format, so that there is no loss of effective bits
during the accumulation. Thus, the primary source of
error with GRAPE- is the low-accuracy pairwise force
calculation. It can be regarded as random error.

Strictly speaking, the error due to the short word
format cannot always be regarded as random, since
it introduces correlation both in space and time. One
could eliminate this correlation by applying random
coordinate transformation, but the quantitative study of
such transformation has not done yet.

GRAPE- used the GPIB (IEEE-) interface for
the communication with the host computer. It was fast
enough for the usewith simple direct summation. How-
ever, when combined with the tree algorithm, faster
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communication was necessary. GRAPE-A used VME
bus for communication, to improve the performance.
The speed of GRAPE- and A was around  Mflops,
which is around / of the speed of fastest vector super-
computers of the time. Hardware cost of them was
around /, of supercomputers, or roughly equal
to the cost of low-end workstations. Thus, these first-
generation GRAPEs offered price-performance two
orders of magnitude better than that of general-purpose
computers.

GRAPE- is similar to GRAPE-A, but with much
higher numerical accuracy. In order to achieve higher
accuracy, commercial LSI chips for floating-point arith-
metic operations such as TI SNACT and Ana-
log Devices ADSP/ were used. The pipeline
of GRAPE- processes the three components of the
interaction sequentially. So it accumulates one inter-
action in every three clock cycles. This approach was
adopted to reduce the circuit size. Its speed was around
 Mflops, but it is still much faster than workstations
or minicomputers at that time.

GRAPE- was the first GRAPE computer with a
custom LSI chip.The number format was the combina-
tion of the fixed point and logarithmic format similar
to what were used in GRAPE-. The chip was fabri-
cated using  μm design rule by National Semiconduc-
tor. The number of transistors on chip was  K. The
chip operated at MHz clock speed, offering the speed
of about . Gflops. Printed-circuit boards with eight
chips were mass-produced, for the speed of . Gflops
per board. Thus, GRAPE- was also the first GRAPE
computer to integrate multiple pipelines into a sys-
tem. Also, GRAPE- was the first GRAPE computer to
be manufactured and sold by a commercial company.
Nearly  copies of GRAPE- have been sold to more
than  institutes (more than  outside Japan).

With GRAPE-, a high-accuracy pipeline was inte-
grated into one chip. This chip calculates the first time
derivative of the force, so that fourth-order Hermite
scheme [] can be used. Here, again, the serialized
pipeline similar to that of GRAPE- was used. The chip
was fabricated using  μm design rule by LSI Logic. Total
transistor count was about K.

The completed GRAPE- system consisted of ,
pipeline chips ( PCB boards each with  pipeline
chips). It operated on  MHz clock, delivering the
speed of . Tflops. Completed in , GRAPE- was

the first computer for scientific calculation to achieve
the peak speed higher than  Tflops. Also, in  and
, it was awarded the Gordon Bell Prize for peak
performance, which is given to a real scientific calcu-
lation on a parallel computer with the highest perfor-
mance. Technical details of machines from GRAPE-
through GRAPE- can be found in [] and references
therein.

GRAPE- [] was an improvement over GRAPE-.
It integrated two full pipelines which operate on 
MHz clock. Thus, a single GRAPE- chip offered the
speed eight times more than that of the GRAPE- chip,
or the same speed as that of an eight-chip GRAPE-
board. GRAPE- was awarded the  Gordon Bell
Prize for price-performance. The GRAPE- chip was
fabricated with . μ m design rule by NEC.

Table  summarizes the history of GRAPE project.
Figure  shows the evolution of GRAPE systems and
general-purpose parallel computers. One can see that
evolution of GRAPE is faster than that of general-
purpose computers.

TheGRAPE- was essentially a scaled-up version of
GRAPE- [], with the peak speed of around  Tflops.
Thepeak speed of a single pipeline chipwas Gflops. In
comparison, GRAPE- consists of , pipeline chips,
each with  Mflops. The increase of a factor of  in
speed was achieved by integrating six pipelines into one
chip (GRAPE- chip has one pipelinewhichneeds three
cycles to calculate the force fromone particle) and using
three times higher clock frequency. The advance of the
device technology (from  μm to . μm) made these
improvements possible. Figure  shows the processor
chip delivered in early . The six pipeline units are
visible.

Starting with GRAPE-, the concept of virtual mul-
tiple pipeline (VMP) is used. VMP is similar to simul-
taneous multithreading (SMT), in the sense that a
single pipeline processor behaves as multiple proces-
sors. However, what is achieved is quite different. In the
case of SMT, the primary gain is in the latency toler-
ance, since one can execute independent instructions
with different threads. In the case of hardwired pipeline
processors, there is no need to reduce the latency. With
VMP, the bandwidth to the externalmemory is reduced,
since the data of one particle which exerts force are
shared by multiple virtual pipelines, each of which cal-
culates the force on its own particle. This sharing of the
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GRAPE. Table  History of GRAPE project

GRAPE- (/–/)  Mflops, low accuracy

GRAPE- (/–/)  Mflops, high accuracy(bit/ bit)

GRAPE-A (/–/)  Mflops, low accuracy

GRAPE- (/–/)  Gflops, high accuracy

GRAPE-A (/–/)  Mflops, high accuracy

HARP- (/–/)  Mflops, high accuracy

Hermite scheme

GRAPE-A (/–/)  Gflops/board

some  copies are used all over the world

GRAPE- (/–/)  Tflops, high accuracy

Some  copies of small machines

MD-GRAPE (/–/)  Gflops/chip, high accuracy

programmable interaction

GRAPE- (/–/)  Gflops/chip, low accuracy

GRAPE- (/–/)  Tflops, high accuracy
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GRAPE. Fig.  The evolution of GRAPE and general-

purpose parallel computers. The peak speed is plotted

against the year of delivery. Open circles, crosses, and stars

denote GRAPEs, vector processors, and parallel processors,

respectively

particle can be extended to physical multiple pipelines,
as far as the total number of pipeline is not too large.
Thus, special-purpose computers based on GRAPE-like
pipeline have a unique advantage that their requirement
of external memory bandwidth is much smaller than
that of general-purpose computers with similar peak
performance.

GRAPE. Fig.  The GRAPE- processor chip

In the case of GRAPE-, each of six physical
pipelines is implemented as eight virtual pipelines.
Thus, one GRAPE- chip calculates forces on  par-
ticles in parallel. The required memory bandwidth was
 MB/s, for the peak speed of  Gflops. A tra-
ditional vector processor with the peak speed of 
Gflops would require the memory bandwidth of 
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GB/s. Thus, GRAPE- requires the memory bandwidth
around / of that of a traditional vector processor.

One processor board of GRAPE- housed 
GRAPE- chips. Each GRAPE- chip has its ownmem-
ory to store particles which exert the force.Thus, differ-
ent processor chips onone processor board calculate the
forces on the same  particles from different particles,
and the partial results are summed up by an hardwired
adder tree when the result is sent back to the host.
Thus, the summation over  chips added only a small
startup overhead (less than  μs) per one force calcula-
tion, which typically requires several milliseconds.

The completed GRAPE- system consisted of 
processor boards, grouped into  clusterswith  boards
each. Within a cluster,  boards are organized in a × 
matrix, with  host computers. They are organized so
that the effective communication speed is proportional
to the number of host computers. In a simple configura-
tion, the effective communication speed becomes inde-
pendent of the number of host computers. The details
of the network used in GRAPE- are given in [].

Machines for Molecular Dynamics
Classical MD calculation is quite similar to astrophysi-
calN-body simulations since, in both cases, we integrate
the orbit of particles (atoms or stars) which interactwith
other particles with simple pairwise force. In the case of
Coulomb force, the force law itself is the same as that of
the gravitational force, and the calculation of Coulomb
force can be accelerated by GRAPE hardware.

However, inMD calculations, the calculation cost of
van der Waals force is not negligible, though van der
Waals force decays much faster than the Coulomb force
(r− compared to r−).

It is straightforward to design a pipelined processor
which can handle particle–particle force given by some
arbitrary function of the distance between particles. In
GRAPE-A and its successors, a combination of table
lookup and polynomial approximation is used.

GRAPE-A and MD-GRAPE were developed in
the University of Tokyo, following these lines of idea.
GRAPE-Awas built using commercial chips andMD-
GRAPE used a custom-designed pipeline chip.

Another difference between astrophysical simula-
tions and MD calculations is that in MD calculations,
usually the periodic boundary condition is applied.
Thus, we need some way to calculate Coulomb forces

from image particles. The direct Ewald method is rather
well suited for the implementation in hardware. In ,
WINE- was developed. It is a pipeline to calculate
the wave-space part of the direct Ewald method. The
real-space part can be handled by GRAPE-A or MD-
GRAPE hardware.

In , a group led by Toshikazu Ebisuzaki in
RIKEN started to develop MDM [], a massively par-
allel machine for large-scale MD simulations. Their
primary goal was the simulation of protein molecules.

MDM consists of two special-purpose hardware,
massively parallel version ofMD-GRAPE (MDGRAPE-
) and that ofWINE (WINE-).TheMDGRAPE- part
consisted of , custom chips with four pipelines, for
the theoretical peak speed of  Tflops. The WINE-
part consists of , custompipeline chips, for the peak
speed of  Tflops.

The MDM effort was followed up by the devel-
opment of MDGRAPE- [], led by Makoto Taiji
of RIKEN. MDGEAPE- achieved the peak speed of
 Pflops in .

Related Projects
The GRAPE project is not the first project to imple-
ment the calculation of pairwise force in particle-based
simulations in hardware.

Delft Molecular Dynamics Processor [] (DMDP)
is one of the earliest efforts. It was completed in early
s. For the calculation of interaction between par-
ticles, it used the hardwired pipeline similar to that
of GRAPE systems. However, in DMDP, time integra-
tion of orbits and other calculations are all done in the
hardwired processors. Thus, in addition to the force
calculation pipeline, DMDP had pipelines to update
position, select particles for interaction calculation, and
calculate diagnostics such as correlation function. FAS-
TRUN [] has the architecture similar to that of DMDP,
but designed to handle more complex systems such as
protein molecule.

To some extent, this difference in the designs of
GRAPE computers and that of machines for molecu-
lar dynamics comes from the difference in the nature of
the problem. In astronomy, the wide ranges in the num-
ber density of particles and timescale make it necessary
to use adaptive schemes such as treecode and indi-
vidual timesteps. With these schemes, the calculation
cost per timestep per particle is generally higher than
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that of fastest scheme optimized to shared timestep and
near-uniform distribution of particles. The approach in
which only the force calculation is done in hardware is
more advantageous for astronomical N-body problems
than for molecular dynamics.

Anton [] is the latest effort to speed up the molec-
ular dynamics simulation of proteins by specialized
hardware. It is essentially the revival of the basic idea
of DMDP, except that pipeline processors for opera-
tions other than force calculation were replaced by pro-
grammable parallel processors. It achieved the speed
almost two orders of magnitude faster than that of
general-purpose parallel computers for the simulation
of protein molecules in water.

LSI Economics and GRAPE
GRAPE has achieved the cost performance much bet-
ter than that of general-purpose computers. One reason
for this success is simply that with GRAPE architec-
ture, one canuse practically all transistors for arithmetic
units, without being limited by the memory wall prob-
lem. Another reason is the fact that arithmetic units can
be optimized to their specific uses in the pipeline. For
example, in the case of GRAPE-, the subtraction of
two positions is performed in -bit fixed point format,
not in the floating-point format. Final accumulation is
also done in fixed point. In addition, most of arith-
metic operations to calculate the pairwise interactions
are done in single precision. These optimizations made
it possible to pack more than  arithmetic units into
a single chip with less than M transistors. The first
microprocessor with fully pipelined double-precision
floating-point unit, Intel , required .M transis-
tors for two (actually one and half) operations.Thus, the
number of transistors per arithmetic unit of GRAPE is
smaller by more than a factor of . When compared
with more recent processors, the difference becomes
even larger. The Fermi processor from NVIDIA inte-
grates  arithmetic unit (adder and multiplier) with
G transistors. Thus, it is five times less efficient than
Intel , and nearly  times less efficient than
GRAPE-.The difference in the power efficiency is even
larger, because the requirement for the memory band-
width is lower for GRAPE computers. As a result, per-
formance per watt of GRAPE- chip, fabricatedwith the
 nm design rule, is comparable to that of GPGPU
chips fabricated with  nm design rule.Thus, as silicon

technology advances, the relative advantage of special-
purpose architecture such as GRAPE becomes bigger.

However, there is another economical factor. As the
silicon semiconductor technology advances, the initial
cost to design and fabricate custom chip increases. In
, the initial cost for a custom chip was around K
USD. By , it has become higher than M USD. By
, the initial cost of a  nmchip is around MUSD.
Roughly speaking, initial cost has been increasing as
n., where n is the number of transistors one can fit into
a chip.

The total budget for GRAPE- and GRAPE-
projects is  and M USD, respectively. Thus, a simi-
lar budget had become insufficient by early s. The
whole point of special-purpose computer is to be able to
outperform “expensive” supercomputers, with the price
of –M USD. Even if a special-purpose computer
is –, times faster, it is not practical to spend the
cost of a supercomputer for a special-purpose computer
which can solve only a narrow range of problems.

There are several possible solutions. One is to reduce
the initial cost by using FPGA (Field-Programmable
Gate Array) chips. An FPGA chip consists of a num-
ber of “programmable” logic blocks (LBs) and also
“programmable” interconnections. A LB is essentially
a small lookup table with multiple inputs, augmented
with one flip-flop and sometimes full-adder or more
additional circuits. The lookup table can express any
combinatorial logic for input data, and with flip-flop, it
can be part of a sequential logic. Interconnection net-
work is used to make larger and more complex logic,
by connecting LBs. The design of recent FPGA chips
has become much more complex, with large functional
units like memory blocks and multiplier (typically
 ×  bit) blocks.

Because of the need for the programmability, the
size of the circuit that can be fit into an FPGA chip is
much smaller than that for a custom LSI, and the speed
of the circuit is also slower. Roughly speaking, the price
of an FPGAchip per logic gate is around  times higher
than that of a custom chip with the same design rule.
If the relative advantage of a specialized architecture is
much larger than this factor of , its implementation
based on FPGA chips can outperform general-purpose
computers.

In reality, there are quite a number of projects to
use FPGAs for scientific computing, but most of them
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turned out to be not competitive with general-purpose
computers. The primary reason for this result is the
relative cost of FPGA discussed above. Since the logic
gate of FPGAs is much more expensive than that of
general-purpose computers, the design of a special-
purpose computer with FPGA must be very efficient
in gate usage. FPGA-based systems which use standard
double- or single-precision arithmetic are generally not
competitive with general-purpose computers. In order
to be competitive, it is necessary to use much shorter
word length. GRAPE architecture with reduced accu-
racy is thus an ideal target for FPGA-based approach.
Several successful approaches have been reported [, ].

GRAPE-DR
Another solution for the problem of the high initial cost
is to widen the application range by some way to jus-
tify the high cost. GRAPE-DR project [] followed that
approach.

With GRAPE-DR, the hardwired pipeline processor
of previous GRAPE systems was replaced by a collec-
tion of simple SIMD programmable processors. The
internal network and external memory interface was
designed so that it could emulate GRAPE processor
efficiently and could be used for several other impor-
tant applications, including the multiplication of dense
matrices.

GRAPE-DR is an acronym of “Greatly Reduced
Array of Processor Elements with Data Reduction.”The
last part, “Data Reduction,” means that it has an on-chip
tree networkwhich cando various reduction operations
such as summation, max/min, and logical and/or.

TheGRAPE-DR project was started in FY , and
finished in FY . The GRAPE-DR processor chip
consists of  simple processors, which can operate at
the clock cycle of MHz, for the  Gflops of single
precision peak performance ( Gflops double preci-
sion). It was fabricated with TSMC nm process and
the size is around mm. The peak power consump-
tion is around W. The GRAPE-DR processor board
houses four GRAPE-DR chips, each with its own local
DRAM chips. It communicates with the host computer
through Gen -lane PCI-Express interface.

To some extent, the difference between GRAPE and
GRAPE-DR is similar to that between traditional GPUs
and GPGPUs. In both cases, hardwired pipelines are
replaced by simple programmable processors.Themain

differences between GRAPE-DR and GPGPUs are (a)
processor element of GRAPE-DR is much simpler, (b)
external memory bandwidth of GRAPE-DR is much
smaller, and (c) GRAPE-DR is designed to achieve
near-peak performance in real scientific applications
such as gravitational N-body simulation and molecular
dynamics simulation, and also dense matrix multiplica-
tion. These differences made GRAPE-DR significantly
more efficient in both transistor usage and power usage.
GRAPE-DR chip, which was fabricated with nm
design rule and has mm area, integrates  pro-
cessing elements. The NVIDIA Fermi chip, which is
fabricated with  nm design rule and has > mm

area, integrates the same  processing elements. Thus,
there is about a factor of  difference in the transistor
efficiency. This difference resulted in more than a factor
of  difference in the power efficiency.

Whether or not the approach like GRAPE-DR will
be competitive with other approaches, in particular
GPGPUs, is at the time of writing rather unclear. The
reason is simply that the advantage of a factor of 
is not quite enough, because of the difference in other
factors, among which the most important is the devel-
opment cycle. New GPUs are announced roughly every
year, while it is somewhat unlikely that one develops
the special-purpose computers every year, even if there
is sufficient budget. In  years, general-purpose com-
puters become ten times faster, and GPGPUs will also
become faster by a similar factor. Thus, a factor of 
advantage will disappear while the machine is being
developed. On the other hand, the transistor efficiency
of general-purpose computers, and that of GPUs, has
been decreasing for the last  years and probably will
continue to do so for the next  years or so. GRAPE-
DR can retain its efficiency when it is implemented with
more advanced semiconductor technology, since, as in
the case ofGRAPE, one canuse the increased number of
transistors to increase the number of processor element.
Thus, it might remain competitive.

Future Directions
Future of Special-Purpose Processors
In hindsight, s was a very good period for the
development of special-purpose architecture such as
GRAPE, because of two reasons. First, the semicon-
ductor technology reached the point where many
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floating-point arithmetic units can be integrated into a
chip. Second, the initial design cost of a chip was still
within the reach of fairly small research projects in basic
science.

By now, semiconductor technology reached to the
point that one could integrate thousands of arithmetic
units into a chip. On the other hand, the initial design
cost of a chip has become too high.

The use of FPGAs and the GRAPE-DR approach
are two examples of the way to tackle the problem
of increasing initial cost. However, unless one can
keep increasing the budget, GRAPE-DR approach is
not viable, simply because it still means exponential
increase in the initial, and therefore total, cost of the
project.

On the other hand, such increase in the budget
might not be impossible, since the field of computa-
tional science as a whole is becoming more and more
important. Even though a supercomputer is expen-
sive, it is still much less expensive compared to, for
example, particle accelerators or space telescopes. Of
course, computer simulation cannot replace the real
experiments of observations, but computer simulations
have become essential in many fields of science and
technology.

In addition, there are several technologies available
in between FPGAs and custom chips. One is what is
called “structured ASIC.” It requires customization of
typically just one metal layer, resulting in large reduc-
tion in the initial cost. The number of gates one can fit
into the given silicon area falls between those of FPGAs
and custom chips. Another possibility is just to use the
technology one or two generations older.

Application Area of Special-Purpose
Computers
Primary application area of GRAPE and GRAPE-DR
has been the particle-based simulation, in particu-
lar that requires the evaluation of long-range interac-
tion. It is suited to special-purpose computers because
they are compute-intensive. In other words, the nec-
essary bandwidth to the external memory is rela-
tively small. Grid-based simulations based on schemes
like finite-difference or finite-element methods are
less compute-intensive and thus not suited to special-
purpose computers.

However, the efficiency of large-scale parallel com-
puters based on general-purpose microprocessors for
these grid-based simulation has been decreasing rather
quickly. There are two reasons for this decrease. One
is the lack of the memory bandwidth. Currently, the
memory bandwidth of microprocessors normalized by
the calculation speed is around . bytes/flops, which is
not enough formost of grid-based simulations. Even so,
this ratio will become smaller and smaller in the future.
The other reason is the latency of the communication
between processors.

One possible solution for these two problems is to
integrate the main memory, processor cores, and com-
munication interface into a single chip.This integration
gives practically unlimited bandwidth to the memory,
and the communication latency is reduced by one or
two orders of magnitude.

Obvious disadvantage of this approach is that the
total amount of memory would be severely limited.
However, inmany application of grid-based calculation,
very long time integrations of relatively small systems
are necessary. Many of such applications requires mem-
ory much less than one TB, which can be achieved by
using several thousand custom processors each with
around GB of embedded DRAM.
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Discussion

Parallel Graph Algorithms
Relationships in real-world situations can often be
represented as graphs. Efficient parallel processing of
graph problems has been a focus of many algorithm
researchers. A rich collection of parallel graph algo-
rithms have been developed for various problems on
different models. Themajority of them are based on the
parallel random access machine (PRAM). PRAM is a
shared-memory model where data stored in the global
memory can be accessed by any processor. PRAM is

synchronous, and in each unit of time, each processor
either executes one instruction or stays idle.

Techniques
Graph problems are diverse. Given a graph G = (V ,E),
where ∣V ∣ = n and ∣E∣ = m, several techniques are
frequently used in designing parallel graph algorithms.
The basic techniques are described as follows (Detailed
descriptions can be found in []).

Prefix Sum

Given a sequence of n elements s, s,⋯, sn with a binary
associative operator denoted by⊕, the prefix sums of the
sequence are the partial sums defined by

Si = s ⊕ s ⊕⋯⊕ si,  ≤ i ≤ n

Using the balanced tree technique, the prefix sums
of n elements can be computed in O(logn) time with
O(n/ logn) processors. Fast prefix sum is of fundamen-
tal importance to the design of parallel graph algorithms
as it is frequently used in algorithms for more complex
problems.

Pointer Jumping

Pointer jumping, also sometimes called path doubling,
is useful for handling computation on rooted forests.
For a rooted forest, there is a parent function P defined
on the set of vertices. P(r) is set to r when r does not
have a parent. When finding the root of each tree, the
pointer jumping technique updates the parent of each
node by that node’s grandparent, that is, set P(r) =
P(P(r)). The algorithm runs in O(logn) time with
O(n) processors. Pointer jumping can also be used to
compute the distance between each node to its root.
Pointer jumping is used in several connectivity and tree
algorithms (e.g., see [, ]).

Divide and Conquer

Thedivide-and-conquer strategy is recognized as a fun-
damental technique in algorithm design (not limited to
parallel graph algorithms). The frequently used quick-
sort algorithm is based on divide and conquer. The
strategy partitions the input into partitions of roughly
equal size and recursively works on each partition con-
currently. There is usually a final step to combine the
solutions of the subproblems into a solution for the
original problem.
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Pipelining

Like divide-and-conquer, the use of pipelining is not
limited to parallel graph algorithmdesign. It is of critical
importance in computer hardware and software design.
Pipelining breaks up a task into a sequence of smaller
tasks (subtasks). Once a subtasks is complete andmoves
to the next stage, the ones following it can be pro-
cessed in parallel. Insertion and deletion with – trees
demonstrate the pipelining technique [].

Deterministic Coin Tossing

Deterministic coin tossing was proposed by Cole and
Vishkin [] to break the symmetry of a directed cycle
without using randomization. Consider the problem of
finding a three-coloring of graph G. A k-coloring of G
is a mapping c : V → {, , ..., k− } such that c(i) ≠ c(j)
if < i, j >∈ E. Initially, the cycle has a trivial color-
ing with n = ∣V ∣ colors. The apparent symmetry in
the problem (i.e., the vertices cannot be easily distin-
guished) presents the major difficulty to reducing the
number of colors needed for the coloring. Deterministic
coin tossing uses the binary representation of an integer
i = ⋯ik⋯ii to break the symmetry. For example, sup-
pose t is the least significant bit position in which c(i)
and c(S(i)) differ (S(i) is the successor of i in the cycle),
then the new coloring for i can be set as t + c(i)t.

Accelerating Cascades

Accelerating cascades was presented together with
deterministic coin tossing in [] for the design of faster
algorithms for list ranking and other problems. This
technique combines two algorithms, one optimal and
the other super fast, for the same problem to get a
optimal and very fast algorithm. The general strategy
is to start with the optimal algorithm to reduce the
problem size and then apply the fast but nonoptimal
algorithm.

Other Building Blocks for Parallel Graph Algorithms

List ranking determines the position, or rank, of the
list items in a linked list. A generalized list-ranking
problem is defined as follows. Let X be an array of
n elements stored in arbitrary order. For each ele-
ment i, let X(i).value be its value and X(i).next
be the index of its successor. Then, for any binary
associative operator ⊕, compute X(i).prefix such that
X(head).prefix = X(head).value and X(i).prefix =

X(i).value ⊕ X(predecessor).prefix, where head is the
first element of the list, i is not equal to head, and prede-
cessor is the node preceding i in the list. Pointer jump-
ing can be applied to solve the list-ranking problem.
An optimal list-ranking algorithm is given in [].

The Euler tour technique is another of the basic
building blocks for designing parallel algorithms,
especially for tree computations. For example, pos-
torder/preorder numbering, computing the vertex level,
computing the number of descendants, etc., can be
done work-time optimally on EREW PRAM by apply-
ing the Euler tour technique. As suggested by its name,
the power of the Euler tour technique comes from
defining a Eulerian circuit on the tree. In Tarjan and
Vishkin’s biconnected components paper [] that orig-
inally introduced the Euler tour technique, the input to
their algorithm is an edge list with the cross-pointers
between twin edges < u, v > and < v,u > established.
With these cross-pointers it is easy to derive an Eule-
rian circuit. The Eulerian circuit can be treated as a
linked list, and by assigning different values to each
edge in the list, list ranking can be used for many tree
computation. For example, when rooting a tree, the
value  is associated with each edge. After list rank-
ing, simply inspecting the list rank for < u, v > and
< v,u > can set the correct parent relationship for
u and v.

Tree contraction systematically shrinks a tree into
a single vertex by successively shrinking parts of the
tree. It can be used to solve the expression evaluation
problem. It is also used in other algorithm, for example,
computing the biconnected components [].

Classical Algorithms
The use of the basic techniques are demonstrated in
several classical graph algorithms for spanning tree,
minimum spanning tree, and biconnected components.

Various deterministic and randomized techniques
have been given for solving the spanning tree prob-
lem (and the closely related connected components
problem) on PRAM models. A brief survey of these
algorithms can be found in []. The Shiloach–Vishkin
algorithm (SV) algorithm is representative of several
connectivity algorithms in that it adapts the widely
used graft-and-shortcut approach. Through carefully
designed grafting schemes, the algorithm achieves
complexities of O(logn) time and O((m + n) logn)
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work under the arbitrary CRCW PRAM model. The
algorithm takes an edge list as input and starts with
n isolated vertices and m processors. Each processor
Pi ( ≤ i ≤ m) inspects edge ei =< vi , vi > and
tries to graft vertex vi to vi under the constraint that
vi < vi . Grafting creates k ≥  connected compo-
nents in the graph, and each of the k components is then
shortcut to to a single super-vertex. Grafting and short-
cutting are iteratively applied to the reduced graphsG′ =
(V ′,E′) (where V ′ is the set of super-vertices and E′ is
the set of edges among super-vertices) until only one
super-vertex is left.

Minimum spanning tree (MST) is one of the most
studied combinatorial problems with practical appli-
cations. While several theoretic results are known for
solving MST in parallel, many are considered imprac-
tical because they are too complicated and have large
constant factors hidden in the asymptotic complexity.
See for a survey of MST algorithms. Many parallel algo-
rithms are based on the Borůvka algorithm. Borůvka’s
algorithm is comprised of Borůvka iterations that are
used inmany parallelMST algorithms.ABorůvka itera-
tion is characterized by three steps: find-min, connected-
components, and compact-graph. In find-min, for each
vertex v the incident edge with the smallest weight is
labeled to be in the MST; connect-components identifies
connected components of the induced graph with the
labeled MST edges; compact-graph compacts each con-
nected component into a single supervertex, removes
self-loops and multiple edges, and relabels the vertices
for consistency.

A connected graph is said to be separable if there
exists a vertex v such that removal of v results in two
or more connected components of the graph. Given a
connected, undirected graph G, the biconnected com-
ponents problem finds the maximal-induced subgraphs
of G that are not separable. Tarjan [] presents an
optimal O(n +m) algorithm that finds the biconnected
components of a graph based on depth-first search
(DFS). Eckstein [] gave the first parallel algorithm
that takes O(d log n) time with O((n +m)/d) proces-
sors on CREW PRAM, where d is the diameter of the
graph. Tarjan and Vishkin [] present an O(logn) time
algorithmonCRCWPRAMthat usesO(n +m)proces-
sors. This algorithm utilizes many of the fundamental
primitives including prefix sum, list ranking, sorting,
connectivity, spanning tree, and tree computations.

Communication Efficient Graph Algorithms
Communication-efficient parallel algorithms were pro-
posed to address the “bottleneck of processor-to-
processor communication” (e.g., see []). Goodrich
[] presented a communication-efficient sorting algo-
rithm on weak-CREW BSP that runs in O(logn/
log(h + )) communication rounds (with at most h
data transported by each processor in each round)
and O((n logn)/p) local computation time, for h =
Θ(n/p). Goodrich’s sorting algorithm is frequently
used in communication-efficient graph algorithms.
Dehne et al. designed an efficient list-ranking algo-
rithm for coarse-grained multicomputers (CGM) and
BSP that takes O(log p) communication rounds with
O(n/p) local computation. In the same study, a series
of communication-efficient graph algorithms such as
connected components, ear decomposition, and bicon-
nected components are presented using the list-ranking
algorithm as a building block. On the BSPmodel, Adler
et al. [] presented a communication-optimalMST algo-
rithm. The list-ranking algorithm and the MST algo-
rithm take similar approaches to reduce the number
of communication rounds. They both start by simu-
lating several (e.g., O(log p) or O(log log p) ) steps of
the PRAM algorithms on the target model to reduce
the input size so that it fits in the memory of a single
node. A sequential algorithm is then invoked to pro-
cess the reduced input of size O(n/p), and finally the
result is broadcast to all processors for computing the
final solution.

Practical Implementation
Many real-world graphs are large and sparse. These
instances are especially hard to process due to the
characteristics of the workload. Although fast theo-
retic algorithms exist in the literature, large and sparse
graph problems are still challenging to solve in practice.
There remains a significant gap between algorithmic
model and architecture. The mismatch between mem-
ory access pattern and cache organization is the most
outstanding barrier to high-performance graph analysis
on current systems.

GraphWorkload
Comparedwith traditional scientific applications, graph
analysis is more memory intensive. Graph algorithms
put tremendous pressure on the memory subsystem
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to deliver data to the processor. Table  shows the
percentages of memory instructions executed in the
SPLASH benchmarks [] and several graph algo-
rithms. SPLASH represents typical scientific appli-
cations for shared-memory environments. On IBM
Power, on average, about % more memory instruc-
tions are executed in the graph algorithms. For bicon-
nected components, the number is over %.

For memory-intensive applications, the locality
behavior is especially crucial to the performance.
Unfortunately, most graph algorithms exhibit erratic
memory access patterns that result in poor perfor-
mance, as shown in Table . Table  is the cycles per
instruction (CPI) construction [] for three graph algo-
rithms on IBM Power. The algorithms studied are
betweenness centrality (BC), biconnected components
(BiCC), and minimum spanning tree (MST). CPI con-
struction attributes in percentage cycles to categories
such as completion, instruction cache miss penalty, and
stall. In Table , for all algorithms, significant amount
of cycles are spent on pipeline stalls. About –% of
the cycles are wasted on the load-store unit stalls, and
more than % of the cycles are spent on stalls due to
data cachemisses. Table  clearly shows that graph algo-
rithms perform poorly on current cache-based archi-
tectures, and the culprit is the memory access pattern.
The floating-point stalls (FPU STL) column is revealing
about one other prominent feature of graph algorithms.

FPU STL is the percentage of cycles wasted on floating-
point unit stalls. In Table , BiCC andMST do not incur
any FPU stalls. Unfortunately, this does not mean that
the workload fully utilizes the FPU. Instead, as there
are no floating-point operations in these algorithms, the
elaborately designed floating point units lay idle. CPI
construction shows that graph workloads spent most of
the time waiting for data to be delivered, and there are
not many other operations to hide the long latency to
main memory. In fact, of the three algorithms, only BC
incurs execution of a few floating-point instructions.

Implementation on Shared-Memory Machines
It is relatively straightforward tomap PRAMalgorithms
on to shared-memory machines such as symmetric
multiprocessors (SMPs), multi-core and many core sys-
tems. While these systems are of shared-memory archi-
tecture, they are by no means the PRAM used in
theoretical work – synchronization cannot be taken
for granted, memory bandwidth is limited, and per-
formance requires a high degree of locality. Practical
design choices need to be made to achieve high perfor-
mance on such systems.

Adapting to the Available Parallelism

Nick’s Class (NC) is defined as the set of all prob-
lems that run in polylog-time with a polynomial num-
ber of processors. Whether a problem P is in NC is a
fundamental question. The PRAM model assumes an

Graph Algorithms. Table  Percentages of load-store instructions for the SPLASH benchmark and the graph problems.

ST, MST, BiCC, and CC stand for spanning tree, minimum spanning tree, biconnected components, and connected

components, respectively

SPLASH Graph problems

Benchmark Barnes Cholesky Ocean Raytrace ST MST BiCC CC

Load .% .% .% .% .% .% .% .%

Store .% .% .% .% % .% .% .%

Load+store .% .% .% .% .% .% .% .%

Graph Algorithms. Table  CPI construction for three graph algorithms. Base cycles are for “useful”work. The “Stall”

columns show the percentages of cycles on pipeline stalls followed by stalls due to load-store unit, data cache miss,

floating-point unit, fix point unit, respectively

Algorithm Base GCT Stall LSU STL DCache STL FPU STL FXU STL

BC . . . . . . .

BiCC . . . . . . .

MST . . . . . . .
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unlimited number of processors and explores the max-
imum inherent parallelism of P. Acknowledging the
practical restriction of limited parallelism provided by
real computers, Kruskal et al. [] argued that non-
polylogarithmic time algorithms (e.g., sublinear time
algorithms) could be more suitable than polylog algo-
rithms for implementation with practically large input
size. EP (short for efficient parallel) algorithms, by the
definition in [], is the class of algorithms that achieve
a polynomial reduction in running time with a polylog-
arithmic inefficiency. With EP algorithms, the design
focus is shifted from reducing the complexity factors
to solving problems of realistic sizes efficiently with a
limited number of processors.

Reducing Synchronization

When adapting a PRAM algorithm to shared-memory
machines, a thorough understanding of the algorithm
usually suffices to eliminate unnecessary synchroniza-
tion such as barriers. Reducing synchronization thus
is an implementation issue. Asynchronous algorithm
design, however, is more aggressive in reducing syn-
chronization. It sometimes allows nondeterministic
intermediate results but deterministic solutions.

In a parallel environment, to ensure correct final
results oftentimes a total ordering on all the events is
not necessary, and a partial ordering in general suffices.
Relaxed constraints on ordering reduce the number of
synchronization primitives in the algorithm.

Bader and Cong presented a largely asynchronous
spanning tree algorithm in [] that employs a constant
number of barriers. The spanning tree algorithm for
shared-memory machines has two main steps: () stub
spanning tree and () work-stealing graph traversal. In
the first step, one processor generates a stub spanning
tree, that is, a small portion of the spanning tree by ran-
domly walking the graph for O(p) steps.The vertices of
the stub spanning tree are evenly distributed into each
processor’s queue, and each processor in the next step
will traverse from the first element in its queue. After the
traversals in step , the spanning subtrees are connected
to each other by this stub spanning tree. In the graph
traversal step, each processor traverses the graph (by
coloring the nodes) similar to the sequential algorithm
in such a way that each processor finds a subgraph of the
final spanning tree.Work-stealing is used to balance the
load for graph traversal.

One problem related to synchronization is that there
could be portions of the graph traversed by multiple
processors and be in different subgraphs of the spanning
tree. The immediate remedy is to synchronize using
either locks or barriers. With locks, coloring the ver-
tex becomes a critical section, and a processor can only
enter the critical section when it gets the lock. Although
the nondeterministic behavior is now prevented, it does
not perform well on large graphs due to an excessive
number of locking and unlocking operations.

In the proposed algorithm, no barriers are intro-
duced in graph traversal. The algorithm runs correctly
without, barriers even when two or more processors
color the same vertex. In this situation, each processor
will color the vertex and set as its parent the vertex it
has just colored. Only one processor succeeds at setting
the vertex’s parent to a final value. For example, using
Fig. , processor P colored vertex u, and processor P
colored vertex v, and at a certain time they both find
w unvisited and are now in a race to color vertex w.
It makes no difference which processor colored w last
because w’s parent will be set to either u or v (and it
is legal to set w’s parent to either of them; this will not
change the validity of the spanning tree, only its shape).
Further, this event does not create cycles in the spanning
tree under sequential consistencymodel. BothP andP
record that w is connected to each processor’s own tree.
When each of w’s unvisited children are visited by var-
ious processors, its parent will be set to w, independent
of w’s parent.

w

v

P2P1
u

Graph Algorithms. Fig.  Two processors P and P see

vertex w as unvisited, so each is in a race to colorw and set

w’s parent pointer. The shaded area represents vertices

colored by P, the black area represents those marked by

P, and the white area contains unvisited vertices
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Choosing Between Barriers and Locks

Locks and barriers are two major types of synchroniza-
tion primitives. In practice, the choice of using locks or
barriers may not be very clear. Take the “graft and short-
cut” spanning tree algorithm for example. For graphG =
(V ,E) represented as an edge list, the algorithm starts
with n isolated vertices and m processors. For edge ei =
⟨u, v⟩, processor Pi ( ≤ i ≤ m) inspects u and v, and if
v < u, it grafts vertex u to v and labels ei to be a spanning
tree edge.The problem here is that for a certain vertex v,
its multiple incident edges could cause grafting v to dif-
ferent neighbors, and the resulting treemaynot be valid.
To ensure that v is only grafted to one of the neighbors,
locks can be used. Associated with each vertex v is a
flag variable protected by a lock that shows whether v
has been grafted. In order to graft v a processor has to
obtain the lock and check the flag, thus race conditions
are prevented. A different solution uses barriers [] in a
two-phase election. No checking is needed when a pro-
cessor grafts a vertex, but after all processors are done
(ensured with barriers), a check is performed to deter-
mine which one succeeds and the corresponding edge
is labeled as a tree edge. Whether to use a barrier or
lock is dependent on the algorithm design as well as
the barrier and lock implementations. Locking typically
introduces large memory overhead. When contention
among processors is intense, the performance degrades
significantly.

Cache Friendly Design

The increasing speed difference between processor and
main memory makes cache and memory access pat-
terns important factors for performance. The fact that
modern processors have multiple levels of memory
hierarchy is generally not reflected by most of the par-
allel models. As a result, few parallel algorithm studies
have touched on the cache performance issue.The SMP
model proposed by Helman and JáJá is the first effort to
model the impact of memory access and cache over an
algorithm’s performance [].Themodel forces an algo-
rithm designer to reduce the number of noncontiguous
memory accesses. However, it does not give hints to the
design of cache-friendly parallel algorithms.

Chiang et al. [] presented a PRAM simulation tech-
nique for designing and analyzing efficient external-
memory (sequential) algorithms for graph problems.
This technique simulates the PRAM memory by

keeping a task array of O(N) on disk. For each PRAM
step, the simulation sorts a copy of the contents of the
PRAM memory based on the indices of the processors
for which they will be operands, and then scans this
copy and performs the computation for each processor
being simulated. The following can be easily shown:

Theorem  Let A be a PRAM algorithm that uses
N processors and O(N) space and runs in time T. Then
A can be simulated in O(T ⋅sort(N)) I/Os [].

Here, sort(N) represents the optimal number of
I/Os needed to sortN items striped across the disks, and
scan(N) represents the number of I/Os needed to read
N items striped across the disks. Specifically,

sort(x) =
x
DB

log M
B

x
B

scan(x) =
x
DB

where M = # of items that can fit into main memory,
B = # of items per disk block, and D = # of disks in the
system.

A similar technique can be applied to the cache-
friendly parallel implementation of PRAM algorithms
for large inputs. I/O efficient algorithms exhibit good
spatial locality behavior that is critical to good cache
performance. Instead of having one processor simulate
the PRAM step, p ≪ n processors may perform the
simulation concurrently. The simulated PRAM imple-
mentation is expected to incur few cache block trans-
fers between different levels. For small input sizes, it
would not be worthwhile to apply this technique as
most of the data structures can fit into cache. As the
input size increases, the cost to access memory becomes
more significant, and applying the technique becomes
beneficial.

Algorithmic Optimizations

For most problems, parallel algorithms are inherently
more complicated than the sequential counterparts,
incurring large overheads with many algorithm steps.
Instead of lowering the asymptotic complexities, in
many cases, reducing the constant factors improves per-
formance. Cong and Bader demonstrates the benefit of
such optimizations with their biconnected components
algorithm [].

The algorithm eliminates edges that are not essen-
tial in computing the biconnected components. For any
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input graph, edges are first eliminated before the com-
putation of biconnected components is done so that at
mostmin(m, n) edges are considered. Although apply-
ing the filtering algorithm does not improve the asymp-
totic complexity, in practice, the performance of the
biconnected components algorithm can be significantly
improved.

An edge e is considered asnonessential for biconnec-
tivity if removing e does not change the biconnectivity
of the component to which it belongs. Filtering out
nonessential edges when computing biconnected com-
ponents (these edges are put back in later) yields perfor-
mance advantages. The Tarjan–Vishkin algorithm (TV)
is all about finding the equivalence relation R′∗c [, ].
Of the three conditions for R′c, it is trivial to check for
condition  which is for a tree edge and a non-tree edge.
Conditions  and , however, are for two tree edges,
and checking involves the computation of high and low
values. To compute high and low, every non-tree edge
of the graph is inspected, which is very time consuming
when the graph is not extremely sparse.The fewer edges
the graph has, the faster the Low-high step. Also, when
building the auxiliary graph, the fewer edges in the orig-
inal graphmeans the smaller the auxiliary graph and the
faster the Label-edge and Connected-components steps.

Combining the filtering algorithm for eliminating
nonessential edges and TV , the new biconnected com-
ponents algorithm runs in max(O(d),O(logn)) time
with O(n) processors on CRCW PRAM, where d is the
diameter of the graph. Asymptotically, the new algo-
rithm is not faster than TV . In practice, however, paral-
lel speedups upto  with  processors are achieved on
SUN Enterprise  using the filtering technique.

Implementation onMultithreaded
Architectures
Graph algorithms have been observed to run well on
multi-threaded architectures such as the CRAY MTA-
[] and its successor, the Cray XMT. The Cray MTA
[] is a flat, shared-memory multiprocessor system.
All memory is accessible and equidistant from all pro-
cessors. There is no local memory and no data caches.
Parallelism, and not caches, is used to tolerate memory
and synchronization latencies.

AnMTAprocessor consists of  hardware streams
and one instruction pipeline. Each stream can have up
to  outstanding memory operations. Threads from the

same or different programs are mapped to the streams
by the runtime system. A processor switches among its
streams every cycle, executing instructions from non-
blocked streams in a fair manner. As long as one stream
has a ready instruction, the processor remains fully
utilized.

Bader et al. compared the performance of list-
ranking algorithm on SMPs andMTA []. For list rank-
ing, they used two classes of list to test the algorithms:
Ordered and Random. Ordered places each element in
the array according to its rank; thus, node i is the ith

position of the array and its successor is the node at
position (i + ). Random places successive elements
randomly in the array. Since the MTA maps contigu-
ous logical addresses to random physical addresses, the
layout in physical memory for both classes is similar,
the performance on the MTA is independent of order.
This is in sharp contrast to SMP machines which rank
Ordered lists much faster than Random lists. On the
SMP, there is a factor of – difference in performance
between the best case (an ordered list) and the worst
case (a randomly-ordered list). On the ordered lists, the
MTA is an order of magnitude faster than the SMP,
while on the random list, the MTA is approximately 
times faster.

Implementation on DistributedMemory
Machines
As data partitioning and explicit communication are
required, implementing highly irregular algorithms is
hard on distributed-memory machines. As a result,
although many fast theoretic algorithms exist in the
literature, few experimental results are known. As
for performance, the adverse impact of irregular
accesses is magnified in the distributed-memory envi-
ronment when memory requests served by remote
nodes experience long network latency. Two studies
have demonstrated reasonable parallel performance
with distributed-memory machines [, ]. Both stud-
ies implement parallel breadth-first search (BFS), one
on BlueGene/L [] and the other on CELL/BE [].The
CELL architecture resembles a distributed-memory set-
ting as explicit data transfer is necessary between the
local storage on an SPE and the main memory. Neither
study establishes a strong evidence for fast execution of
parallel graph algorithms on distributed-memory sys-
tems. The individual CPU in BlueGene and the PPE
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of CELL are weak compared with other Power proces-
sors or the SPE. It is hard to establish a meaningful
baseline to compare the parallel performance against.
Indeed, in both studies, either only wall clock times or
speedups compared with other reference architectures
are reported.

Partitioned global address space (PGAS) languages
such as UPC and X [, ] have been proposed
recently that present a shared-memory abstraction to
the programmer for distributed-memory machines.
They allow the programmer to control the data lay-
out and work assignment for the processors. Mapping
shared-memory graph algorithms onto distributed-
memory machines is straightforward with PGAS
languages.

Performance wise, straightforward PGAS imple-
mentation for irregular graph algorithms does not usu-
ally achieve high performance due to the aggregate
startup cost of many small messages. Cong, Almasi,
and Saraswat presented their study in optimizing the
UPC implementation of graph algorithm in []. They
improve both the communication efficiency and the
cache performance of the algorithm through improving
the locality behavior.

Some Experimental Results
Greiner [] implemented several connected compo-
nents algorithms using NESL on the Cray Y-MP/C
and TMC CM-. Hsu, Ramachandran, and Dean []
also implemented several parallel algorithms for con-
nected components. They report that their parallel code
runs  times slower on a MasPar MP- than Greiner’s
results on the Cray, but Hsu et al.’s implementation
uses one-fourth of the total memory used by Greiner’s
approach. Krishnamurthy et al. [] implemented a
connected components algorithm (based on Shiloach-
Vishkin []) for distributed memory machines. Their
code achieved a speedup of  using a -processor
TMC CM- on graphs with underlying D and D
regular mesh topologies, but virtually no speedup on
sparse random graphs. Goddard, Kumar, and Prins []
implemented a connected components algorithm for
a mesh-connected SIMD parallel computer, the -
processor MasPar MP-.They achieve a maximum par-
allel speedup of less than two on a random graph
with , vertices and about one-million edges. For a

randomgraph with , vertices and fewer than a half-
million edges, the parallel implementation was slower
than the sequential code.

Chung and Condon [] implemented a parallel
minimum spanning tree (MST) algorithm based on
Borůvka’s algorithm. On a -processor CM-, for geo-
metric graphs with , vertices and average degree
 and graphs with fewer vertices but higher average
degree, their code achieved a parallel speedup of about
, on -processors, over the sequential Borůvka’s algo-
rithm, which was – times slower than their sequential
Kruskal algorithm.

Dehne and Götz [] studied practical parallel algo-
rithms for MST using the BSP model. They imple-
mented a dense Borůvka parallel algorithm, on a
-processor Parsytec CC-, that works well for
sufficiently dense input graphs. Using a fixed-sized
input graph with , vertices and , edges, their
code achieved a maximum speedup of . using  pro-
cessors for a randomdense graph.Their algorithm is not
suitable for sparse graphs.

Woo and Sahni [] presented an experimental
study of computing biconnected components on a
hypercube.Their test cases are graphs that retain  and
% edges of the complete graphs, and they achieved
parallel efficiencies up to . for these dense inputs. The
implementation uses adjacency matrix as input repre-
sentation, and the size of the input graphs is limited to
less than K vertices.

Bader and Cong presented their studies [, , ] of
the spanning tree, minimum spanning tree, and bicon-
nected components algorithms on SMPs.They achieved
reasonable parallel speedups on the large, sparse inputs
compared with the best sequential implementations.
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Graph Analysis Software

�SNAP (Small-World Network Analysis and Partition-
ing) Framework

Graph Partitioning

Bruce Hendrickson
Sandia National Laboratories, Albuquerque, NM, USA

Definition
Graph partitioning is a technique for dividing work
amongst processors to make effective use of a parallel
computer.

Discussion
When considering the data dependencies in a parallel
application, it is very convenient to use concepts from
graph theory. A graph consists of a set of entities called
vertices, and a set of pairs of entities called edges. The
entities of interest in parallel computing are small units
of computation that will be performed on a single pro-
cessor.Theymight be the work performed to update the
state of a single atom in a molecular dynamics simula-
tion, or the work required to compute the contribution
of a single row of a matrix to a matrix-vector multi-
plication. Each such work unit will be a vertex in the
graph which describes the computation. If two units
have a data dependence between them (i.e., the output
of one computation is required as input to the other),
then there will be an edge in the graph that joins the
two corresponding vertices.

For a computation to perform efficiently on a paral-
lelmachine each of the P processors needs to have about
the same amount of work to perform, and the amount
of inter-processor communication must be small.These
two conditions can be viewed in terms of the com-
putational graph. The vertices of the graph (signifying

units of work) need to be divided into P sets with about
the same number of vertices in each. Additionally, the
number of edges that connect vertices in two differ-
ent sets needs to be kept small since these will reflect
the need for interprocessor communication. This prob-
lem is known as graph partitioning and is an important
approach to the parallelization of many applications.

More generally, the vertices of the graph can
have weights associated with them, reflecting different
amounts of computation, and the edges can also have
weights corresponding to different quantities of com-
munication. The graph partitioning problem involves
dividing the set of vertices into P sets with about the
same amount of total vertex weight, while keeping small
the total weight of edges that cross between partitions.
This problem is known to be NP-hard, but a number
of heuristics have been devised that have proven to be
effective for many parallel computing applications. Sev-
eral software tools have been developed for this prob-
lem, and they are an important piece of the parallel
computing ecosystem. Important algorithms and tools
are discussed below.

Parallel Computing Applications of Graph
Partitioning
Graph partitioning is a useful technique for paralleliz-
ing many scientific applications. It is appropriate when
the calculation consists of a series of steps in which the
computational structure and data dependencies do not
vary much. Under such circumstances the expense of
partitioning is rewarded by improved parallel perfor-
mance for many computational steps.

The partitioning model is most applicable for bulk
synchronous parallel applications in which each step
consists of local computation followed by a global data
exchange. Fortunately, many if notmost scientific appli-
cations exhibit this basic structure. Particle simulations
are one such important class of applications. The parti-
cles could be atoms in a material science or biological
simulation, stars in a simulation of galaxy formation, or
units of charge in an electromagnetic application.

But by far the most common uses of graph parti-
tioning involve computational meshes for the solution
of differential equations. Finite volume, finite difference,
and finite element methods all involve the decompo-
sition of a complex geometry into simple shapes that
interact onlywith near neighbors. Various graphs can be
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constructed from the mesh and a partition of the graph
identifies subregions to be assigned to processors. The
numericalmethods associatedwith such approaches are
often very amenable to the graph partitioning approach.
These ideas have been used to solve problems from
many areas of computational science including fluid
flow, structural mechanics, electromagnetics, and many
more.

Graph Partitioning Algorithms for Parallel
Computing
A wide variety of graph partitioning algorithms have
been proposed for parallel computing applications.
Herewe review someof themore important approaches.

Geometric partitioning algorithms are very fast
techniques for partitioning sets of entities that have
an underlying geometry. For parallel computing appli-
cations involving simulations of physical phenomena
in two or three dimensions, the corresponding data
structures typically have geometric coordinates associ-
ated with each entity. Examples include molecules in
atomistic simulations, masses in gravitational models,
or mesh points in a finite element method. Recursive
coordinate partitioning is a method in which the ele-
ments are recursively divided by planar cuts that are
orthogonal to one of the axes [].This has the advantage
of producing geometrically simple subdomains – just
rectangular parallelepipeds. Recursive inertial bisection
also uses planar cuts, but instead of being orthogo-
nal to an axis, they are orthogonal to the direction of
greatest inertia []. Intuitively, this is a direction in
which the point set is elongated, so cutting perpen-
dicular to this direction is likely to produce a smaller
cut. Yet another alternative is to cut with circles or
spheres instead of planes []. Geometric methods tend
to be very fast, but produce low-quality partitions. They
can be improved via local refinement methods like the
approach of Fiduccia-Mattheyses discussed below.

A quite different set of approaches uses eigenvectors
of a matrix associated with the graph.Themost popular
method in this class uses the second-smallest eigenvec-
tor of the Laplacian matrix of the graph []. A justifica-
tion for this approach is beyond the scope of this article,
but spectral methods generally produce partitions of
fairly high quality. In a global sense, they find attrac-
tive regions for cutting a graph, but they are often poor

in the fine details. This can be rectified by the applica-
tion of a local refinement method. The main drawback
of spectral methods is their high computational cost.

Local refinement methods are epitomized by the
approach proposed by Fiduccia and Mattheyses []
(FM).This method works by iteratively moving vertices
between partitions in a manner that maximally reduces
the size of the set of cut edges. Moves are considered
even if they make the cut size larger since they may
enable subsequent moves that lead to even better par-
titions. Thus, this method has a limited ability to escape
from local minima to search for even better solutions.
The key advance underlying FM is the use of clever
data structures that allow all the moves and their con-
sequences to be explored and updated efficiently. The
FM algorithm is quite fast, and consistently improves
results generated by other approaches. But since it only
explores sets of partitions that are not far from the initial
one, it is generally limited to making small changes and
will not find better partitions that are quite different.

The most widely used class of graph partition-
ing techniques are multilevel algorithms as they pro-
vide a good balance between speed and quality. They
were independently invented by several research groups
more or less simultaneously [, , ]. Multilevel algo-
rithms work by applying a local refinement method
like FM at multiple scales. This largely overcomes the
myopia that limits the effectiveness of local methods.
This is accomplished by constructing a series of smaller
and smaller graphs that roughly approximate the origi-
nal graph. Themost common way to do this is to merge
small clusters of vertices within the original graph (e.g.,
combine two vertices sharing an edge into a single
vertex). Once this series of graphs is constructed, the
smallest graph is partitioned using any global method.
Then the partition is refined locally and extended to the
next larger graph. The refinement/extension process is
repeated on larger and larger graphs until a partitioning
of the original graph has been produced.

A number of general purpose global optimization
approaches have been proposed for graph partitioning
including simulated annealing, genetic algorithms, and
tabu search. These methods can produce high-quality
partitions but are usually very expensive and so are
limited to niche applications within parallel computing.

Graph partitioning is often used as a preprocessing
step to set up a parallel computation. The output of a
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graphpartitioner determineswhich objects are assigned
to which processors, and appropriate input files and
data structures are prepared for a parallel run. However,
there are several situations in which the partitioning
must be done in parallel. For a very large problem,
the memory of a serial machine may be insufficient to
hold the graph that needs to be partitioned. Also, for
some classes of applications the structure of the com-
putation changes over time. Examples include adaptive
mesh simulations, or particlemethods inwhich the par-
ticles move significantly. For such problems the work
load must be periodically redistributed across the pro-
cessors, and a parallel partitioning tool is required. Sim-
ple geometric algorithms have the advantage of being
easy to parallelize, but multilevel partitioners have also
been parallelized to provide higher-quality solutions.
Techniques for effectively parallelizing such methods is
an ongoing area of research.

A variety of open source graph partitioning tools
have been developed in serial or parallel including
Chaco, METIS, Jostle, and SCOTCH. Several of these
are discussed in companion articles.

Limitations of Graph Partitioning
Although widely used to enable the parallelization of
scientific applications, graph partitioning is an imper-
fect abstraction. For a parallel application to perform
well, the work must be evenly distributed among pro-
cessors and the cost of interprocessor communication
must be minimized. Graph partition provides only a
crude approximation for achieving these objectives.

In the graph partitioning model, each vertex is
assigned a weight that is supposed to represent the time
required to perform a piece of computation. On mod-
ern processors with complex memory hierarchies it is
very difficult to accurately predict the runtime of a piece
of code a priori. Cache performance can dominate run-
time, and this is very hard to predict in advance. So the
weights assigned to vertices in the graph partitioning
model are just rough approximations.

An even more significant shortcoming of graph
partitioning has to do with communication. For most
applications, a vertex has data that needs to be known by
all of its neighbors. If two of those neighbors are owned
by the same processor, then that data need only be com-
municated once. In the graph partitioning model, two

edges would be cut and so the actual volume of com-
munication would be over-counted. Several alternatives
to standard graph partitioning have been proposed to
address this problem. In one approach, the number of
vertices with off-processor neighbors is counted instead
of the number of edges cut. A more powerful and ele-
gant alternative uses hypergraphs and is sketched below.

Yet another deficiency in graph partitioning is that
it emphasizes the total volume of communication. In
many practical situations, latency is the performance-
limiting factor, so it is the number of messages that
matters most, not the size of messages.

As discussed above, graph partitioning is most
appropriate for bulk synchronous applications. If the
calculation involves complex interleaving of computa-
tions with communication or partial synchronizations
then graph partitioning is less useful. An important
application with this character is the factorization of a
sparse matrix.

Finally, graph partitioning is only appropriate for
applications in which the work and communication
pattern are predictable and stable. This happens to be
the case for many important scientific computing ker-
nels, but there are other applications that do not fit this
model.

Hypergraph Partitioning
A hypergraph is a generalization of a graph. Whereas
a graph edge connects exactly two vertices, a hyperedge
can connect any subset of vertices. This seemingly sim-
ple generalization leads to improved and more general
partitioning models for parallel computing [].

Consider a graph in which vertices represent com-
putation and edges represent data dependencies. For
each vertex, replace all the edges connected to it with
a single hyperedge that joins the vertex and all of its
neighbors. When the vertices are partitioned, if a par-
ticular vertex is separated from any of its neighbors, the
corresponding hyperedge will be cut. For the common
situation in which the vertex needs to communicate
the same information to all of its neighbors, this single
hyperedge will reflect the amount of data that needs to
be shared with another processor. Thus, the number of
cut hyperedges (ormore generally the total weight of cut
hyperedges) correctly captures the total volume of com-
munication induced by a partitioning. In this way, the
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hypergraph model resolves an important shortcoming
of standard graph partitioning.

Hypergraphs also address a second deficiency of the
graph model. If the communication is not symmetric
(e.g., vertex i needs to send data to j, but j does not
need to send data to i), then the graph model has dif-
ficulty capturing the communication requirements. The
hypergraphmodel does not have this problem. A hyper-
edge simply spans a vertex i and every other vertex that i
needs to send data to.There is no implicit assumption of
symmetry in the construction of the hypergraphmodel.

Graph and hypergraph partitioning models, algo-
rithms, and software continue to be active areas of
research in parallel computing. PaToH and hMETIS are
widely used hypergraph partitioning tools for parallel
computing.

Related Entries
�Chaco
�Load Balancing, Distributed Memory
�Hypergraph Partitioning
�METIS and ParMETIS

Bibliographic Notes and Further
Reading
Graph partitioning is a well-studied problem in theo-
retical computer science and is known to be difficult
to solve optimally. For parallel computing, the chal-
lenge is to find algorithms that are effective in practice.
Algebraic methods like Laplacian partitioning [] are
an important class of techniques, but can be expensive.
Local refinement techniques like FM are also impor-
tant [], but get caught in local optima.Multilevel meth-
ods seem to offer the best trade off between cost and
performance [, , ].

Hypergraph partitioning provides an important
alternative to graph partition in many instances []. A
survey of different partitioning models can be found in
the paper by Hendrickson and Kolda [].

Several good codes for graph partitioning are avail-
able on the Internet including Chaco, METIS, PaToH,
and Scotch.
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Definition
Green Flash is a research project focused on an
application-driven manycore chip design that lever-
ages commodity-embedded circuit designs and hard-
ware/software codesign processes to create a highly
programmable and energy-efficient HPC design. The
project demonstrates how a multidisciplinary hard-
ware/software codesign process that facilitates close
interactions between applications scientists, computer
scientists, and hardware engineers can be used to
develop a system tailored for the requirements of
scientific computing. By leveraging the efficiency
gained from application-driven design philosophy,
advanced processor synthesis tools from Tensilica,
FPGA-accelerated architectural simulation fromRAMP,
auto-tuning for rapid optimization of the software
implementation, the project demonstrated how a hard-
ware/software codesign process can achieve a ×
increase in energy efficiency over its contemporaries
using cost-effective commodity-embedded building
blocks. To demonstrate application-driven design pro-
cess, Green Flashwas tailored for high-resolution global
cloud resolving models, which are the leading justifi-
cation for exascale computing systems. However, the
approach can be generalized to a broader array of sci-
entific applications. As such, Green Flash represents a
vision of a new design process that could be used to
develop effective exascale-class HPC systems.

Discussion

Introduction
The scientific community is facing one of its greatest
challenges in the prediction of global climate change –

a question whose answer has staggering economic,
political, and sociological ramifications. The compu-
tational power required to inform such critical pol-
icy decisions requires a new breed of extreme scale
computers to accurately model the global climate. The
“business as usual” approach of using commercial off-
the-shelf (COTS) hardware to build ever-larger clus-
ters is increasingly unsustainable beyond the petaflop
scale due to the constraints of power and cooling. Some
estimates indicate an exaflop-capable machine would
consume close to MW of power. Such unreason-
able power costs drive the need for a radically new
approach to HPC system design. Green Flash is a the-
oretical system designed with an application-driven
hardware and software codesign for HPC systems that
leverages the innovative and low-power architectures
and design processes of the low-power/embedded com-
puting industry. Green Flash is the result of Berkeley
Lab’s research into energy-efficient system design –
many details that are common to all system design,
such as power, cooling, mechanical design, etc. are not
addressed in this research as they are not unique to
Green Flash and are challenges that would need to be
overcome regardless of system architecture. The work
presented here represents the energy efficiency gained
through application-tailored architectures that leverage
embedded processors to build energy efficient many-
core processors.

History
In , a group of University of California researchers,
with backgrounds ranging from circuit design, com-
puter architecture, CAD, embedded hardware/software,
programming languages, compilers, applied math, to
HPC, met for a period of two years to consider how
current constraints on device physics at the silicon level
would affect CPU design, system architecture, and pro-
gramming models for future systems. The results of
the discussions are documented in the University of
California Berkeley Technical Report entitled “The
Landscape of Parallel Computing Research: A View
from Berkeley.” This report was the genesis of the
UC Berkeley ParLab, which was funded by Intel and
Microsoft as well as the Green Flash project. Whereas
the ParLab carried the work of the View from Berke-
ley forward for desktop and handheld applications,

http://dx.doi.org/10.1007/978-0-387-09766-4_2240
http://dx.doi.org/10.1007/978-0-387-09766-4_2241
http://dx.doi.org/10.1007/978-0-387-09766-4_2242
http://dx.doi.org/10.1007/978-0-387-09766-4_2243
http://dx.doi.org/10.1007/978-0-387-09766-4_2243
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the Green Flash project took the same principles and
applied them to the design of energy-efficient scientific
computing systems.

Hardware/software codesign, a methodology that
allows both software optimization and semi-specialized
processor design to be simultaneously developed, has
long been a feature of power-sensitive embedded sys-
tem designs, but thus far has seen very little application
in the HPC space. However, given power has become
the leading design constraint of future HPC systems
and codesign, and other application-driven design pro-
cesses have received considerablymore attention.Green
Flash leverages tools that were developed by Tensil-
ica for rapid-synthesis of application-optimized CPU
designs, and retargets them to designing processors that
are optimized for scientific applications. The project
also created novel inter-processor communication to
enable that easier-to-program environment than its
GPU contemporaries – providing hardware support
for more natural programming environments based on
partitioned global address space programming models.

Approach
It is widely agreed that architectural specialization
can significantly improve efficiency, however, creat-
ing full-custom designs of HPC systems has often
proven impractical due to excessive design/verification
costs and lead-times. The embedded processor mar-
ket relies on architectural customization to meet the
demanding cost and power efficiency requirements of
its products with a short turn-around time. With time
to market a key element in profitability, sophisticated
toolchains have been developed to enable rapid and
cost-effective turn-around of power-efficient semicus-
tom designs implementations appropriate to each spe-
cific processor design. Green Flash leverages these same
toolchains to design power-efficient exascale systems,
tailoring embedded chips to target scientific applica-
tions and providing a feedback path from the appli-
cation programmer to the hardware design enabling a
tight hardware/software codesign loop that is unprece-
dented in the HPC industry. Auto-tuning technolo-
gies are used to automate the software tuning process
and maintain portability across the differing architec-
tures produced inside the codesign loop. Auto-tuners
can automatically search over a broad parameter space

of optimizations to improve the computational effi-
ciency of application kernels and help produce a more
balanced architecture. To enable fast, accurate perfor-
mance evaluation a Field Programmable Gate Array
(FPGA) based hardware emulation platform will be
used to allow an experimental architecture to be evalu-
ated at speeds , × faster than typical software-based
simulation methods – fast enough to allow execution of
a real application rather than an arbitrary benchmark.

High-resolution global cloud system resolvingmod-
els are the target application that will motivate Green
Flash’s architectural decisions. A truly exascale prob-
lem, a . km scale model would decompose the earth’s
atmosphere into twenty-billion individual cells and a
machine with unprecedented performance would need
to be realized in order for the model to run faster than
real time. While using more power-efficient, off-the-
shelf, embedded processors is a crucial first in meeting
this challenge it is still insufficient. Green Flash will
offer many other novel optimizations, both hardware
and software, including alternatives to cache coherence
that enable far more efficient inter-processor communi-
cation than a conventional symmetric multiprocessing
(SMP) approach and aggressive, architecture-specific
software optimization through auto-tuning. All these
specialization techniques will allow Green Flash to effi-
ciently meet the exascale computation requirements of
global climate change prediction.

Modeling the Earth’s Climate System
Current generation climate models are comprehen-
sive representations of the various systems that deter-
mine the Earth’s climate. Models prepared for the
fourth report of the Intergovernmental Panel on Cli-
mate Change coupled submodels of the atmosphere,
ocean, and sea ice together to provide simulations of
the past, present, and future climate. It is expected that
the major remaining components of the climate sys-
tem, the terrestrial and oceanic biosphere, the Green-
land and Antarctic ice sheets, and certain aspects of
atmospheric chemistry will be represented in mod-
els currently being prepared for the next report. Each
of the subsystem models has their own strengths and
weaknesses, and each introduces a certain amount of
uncertainty into projections of the future. Current com-
putational resources limit the resolution of these sub-
models and are a contributor to these uncertainties. In
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particular, resolution constraints on models of atmo-
spheric processes do not allow clouds to be resolved
forcing model developers to rely on sub-grid scale
parameterizations based on statistical methods. How-
ever, simulations of the recent past produce cloud dis-
tributions that do not agree well with observations.
These disagreements, traceable to the cumulus con-
vection parameterizations, lead to other errors in pat-
terns of the Earth’s radiation and moisture budgets.
Current global atmospheric models have resolutions of
order  km, obviously many times larger than indi-
vidual clouds. Development of models at the limit of
the validity of cumulus parameterization (∼ km) is
now underway by a few groups, although the neces-
sary century scale integrations are just barely feasible on
the largest current computing platforms. It is expected
that many issues will be rectified by this increase in
horizontal fidelity but that the fundamental limitations
of cumulus parameterization will remain. The solution
to this problem is to directly simulate cloud processes
rather than attempt to model them statistically. At hor-
izontal grid spacing of order ∼  km, cloud systems can
be individually resolved providing this direct numerical
simulation. However, the computation burden of fluid
dynamics algorithms scales nonlinearly with the num-
ber of grid points due to time step limitations imposed
by numerical stability requirements. Hence, the compu-
tational resources necessary to carry out century scale
simulations of the Earth’s climate dwarfs any traditional
machine currently under development.

Climate Model Requirements
Extrapolation from measured computational require-
ments of existing atmospheric models allow estimates
of what would be necessary at resolutions of order  km
to support Global Cloud Resolving Models. To better
make these estimates, the Green Flash project has part-
nered with Prof. David Randall’s group at the Colorado
State University (CSU). In their approach, the globe is
represented by a mesh based on an icosahedron as the
starting point. By successively bisecting the sides of the
triangles making up this object, a remarkably uniform
mesh on the sphere can be generated. However, this is
not the only way to discretize the globe at this resolution
and it will be important to have a variety of indepen-
dent cloud system–resolving models if projections of
the future are to have any credibility. For this reason it

is important to emphasize that Green Flash will not be
built to only run this particular discretization. Rather,
this approach calls for optimizing a system for a class
of scientific applications; therefore, Green Flash will be
able to efficiently run most global climate models.

Extrapolation based on today’s cluster-based, gen-
eral purpose, HPC systems produce estimates that the
sustained computational rate necessary to simulate the
Earth’s climate , times faster than it actually occurs
was  Pflops. A tentative estimate from the CSUmodel
is as much as  Pflops. This difference can be regarded
as one measure of the considerable uncertainty in mak-
ing these estimates. As the CSU model matures, there
will be the opportunity to determine this rate much
more accurately.Multiple realizations of individual sim-
ulations are necessary to address the statistical complex-
ities of climate system. Hence, an exaflop scale machine
would be necessary to carry out this kind of science.
The exact peak flop rate required depends greatly on the
efficiency that the machine could be used.

These enormous sustained computational rates are
not even imaginable if there is not enough paral-
lelism in the climate problem. Fortunately, cloud system
resolving models at the kilometer scale do offer plenty
of opportunity to decompose the physical domain.
Bisection of the triangles composing the icosahedron
twelve successive times produces a global mesh with
,, vertices spaced between  and  km apart. A
logically rectangular two-dimensional domain decom-
position strategy can be applied horizontally to the
icosahedral grid. Choosing square segments of the
mesh containing  grid points each ( × ) results in
,, horizontal domains. The vertical dimension
offers additional parallelism. Assuming that  layers
could be decomposed in  separate vertical domains,
the total number of physical sub-domains could be
,,.

Twenty-one million way parallelism may seem
mind-boggling but this particular strawman decompo-
sition was devised with practical constraints on the per-
formance of an individual core in an SMP inmind. Each
of the -million cores in this system will be assigned a
small group of sub-domains on which they will execute
the full (physics, dynamics, etc.) climate model. Flops
per watt is the key performance metric for designing
the SMP for Green Flash, and the goal of × energy
efficiency over existing machines will be achieved by
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tailoring the architecture to the needs of the climate
model. One example that drives the need for a high core
count per socket is the model’s communication pat-
tern. While the model is nearest-neighbor dominated,
the majority of the more latency-sensitive communica-
tion occurs between the vertical layers. By keeping this
communication on-chip the more latency tolerant hor-
izontal communication can be sent off-chip with less
performance penalty. Looking at per-core features, by
running with a lower (MHz) clock speed relative
to today’s server-class processors Green Flash gains a
cubic improvement in power consumption. Removal of
processor features that are nonoptimal for science such
as Translation Look-aside Buffers (TLBs) and Out of
Order (OOO) processing creates a smaller die, which
reduces leakage to help further reduce power.

Hardware Design Flow
Verification costs are quickly becoming the dominant
force in customhardware solutions. Large arrays of sim-
ple processors again hold a significant advantage here,
as the work to verify to a simple processing element
and then replicate them on die is significantly lower.
The long lead times and high costs of doing custom
designs has generally dissuaded the HPC community
from custom solutions and pushed more for clusters of
COTS (Commercial off-the-self) hardware. The tradi-
tional definition of COTS in the HPC space is typically
at the board or socket level; Green Flash seeks to rede-
fine this notion of COTS and asserts that a custom
processor made up of pre-verified building blocks can
still be considered COTS hardware. This fine grained
viewpermitsGreenFlash to benefit fromboth the archi-
tectural specialization afforded by these specialized pro-
cessing elements and the shorter lead times and reduced
verification costs that come with using a building block
approach.

The constraints of power have long directed the
development of embedded architectures and so it is
advantageous to begin with an embedded core and
leverage the sophisticated tool chains developed tomin-
imize time from architectural specifications to ASIC.
These toolchains start with a collection of pre-verified
functional units and allow them to be combined in
a myriad of ways rapidly producing power-efficient
semi-custom designs. For instance, starting with a base
architecture a designer may wish to add floating-point

support to a processor, or perhaps add a larger cache
or local store. These functional units can be added to
a processor design as easily as clicking a checkbox or
dropdown menu. The tool will then select the correct
functional unit from its library and integrate it into the
design – all without the designer needing to intervene.
These tools eliminate large amounts of not only boil-
erplate, but also full custom logic that once needed to
be written and re-written in order to change a proces-
sor’s architecture. Of course the tools are not boundless
and are subject to the same design limitations as any
other physical design process – for instance, one can-
not efficiently have hundreds of read ports from a single
memory, but the amount of flexibility created through
these tools vastly outweighs any inherent limitations.

The rapid generation of processor cores alonemakes
these tools very interesting, however, the overhead of
generating a usable software stack for each processor
would negate the time saved developing the hardware.
While adding caches or changing bus widths has lit-
tle effect on the ISA, and therefore a minimal software
impact, adding a new functional unit such as floating-
point or integer division has a large impact on the soft-
ware flow. Building custom hardware creates significant
work not only in the creation of a potentially complex
software stack but also a time-consuming verification
process. As with the software stack, without a method
to jump-start the verification process the tools would
begin to lose their effectiveness. To address both of these
critical issues these tools generate optimizing compilers,
test benches as well as a functional simulator in paral-
lel with the RTL for the design. Having the processor
constructed of pre-verified building blocks combined
with the automatic generation of test benches greatly
reduces the risk and time required for formal verifica-
tion. To help maintain backward and general purpose
compatibility the processor’s ISA is restricted to one that
is functionally complete and allows for the execution of
general purpose code.

A Science Optimized Processor Design
The processor design for Green Flash is driven by effi-
ciency and the best way to reduce power consumption
and increase efficiency is to reduce waste. With that in
mind, the target architecture calls for a very simple, in
order core with no branch prediction. The heavy mem-
ory and communication requirements demanded by the
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climate model have imparted the greatest influence on
the design of the Green Flash core. Building on prior
work from Williams et al. where it was shown that for
memory-intensive applications, cores with a local store,
such as Cell, were able to utilize a higher percentage
of the available DRAM bandwidth, the target processor
architecture includes a local store. In the Green Flash
SMP design there will be two on-chip networks – as
illustrated in Fig. . As can be somewhat expected, the
majority of communication that occurs between sub-
domains within the climate model is nearest neighbor.
Building on work from both Balfour and Dally []
a packet switched network with a concentrated torus
topology was chosen for the SMP as it has been shown
to provide superior performance and energy efficiency
for codes where the dominant communication pattern
is nearest neighbor.

To further optimize the Green Flash processor for
science the programming model is being considered
a first class citizen when designing the architecture.
Traditional cache coherent models found inmanymod-
ern SMPs do not allow fine-grained synchronization
between cores. In fact, when benchmarking the cur-
rent climate model on present day machines it is shown
that greater than % of execution time is spent in
communication. By creating an architecture where an
individual core will not pay a huge overhead penalty
for sending or receiving a relatively small message the
amount of time spent in communication can be greatly
reduced. The processing cores used in the Green Flash
SMP have powerful, flexible streaming interfaces. Each
processor can have multiple, designer defined ports
with a simple FIFO-like interface with each port capable
of sending and receiving a packet of data on each clock.
This low-overhead streaming interface will bypass the
cache and connect to one of the torus networks on
chip. This narrow network can be used for exchange
of addresses, while the wider torus network is used
for exchange of data. Following a Partitioned Global
Address Space (PGAS)model the address space for each
processor’s local store is mapped into the global address
space and the data exchange is done as a DMA from
local store to local store.This allows the communication
between processors to map very well to a MPI send/re-
ceive model used by the climate model and many other
scientific codes. The view to the programmer will be
as though all processors are directly connected to their

neighbors. To further simplify programming, a tradi-
tional cache hierarchy is also in place to allow codes to
be slowly ported to the more efficient local-store based
interprocessor network. In order to minimize power,
the use of photonic interlinks for the inter-core network
is being investigated as an efficient method of transfer-
ring long messages. In the case of Green Flash, the data
network is one cache line in width and will consist of
several phases per message.

Hardware/Software Codesign Strategy
Conventional approaches to hardware design gener-
ally have a long latency between hardware design and
software development/optimization so designers fre-
quently rely on benchmark codes to find a power-
efficient architecture. However, modern compilers fail
to generate even close to optimal code for target
machines. Therefore, a benchmark-based approach to
hardware design does not exploit the full performance
potential of the architecture design points under con-
sideration leading to possibly sub-optimal hardware
solutions. The success of auto-tuners has shown that it
is still possible to generate efficient code using domain
knowledge. In combination with the ability to rapidly
produce semi-custom hardware designs a tight, effec-
tive hardware/software codesign loop can be created.
The codesign approach, as shown in Fig.  incorporates
extensive software tuning into the process of hardware
design. Hardware design space exploration is routinely
done to tailor the hardware design parameters to the
target applications. The auto-tuned software tailors the
application to the hardware design point under consid-
eration by empirically searching over a range of soft-
ware implementations to find the best mapping of the
software to the micro-architecture. One of the hin-
drances toward the practical relevance of codesign is
the large hardware/software design space exploration.
Conventional hardware design approaches use software
simulation of hardware to perform hardware design
space exploration. Because codesign involves search-
ing over a much larger design space (there is now a
need to explore the software design space at each hard-
ware design point), codesign is impractical if software
simulation of hardware is used.

Rather than be constrained by the limitations
of a software simulation environment, it is possible
instead to take advantage of the processor generation
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Green Flash: Climate Machine (LBNL). Fig.  A concentrated torus network fabric yields the highest performance and

most power efficient design for scientific codes

toolchain’s ability to create synthesizable RTL for any
given processor. By loading this design onto an FPGA,
a potential processor design can be emulated running
× faster than a functional simulator. This speedup
allows the benchmarking of true applications rather
than being forced to rely on representative code snip-
pets or statically defined benchmarks. Furthermore, this
speed advantage does not come at the expense of accu-
racy; to the contrary, FPGA emulation is arguably much

more accurate than a software simulation environment
as it truly represents the hardware design.This fast accu-
rate emulation environment provides the ability to run
and benchmark the actual climate model as it is being
developed and allows the codesign infrastructure to
quickly search a large design space.

The speed and accuracy advantages of using FPGAs
have typically been dwarfed by the increased complex-
ity of coding in Verilog or VHDL versus C++ or Python
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as well as the ability to emulate large designs due to
limitations in FPGA area/LUT count.Thepracticality of
using FPGAs for large system emulation has increased
dramatically over the past decade. The ability to access
relatively large dynamic memories, such as DDR, has
always been a difficult challenge with FPGAs due to
the tight timing requirements. FPGA vendors, such as
Xilinx, have eased this difficulty by providing IP
through its Memory Interface Generator (MIG) tool
and adding IO features to the Virtex- series. Freely
available Verilog IP libraries – whether they are
Xilinx CoreGen, or the RAMP group’s GateLib –
allow for a modular, building block approach to HW
design. Finally, while commercial microprocessors are
experiencing a plateau in their clock rates and power
consumption, FPGAs are not. FPGA LUT count con-
tinues to increase allowing the emulation of more
complex designs and FPGA clocks, while tradition-
ally significantly slower than commercial microproces-
sor clock rates have been growing steadily, closing the
gap between emulated and production clock rates. In
the case of Green Flash, the relatively low target clock
frequency (MHz) of the final ASIC is an addi-
tional motivation to target an FPGA emulation envi-
ronment. The current emulated processor design runs
at MHz – a significant fraction of the target clock
rate. This relatively high speed enables the efficient
benchmarking of an entire application rather than a
representative portion.

While the steady growth in LUT count on FPGAs
has enabled the emulation of more complex designs,
with a strawman architecture of  cores per socket
it is necessary to emulate more than the two or four
cores that will fit on a single FPGA. To scale beyond the
cores that will fit on a single FPGA a multi-FPGA sys-
tem, such as the Berkeley Emulation Engine (BEE) can
be used. The BEE board has four Virtex-  FPGAs
connected in a ring with a cross-over connection. Each
FPGA has access to two channels of DDR memory
allowing GB of memory per FPGA. The BEE will
allow effective emulation of eight cores with the appro-
priate NoC infrastructure per board. To scale beyond
eight cores, the BEE includes Gb connections allow-
ing the boards to be linked and emulation of an entire
socket becomes possible. There is significant prece-
dence for emulation of massively multithreaded archi-
tectures across multiple FPGAs. One recent example
was demonstrated by the Berkeley RAMP Blue project

where over , cores were emulated using a stack of
 BEE boards.

Hardware Support for New Programming
Models
Applications and algorithms will need to rely increas-
ingly on fine-grained parallelism and strong scaling and
support fault resilience to accommodate the massive
growth of explicit on-chip parallelism and constrained
bandwidth anticipated for future chip architectures.
History shows that the application-driven approach
offers the most productive strategy for evaluating and
selecting among the myriad choices for refactoring
algorithms for full scientific application codes as the
industry moves through this transitional phase. Green
Flash functions as a testbed to explore novel program-
mingmodels together with hardware support to express
fine-grained parallelism to achieve performance, pro-
ductivity, and correctness for leading-edge application
codes in the face of massive parallelism and increas-
ingly hierarchical hardware. The goal of this develop-
ment thrust is to create a new software model that can
provide a stable platform for software development for
the next decade and beyond for all scales of scientific
computing.

The Green Flash design created direct hardware
support for both the message passing interface (MPI)
and partitioned global address space (PGAS) program-
ming models to enable scaling of these familiar single
program, multiple data (SPMD) programming styles
to much larger-scale systems. The modest hardware
support enables relatively well-known programming
paradigms to utilize massive on-chip concurrency and
to use hierarchical parallelism to enable use of larger
messages for interchip communication.

However, not all applications will be able to express
parallelism through simple divide-and-conquer prob-
lem partitioning. So the message-queues and software-
managed memories that are used to implement PGAS
are also being used to explore new asymmetric and
asynchronous approaches to achieving strong-scaling
performance improvements from explicit parallelism.
Techniques that resemble class static dataflow methods
are garnering renewed interest because of their abil-
ity to flexibly schedule work and to accommodate state
migration to correct load imbalances and failures. In
the case of the climate code, dataflow techniques can be
used to concurrently schedule the physics computations
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with the dynamic core of the climate code, thereby dou-
bling the effective concurrency without moving to a
finer domain decomposition. This approach also ben-
efits from the unique interprocessor communication
interfaces developed for Green Flash.

Fault Resilience
A question that comes up when proposing a  mil-
lion processor computing system is how to deal with
fault resilience. While trying not to trivialize the issue,
it should be noted that this is a problem for everyone
designing large-scalemachines.The proposed approach
of using many simpler cores does not introduce any
unique challenges that are different than the challenges
faced for aggregating conventional server chips into
large-scale systems provided the total number of dis-
crete chips in the system is not dramatically differ-
ent. The following observations are made to qualify
this point.

For a given silicon process (e.g., a  nm process and
same design rules)

. Hard failure rates are primarily proportional to the
number of sockets in a system (e.g., solder joint fail-
ures, weak wire bonds, and a variety of mechanical
and electrical issues) and secondarily related to the
total chip surface area (probability of defect vs tol-
erance of the design rules to process variation). It is
not proportional to the number of processor cores
per se given that the cores come in all shapes and
sizes.

. Soft error rates caused by comic rays roughly pro-
portional to chip surface area when comparing cir-
cuits that employ the same process technology (e.g.,
 nm).

. Bit error rates for data transfer tend to increase
proportionally with clock rate.

. Thermal stress is also a source of hard errors.

For hard errors:
. Spare cores can be designed into each ASIC to toler-

ate defects due to process variation. This approach
is already used by the  core Cisco Metro chip,
which incorporates  spare cores ( cores in total)
to cover chip defects.

. Each chip is expected to dissipate a relatively small
–W (or that is the target) subjecting them to less
mechanical/thermal stress.

. It has been demonstrated that Green Flash can
achieve more delivered performance out of fewer

sockets, which reduces exposure to hard-failures
due to bad electrical connections or other mechan-
ical/electrical defects.

. Like BlueGene, memory and CPUs can be flow-
soldered onto the board to reduce hard and soft
failure rates for electrical connections given remov-
able sockets are farmore susceptible to both kinds of
faults. So eliminating removable sockets can greatly
reduce error rates.

For soft errors:

. All of the basics for reliability and error recovery
in the memory subsystem including full ECC (error
correcting code) protection for caches and memory
interfaces are included in the design.

. Using many simpler cores allows fewer sockets to be
used and less silicon surface area to achieve the same
delivered performance. So that is to say, Green Flash
has less exposure to major sources of failure than
a conventional high-frequency core design. There-
fore, fewer sockets and fewer random bit-flips due to
mechanical noise and other stochastic error sources.

. The core clock frequency of MHz improves Sig-
nal to Noise Ratio for on-chip data transfers.

. Incorporation of a Nonvolatile Random Access
Memory (NVRAM) memory controller and chan-
nel on each System on Chip (SoC). Each node
can copy the image of memory to the NVRAM
periodically to do local checkpoints. If there is a
soft-error (e.g., an uncorrectable memory error),
then the node can initiate a roll-back to the last
available checkpoint. For hard failures (e.g., a node
does and cannot be revived), the checkpoint image
will be copied to neighboring nodes on a peri-
odic basis to facilitate localized state recovery. Both
strategies enable much faster roll-back when errors
are encountered than the conventional user-space
checkpointing approach.

Therefore, the required fault resilience strategies will
bear similarity to other systems that employ a sim-
ilar number of sockets (∼, ), which are not
unprecedented. The BlueGene system at Lawrence
Livermore National Laboratory contains a compara-
ble number of sockets, and achieves a – day Mean
Time Between Failures (MTBF), which is far longer
than systems that contain a fraction the number of
processor cores. Therefore, careful application of well-
known fault-resilience techniques together with a few
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novel “extended fault resilience” mechanisms such as
localized NVRAM checkpoints can achieve an accept-
able MTBF for extreme-scale implementations of this
approach to system design.

Conclusions
Green Flash proposes a radical approach of application-
driven computing design to break through the slow
pace of incremental changes, and foster a sustainable
hardware/software ecosystem with broad-based sup-
port across the IT industry. Green Flash has enabled the
exploration of practical advanced programmingmodels
together with lightweight hardware support mecha-
nisms that allow programmers to utilize massive on-
chip concurrency, thereby creating the market demand
for massively concurrent components that can also be
the building block of midrange and extreme-scale com-
puting systems.Newprogrammingmodelsmust be part
of a new software development ecosystem that spans all
scales of systems, from midrange to the extreme-scale
to facilitate a viable migration path from development
to large-scale production computing systems. The use
of the FPGA-based hardware emulation platforms, such
as RAMP, to prototype and run hardware prototypes
at near-realtime speeds before it is built allow testing
of full-fledged application codes and advanced soft-
ware development to commence many years before the
final hardware platform is constructed.These tools have
enabled a tightly coupled software/hardware codesign
process that can be applied effectively to the complex
HPC application space.

Rather than ask “what kind of scientific applications
can run on ourHPC cluster after it arrives,” the question
should be turned around to ask “what kind of system
should be built to meet the needs of the most impor-
tant science problems.” This approach is able to realize
itsmost substantial gains in energy-efficiency by peeling
back the complexity of high-frequency microproces-
sor design point to reduce sources of waste (wasted
opcodes, wasted bandwidth, waste caused by orient-
ing architectures toward serial performance). BlueGene
and SiCortex have demonstrated the advantages of
using the simpler low-power embedded processing ele-
ments to create energy-efficient computing platforms.
However, the Green Flash codesign approach goes
beyond traditional embedded core design point of Blue-
Gene and SiCortex by using explicit message queues
and software controlled memories to further optimize

data movement, while still retaining a smaller con-
ventional cache-hierarchy only to support incremental
porting to the more energy and bandwidth-efficient
design point. Furthermore, simple hardware support
for lightweight on-chip interprocessor synchronization
and communicationmake itmuch simpler and straight-
forward and efficient to program massive arrays of pro-
cessors than more exotic programming models such as
CUDA and Streaming.

Green Flash has been a valuable research vehicle
to understand how the evolution of massively paral-
lel chip architectures can be guided by close-coupled
feedback with the design of the application, algorithms,
and hardware together. Application-driven design
ensures hardware design decisions do not evolve in
reaction to hardware constraints, without regard to pro-
grammability and delivered application performance.
The design study has been driven by a deep dive into the
climate application space, but enables explorations that
cut across all application areas and have ramifications
to the next generation of fully general-purpose archi-
tectures. Ultimately, Green Flash should consist of an
architecture that can maximally leverage reusable com-
ponents from the mass market of the embedded space
while improving the programmability for the many-
core design point. The building blocks of a future HPC
system must be the preferred solution in terms of per-
formance and programmability for everything from
the smallest high-performance energy-efficient embed-
ded system, to midrange departmental systems, to the
largest-scale systems.
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Gustafson’s Law

John L. Gustafson
Intel Labs, Santa Clara, CA, USA

Synonyms
Gustafson–Barsis Law; Scaled speedup; Weak scaling

Definition
Gustafson’s Law says that if you apply P processors to a
task that has serial fraction f , scaling the task to take the

same amount of time as before, the speedup is

Speedup = f + P( − f )

= P − f (P − ) .

It shows more generally that the serial fraction does not
theoretically limit parallel speed enhancement, if the
problem or workload scales in its parallel component. It
models a different situation from that of Amdahl’s Law,
which predicts time reduction for a fixed problem size.

Discussion

Graphical Explanation
Figure  explains the formula in the Definition:

The time the user is willing towait to solve the work-
load is unity (lower bar). The part of the work that
is observably serial, f , is unaffected by parallelization.
The remaining fraction of the work,  − f , parallelizes
perfectly so that a serial processor would take P times
longer to execute it. The ratio of the top bar to the bot-
tom bar is thus f + P( − f ). Some prefer to rearrange
this algebraically as P − f (P − ).

The diagram resembles the one used in the expla-
nation of Amdahl’s Law (see �Amdahl’s Law) except
that Amdahl’s Law fixes the problem size and answers
the question of how parallel processing can reduce the
execution time. Gustafson’s Law fixes the run time and
answers the question of how much longer time the
present workload would take in the absence of paral-
lelism []. In both cases, f is the experimentally observ-
able fraction of the current workload that is serial.
The similarity of the diagram to the one that explains
Amdahl’s Law has led some to “unify” the two laws
by a change of variable. It is an easy algebraic exercise
to set the upper bar to unit time and express the f of
Gustafson’s Law in terms of the variables of Amdahl’s
Law, but this misses the point that the two laws pro-
ceed from different premises. Every attempt at unifica-
tion begins by applying the same premise, resulting in a
circular argument that the two laws are the same.

The fundamental underlying observation of
Gustafson’s Law is that more powerful computer sys-
tems usually solve larger problems, not the same size
problem in less time. Hence, a performance enhance-
ment like parallel processing expands what a user can
do with a computing system to match the time the user
iswilling towait for the answer.While computing power
has increased bymany orders ofmagnitude over the last

http://dx.doi.org/10.1007/978-0-387-09766-4_291
http://dx.doi.org/10.1007/978-0-387-09766-4_282
http://dx.doi.org/10.1007/978-0-387-09766-4_28
http://dx.doi.org/10.1007/978-0-387-09766-4_2187
http://dx.doi.org/10.1007/978-0-387-09766-4_2188
http://dx.doi.org/10.1007/978-0-387-09766-4_2189
http://dx.doi.org/10.1007/978-0-387-09766-4_77
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Time required if only serial processing were available

f

Present execution time

1–f

Parallel fraction that would have to be
executed in P serial stages

Serial
fraction

f P(1–f )

…

Gustafson’s Law. Fig.  Graphical derivation of Gustafson’s Law

half-century (see�Moore’s Law), the execution time for
problems of interest has been constant, since that time
is tied to human timescales.

History
In a  conference debate over the merits of parallel
computing, IBM’s Gene Amdahl argued that a consid-
erable fraction of the work of computers was inherently
serial, from both algorithmic and architectural sources.
He estimated the serial fraction f at about .–..
He asserted that this would sharply limit the approach
of parallel processing for reducing execution time [].
Amdahl argued that even the use of two processors was
less cost-effective than a serial processor. Furthermore,
the use of a large number of processors would never
reduce execution time by more than /f , which by his
estimate was a factor of about –.

Despite many efforts to find a flaw in Amdahl’s
argument, “Amdahl’s Law” held for over  years as
justification for the continued use of serial computing
hardware and serial programming models.

The Rise of Microprocessor-Based Systems
By the late s, microprocessors and dynamic
random-access memory (DRAM) had dropped in price
to the point where academic researchers could afford
them as components in experimental parallel designs.
Work in  by Charles Seitz at Caltech using a
message-passing collection of  microprocessors []

showed excellent absolute performance in terms of
floating-point operations per second, and seemed to
defy Amdahl’s pessimistic prediction. Seitz’s success led
John Gustafson at FPS to drive development of a mas-
sively parallel cluster product with backing from the
DefenseAdvancedResearchProjectsAgency (DARPA).
Although the largest configuration actually sold of that
product (the FPS T Series) had only  processors,
the architecture permitted scaling to , processors.
The large number of processors led many to question:
What about Amdahl’s Law? Gustafson formulated a
counterargument in April , which showed that per-
formance is a function of both the problem size and the
number of processors, and thus Amdahl’s Law need not
limit performance. That is, the serial fraction f is not a
constant but actually decreases with increased problem
size. With no experimental evidence to demonstrate
the idea, the counterargument had little impact on the
computing community.

An idea for a source of experimental evidence arose
in the form of a challenge that Alan Karp had publi-
cized the year before []. Karp had seen announcements
of the ,-processor CM- fromThinking Machines
and the ,-processor NCUBE from nCUBE, and
believed Amdahl’s Law made it unlikely that such mas-
sively parallel computers would achieve a large fraction
of their rated performance. He published a skeptical
challenge and a financial reward for anyone who could
demonstrate a parallel speedup of over  times on

http://dx.doi.org/10.1007/978-0-387-09766-4_81
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three real applications. Karp suggested computational
fluid dynamics, structural analysis, and econometric
modeling as the three application areas and gave some
ground rules to insure that entries focused on honest
parallel speedup without tricks or workarounds. For
example, one could not cripple the serial version to
make it artificially  times slower than the parallel
system. And the applications, like the three suggested,
had to be ones that had interprocessor communication
throughout their execution as opposed to “embarrass-
ingly parallel” problems that had communication only
at the beginning and end of a run.

By , no one had met Karp’s challenge, so Gor-
don Bell adopted the same set of rules and sug-
gested applications as the basis for the Gordon Bell
Award, softening the goal from  times to whatever
the best speedup developers could demonstrate. Bell
expected the initial entries to achieve about tenfold
speedup [].

The purchase by Sandia National Laboratories of
the first ,-processor NCUBE  system created the
opportunity for Gustafson to demonstrate his argu-
ment on the experiment outlined by Karp and Bell,
so he joined Sandia and worked with researchers
Gary Montry and Robert Benner to demonstrate the
practicality of high parallel speedup. Sandia had real
applications in fluid dynamics and structural mechan-
ics, but none in econometric modeling, so the three
researchers substituted a wave propagation applica-
tion. With a few weeks of tuning and optimization,
all three applications were running at over -fold
speedup with the fixed-size Amdahl restriction, and
over ,-fold speedup with the scaled model pro-
posed by Gustafson. Gustafson described his model to
Sandia Director Edwin Barsis, who suggested explain-
ing scaled speedup using a graph like that shown
in Fig. .

Barsis also insisted that Gustafson publish this
concept, and is probably the first person to refer to
it as “Gustafson’s Law.” With the large experimen-
tal speedups combined with the alternative model,
Communications of the ACM published the results in
May  []. Since Gustafson credited Barsis with
the idea of expressing the scaled speedup model
as graphed in Fig. , some refer to Gustafson’s Law as
the Gustafson–Barsis Law.The three Sandia researchers
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published the detailed explanation of the application
parallelizations in a Society of Industrial and Applied
Mathematics (SIAM) journal [].

Parallel ComputingWatershed
Sandia’s announcement of ,-fold parallel speedups
created a sensation that went well beyond the computing
research community. Alan Karp announced that the
Sandia results had met his Challenge, and Gordon Bell
gave his first award to the three Sandia researchers. The
results received publicity beyond that of the usual tech-
nical journals, appearing in TIME, Newsweek, and the
US Congressional Record. Cray, IBM, Intel, and Digital
Equipment began work in earnest developing commer-
cial computers with massive amounts of parallelism for
the first time.

The Sandia announcement also created consider-
able controversy in the computing community, partly
because some journalists sensationalized it as a proof
that Amdahl’s Law was false or had been “broken.”
This was never the intent of Gustafson’s observation.
He maintained that Amdahl’s Law was the correct
answer but to the wrong question: “How much can
parallel processing reduce the run time of a current
workload?”

Observable Fraction and Scaling Models
As part of the controversy, many maintained that
Amdahl’s Law was still the appropriate model to use
in all situations, or that Gustafson’s Law was simply
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a corollary to Amdahl’s Law. For scaled speedup, the
argument went that one simply works backward to
determine what the f fraction in Amdahl’s Law must
have been to yield such performance.This is an example
of circular reasoning, since the proof that Amdahl’s Law
applies begins by assuming it applies.

For many programs, it is possible to instrument
and measure the fraction of time f spent in serial exe-
cution. One can place timers in the program around
serial regions and obtain an estimate of f . This fraction
then allows Amdahl’s Law estimates of time reduction,
or Gustafson’s Law estimates of scaled speedup. Nei-
ther law takes into account communication costs or
intermediate degrees of parallelism. (When commu-
nication costs are included in Gustafson’s fixed-time
model, the speedup is again limited as the number of
processors grows, because communication costs rise
to the point where there is no way to increase the
size of the amount of work without increasing the
execution time.)

A more common practice is to measure the par-
allel speedup as the number of processors is varied,
and fit the resulting curve to derive f . This approach
confuses serial fraction with communication overhead,
load imbalance, changes in the relative use of the mem-
ory hierarchy, and so on. Some refer to the requirement
to keep the problem size the same yet use more proces-
sors as “strong scaling.” Still, a common phenomenon
that results from “strong scaling” is that it is easier,
not harder, to obtain high amounts of speedup. When
spreading a problem across more and more proces-
sors, the memory per processor goes down to the point
where the data fits entirely in cache, resulting in super-
linear speedup []. Sometimes, the superlinear speedup
effects and the communication overheads partially can-
cel out, so what appears to be a low value of f is actu-
ally the result of the combination of the two effects.
In modern parallel systems, performance analysis with
either Amdahl’s Law or Gustafson’s Law will usually be
inaccurate since communication costs and other par-
allel processing phenomena have large effects on the
speedup.

In Fig. , Amdahl’s Law governs the Fixed-Sized
Model line, Gustafson’s Law governs the Fixed-Time
Model line, and what some call the Sun–Ni Law gov-
erns the Memory Scaled Model []. The fixed-time
model line is an irregular curve in general, because of
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the communication cost effects and because the per-
centage of the problem that is in eachmemory tier (mass
storage, main RAM, levels of cache) changes with the
use of more processors.

Analogies
There are many aspects of technology where an
enhancement for time reduction actually turns out to
be an enhancement for what one can accomplish in the
same time as before. Just as Amdahl’s Law is an expres-
sion of the more general Law of Diminishing Returns,
Gustafson’s Law is an expression of the more general
observation that technological advances are used to
improve what humans accomplish in the length of time
they are accustomed to waiting, not to shorten the
waiting time.

Commuting Time
As civilization has moved from walking to horses to
mechanical transportation, the average speed of get-
ting to and from work every day has gone up dramat-
ically. Yet, people take about half an hour to get to
or from work as a tolerable fraction of the day, and
this amount of time is probably similar to what it has
been for centuries. Cities that have been around for
hundreds or thousands of years show a concentric pat-
tern that reflect the increasing distance people could
commute for the amount of time they were able to
tolerate.
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Transportation provides many analogies for
Gustafson’s Law that expose the fallacy of fixing the size
of a problem as the control variable in discussing large
performance gains. A commercial jet might be able to
travel  miles per hour, yet if one asks “How much
will it reduce the time it takes me presently to walk
to work and back?” the answer would be that it does
not help at all. It would be easy to apply an Amdahl-
type argument to the time to travel to an airport as the
serial fraction, such that the speedup of using a jet only
applies to the remaining fraction of the time and thus
is not worth doing. However, this does not mean that
commercial jets are useless for transportation. It means
that faster devices are for larger jobs, which in this case
means longer trips.

Here is another transportation example: If one takes
a trip at  miles per hour and immediately turns
around, how fast does one have to go to average 
miles per hour? This is a trick question that many peo-
ple incorrectly answer, “ miles per hour.” To average
 miles per hour, one would have to travel back at
infinite speed, that is, return instantly. Amdahl’s Law
applies to this fixed-distance trip. However, suppose
the question were posed differently: “If one travels for
an hour at  miles per hour, how fast does one have
to travel in the next hour to average  miles per
hour?” In that case, the intuitive answer of “miles per
hour” is the correct one. Gustafson’s Law applies to this
fixed-time trip.

The US Census
In the early debates about scaled speedup, Heath and
Worley [] provided an example of a fixed-sized prob-
lem that they said was not appropriate for Gustafson’s
Law and for which Amdahl’s Law should be applied:
the USCensus. While counting the number of people in
the USA would appear to be a fixed-sized problem, it is
actually a perfect example of a fixed-time problem since
the Constitution mandates a complete headcount every
 years. It was in the late nineteenth century, when
Hollerith estimated that the population had grown to
the point where existing approaches would take longer
than  years that he developed the card punch tabula-
tion methods that made the process fast enough to fit
the fixed-time budget.

With much faster computing methods now avail-
able, the Census process has grown to take into

account many more details about people than the sim-
ple head count that the Constitution mandates. This
illustrates a connection between Gustafson’s Law and
the jocular Parkinson’s Law: “Work expands to fill the
available time.”

Printer Speed
In the s, when IBM and Xerox were developing the
first laser printers that could print an entire page at a
time, the goal was to create printers that could print
several pages per second so that printer speed could
match the performance improvements of computing
speed. The computer printouts of that era were all of
monospaced font with a small character set of upper-
case letters and a few symbols. Although many laser
printer designers struggled to produce such simple out-
put with reduced time per page, the product category
evolved to produce high quality output for desktop pub-
lishing instead of using the improved technology for
time reduction. People nowwait about as long for a page
of printout from a laser printer as they did for a page of
printout from the line printers of the s, but the task
has been scaled up to full color, high resolution printing
encompassing graphics output, and a huge collection
of typeset fonts from alphabets in all the world’s lan-
guages. This is an example of Gustafson’s Law applied
to printing technology.

Biological Brains
Kevin Howard, of Massively Parallel Technologies Inc.,
once observed that if Amdahl’s Law governed the
behavior of biological brains, then a human would have
about the same intelligence as a starfish. The human
brain has about  billion neurons operating in par-
allel, so for us to avoid passing the point of diminishing
returns for all that parallelism, the Amdahl serial frac-
tion f would have to be about −. The fallacy of this
seeming paradox is in the underlying assumption that
a human brain must do the same task a starfish brain
does, but must reduce the execution time to nanosec-
onds.There is no such requirement, and a human brain
accomplishes very little in a few nanoseconds no mat-
ter how many neurons it uses at once. Gustafson’s Law
says that on a time-averaged basis, the human brain
will accomplish vastly more complex tasks than what a
starfish can attempt, and thus avoids the absurd conclu-
sion of the fixed-task model.



 G Gustafson’s Law

Perspective
The concept of scaled speedup had a profound enabling
effect on parallel computing, since it showed that sim-
ply asking a different question (and perhaps a more
realistic one) renders the pessimistic predictions of
Amdahl’s Law moot. Gustafson’s  announcement
of ,-fold parallel speedup created a turning point
in the attitude of computer manufacturers towards
massively parallel computing, and now all major ven-
dors provide platforms based on the approach. Most
(if not all) of the computer systems in the TOP
list of the worlds’ fastest supercomputers are com-
prised of many thousands of processors, a degree of
parallelism that computer builders regarded as sheer
folly prior to the introduction of scaled speedup
in .

A common assertion countering Gustafson’s Law is
that “Amdahl’s Law still holds for scaled speedup; it’s just
that the serial fraction is a lot smaller than had been pre-
viously thought.” However, this requires inferring the
small serial fraction from themeasured speedup.This is
an example of circular reasoning since it involves choos-
ing a conclusion, then working backward to determine
the data that make the conclusion valid. Gustafson’s
Law is a simple formula that predicts scaled perfor-
mance from experimentally measurable properties of a
workload.

Some have misinterpreted “scaled speedup” as sim-
ply increasing the amount of memory for variables, or
increasing the fineness of a grid. It is more general than
this. It applies to every way in which a calculation can
be improved somehow (accuracy, reliability, robustness,
etc.) with the addition of more processing power, and
then asks how much longer the enhanced problem would
have taken to run without the extra processing power.

Horst Simon, in his  keynote talk at the Inter-
national Conference on Supercomputing, “Progress in
Supercomputing: The Top Three Breakthroughs of the
Last  Years and the Top Three Challenges for the Next
 Years,” declared the invention of the Gustafson’s
scaled speedup model as the number one achievement
in high-performance computing since .

Related Entries
�Amdahl’s Law
�Distributed-Memory Multiprocessor
�Metrics

Bibliographic Entries and Further
Reading
Gustafson’s  two-page paper in the Communica-
tions of the ACM [] outlines his basic idea of fixed-
time performance measurement as an alternative to
Amdahl’s assumptions. It contains the rhetorical ques-
tion, “How can this be, in light of Amdahl’s Law?” that
some misinterpreted as a serious plea for the resolution
of a paradox. Readers may find a flurry of responses in
Communications and elsewhere, as well as attempts to
“unify” the two laws.

An objective analysis of Gustafson’s Law and its rela-
tion to Amdahl’s Law can be found in many modern
textbooks on parallel computing such as [], [], or [].
In much the way some physicists in the early twentieth
century refused to accept the concepts of relativity and
quantum mechanics, for reasons more intuition-based
than scientific, there are computer scientists who refuse
to accept the idea of scaled speedup and Gustafson’s
Law, and who insist that Amdahl’s Law suffices for all
situations.

Pat Worley analyzed the extent to which one can
usefully scale up scientific simulations by increasing
their resolution []. In related work, Xian-He Sun and
Lionel Ni built a more complete mathematical frame-
work for scaled speedup [] in which they promote the
idea of memory-bounded scaling, even though execu-
tion time generally increases beyond human patience
when the memory used by a problem scales as much
as linearly with the number of processors. In a related
vein, Vipin Kumar proposed “Isoefficiency” for which
the memory increases as much as necessary to keep the
efficiency of the processors at a constant level evenwhen
communication and other impediments to parallelism
are taken into account.
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