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ABSTRACT
One of the grand challenges of modern biology is to understand
how genotypes (G) and environments (E) interact to affect pheno-
types (P), i.e.,G ×E → P . Phenomics is the emerging field that aims
to study large and complex data sets encompassing combinations of
{genotypes, environments, phenotypes} readings. A phenomenon of
crucial interest in this context is that of divergent subpopulations, i.e.,
how certain subgroups of the population show differential behavior
under different types of environmental conditions. We consider the
fundamental task of identifying such “interesting” subpopulation-
level behavior by analyzing high-dimensional phenomics data sets
from a large and diverse population. However, delineation of such
subpopulations is a challenging task due to the large size, high di-
mensionality, and complexity of phenomics data. We present a new
framework to extract such subpopulation-level information from
phenomics data. Our approach is based on principles from algebraic
topology, a branch of mathematics that studies shapes and structure
of data in a robust manner. In particular, our framework identifies
and quantifies “flares”, which are structural branching features in
data that characterize divergent behavior of subpopulations, in an
unsupervised manner. We present algorithms to detect and rank
flares, and demonstrate the utility of the proposed framework on
two real-world plant phenomics data sets.
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1 INTRODUCTION
Advances in agricultural and biomedical sciences for the next decade
are poised to be driven by the increasing availability of data gen-
erated by high-throughput technologies. In precision agriculture,
in addition to genotypic data generated using DNA sequencing
technologies, massive volumes of data are also being gathered from
various field sensing technologies that measure crop phenotypes
(e.g., plant height, pollen shed) alongside environmental variables
(e.g., temperature, humidity, soil pH, etc.). In the field of medicine,
a diverse range of data is being collected on patient genotypes
along with a multitude of disease- and treatment-related pheno-
types (e.g., drug efficacy, molecular biomarkers) as well as hospital
or healthcare-related environmental variables (e.g., length of stay,
hand hygiene practices).

Consequently, the new branch of phenomics [2, 6] has emerged,
whose goal is to study data sets that contain combinations of {geno-
type, environment, phenotype} observations. Phenomics data are
inherently high-dimensional, rich in variety, and also typically
spatio-temporal (resulting from longitudinal applications of tech-
nologies). Figure 1 shows a simplified schematic view of phenomics
data. Compartmentalized tools developed for genomic application
silos or traditional genome-wide association (GWAS) tools that
map genotypic alleles to phenotypic traits are no longer adequate
to analyze modern phenomics data sets. Instead, tools that are
able to process complex phenomics data and enable extraction of
“interesting” features and questions are needed.

Figure 1: Schematic (table) view of a multi-dimensional
plant phenomics data set.

One such fundamental question revolves around subpopulations.
Given data from a large population, how do subpopulations (de-
fined simply as arbitrary subsets of the original population) differ
in the way they perform (or behave) in response to environmental
variations? For instance, certain drug treatments or therapies tend
to have a more pronounced effect on certain groups of individual
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Figure 2: A sample output produced by our software suite Hyppo-X, showing a branching region of potential interest. The fig-
ure shows the topological object generated by our method from a real-world 400-point maize phenomics data set, with two
different genotypes (A and B) from two different locations (KS: Kansas and NE: Nebraska). Various phenotypic traits and envi-
ronmental conditions were measured over the course of the growth period which is about 100 days after planting (DAP). The
horizontal color bar indicates the gradient of DAP (value increases from left to right). The topological object is rendered as a di-
rected graph, where each node is a cluster of points distributed over time (DAP); and an edge from one nodeu to another nodev
implies that a) the two corresponding clusters share an intersection of plant individuals; and b) the mean phenotype (growth
rate) increases from u to v. Further, each node is rendered as a pie-chart showing the distribution of individuals from the
different <location,genotype> combinations. One of the interesting features is the branchings (divergence) in subpopulations
visible between days 39 and 42—it is these types of features that we aim to detect as “flares”.

patients than others, depending on the circumstances under which
the treatments are administered. Similarly, certain subsets of crop
genotypes show better resilience to harsher climactic conditions or
environmental shifts than other groups. Identifying such subpopu-
lations is potentially interesting to the domain scientist as it could
directly aid in their ability to design targeted experiments for test-
ing plausible hypotheses. However, standard statistical approaches
that perform correlation tests between variables are typically not
suited to highlight such subpopulation level variations.

In this paper, we propose a new approach for identifying and
quantifying divergent subpopulations based on algebraic topology,
a branch of mathematics that studies shapes and structures of data.
More precisely, we build on our recent work and develop a new
capability for detecting “flares”, which are structural branching
features that detect differentially behaving subpopulations from
the data in an entirely unsupervised manner.

There are two major steps in our approach to detect flares:

• Given a large high-dimensional phenomics data set, we first
use the Mapper framework [14] to build a compact topo-
logical (and visual) representation of the data. The Mapper
framework has recently found increasing number of applica-
tions in the analysis of high dimensional data (see Section 2
for a summary). Section 3.1 presents an overview of the
Mapper algorithm.
• Next, we define flares as branching features in the topological
object, with certain properties (as defined in Section 3.2), and
provide efficient algorithms to detect the flares and score
them so that they can be ranked in non-increasing order of
interest (see Section 3.2).

To the best of our knowledge, this is the first formal treatment
given to the detection and quantification in terms of interestingness
of flares.

All our implementations are available as part of our Hyppo-X
software suite for analyzing phenomics data [9]. Figure 2 shows a
sample output generated by our Hyppo-X suite from a real-world
maize data set containing two genotypes from two different U.S.
locations. The figure gives a glimpse of the branching regions that
look potentially interesting from the point of view of delineating
subpopulation-level variations (and are therefore the target of our
flare detection procedure). Note that our method operates in an
unsupervised manner, and the information about the various data
sources (KS/NE, A/B) was applied to the topological representation
only after the output was generated (for use in the interpretation
step). Consequently, our method’s automatic ability to separate the
different subpopulations (KS from NE and A from B) at various
stages of the topological representation is significant.

In Section 4, we present a detailed report on experimentally
evaluating the new flare detection capability. We used two data
sets: the {KS/NE, A/B} maize data set (n = 400) obtained from
our collaborator (Schnable laboratory at Iowa State University);
and a significantly larger, multi-year maize phenomics data set
from the Genomes to Fields initiative [7], which has annual data
(since 2014) collected from over 45,000 farming plots and involving
more than 1,500 maize hybrid varieties, from across 23 states and
provinces in the U.S. and Canada. Our experiments demonstrate the
immense potential of our tool to identify and quantify divergent
subpopulations.

2 RELATEDWORK
The basic building block of our algorithmic framework is the Map-
per algorithm. Originally proposed by Singh et al. [14], this ap-
proach has recently found increasing use in diverse application
domains ranging from medicine [11–13, 16] to sports analytics
[1, 11] to voting patterns [11]. At the same time, in most, if not all,
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of the previous applications of Mapper, the interesting supopula-
tions are characterized by features such as paths, loops, or flares in
the topological object (also called Mapper) identified in a “visual”
manner. Carrière et al. [3, 4] present a rigorous theoretical frame-
work for 1-dimensional Mapper, where the features are identified
as points in an extended persistence diagram. But they do not ad-
dress the relative importance of the features in the context of the
application generating the data.

In recent ongoing work [8, 10], we have proposed a notion of
interestingness score of a path in theMapper, and used it to quantify
the interestingness of, as well as rank, the features identified as
paths. In this paper, we consider quantifying the interestingness of
branching phenomena in data sets identified as flares in the Mapper.
As it turns out, flares present several nontrivial generalizations and
new challenges as compared to interesting paths. Furthermore, the
use of flares as a way to detect interesting subpopulations from
within complex high-dimensional phenomics data sets represents a
novel use-case.

3 METHODS
3.1 Overview of the Mapper algorithm
The Mapper algorithm [14] produces highly compressed visual
representations of high-dimensional data that reveal significant
structural aspects. Let X be the input space, which is typically a
point cloud of data in Rd for large dimension d . The first compo-
nent of Mapper is a filter function, which is a continuous function
f : X → Z ⊂ R. More generally, the filter function could be high-
dimensional, i.e., f : X → Rh for h ≥ 2. For instance, we could
study temperature and precipitation together (h = 2). In this paper,
we consider (one or more) single dimensional filters. We choose an
open coverU that decomposes Z into overlapping open intervals,
i.e.,U = {Ui }ri=1 such that ∪iUi = Z . This cover is typically char-
acterized by the number of intervals r and an overlap percentage д,
referred to as the resolution and gain of the cover, respectively. The
resolution r determines the length of each interval Ui (assumed
to be the same), and the gain д determines by how much adjacent
intervals Ui andUi+1 overlap.

The main idea of Mapper is to pullback the coverU to a cover
of X . Note that since f is continuous, { f −1 (Ui )} forUi ∈ U forms
a cover of, i.e., tiles, X . In other words, for each interval Ui , the
algorithm identifies subsets of points from X that have values of f
in that interval. These points all have “similar” f values, and are
grouped further into clusters by Mapper using a distance function.
This clustering step is designed to reveal the covariance of, or rela-
tion between, the filter function f and one or more other variables
of interest that are used to define the distance function.

Note that the clustering step is repeated for every interval Ui in
the cover. As such, we refer to these clusters obtained from subsets
of X as partial clusters. Various clustering algorithms could be used
in this step; we use DBSCAN [5]. Each cluster produced in this step
is represented by a node in the highly compact representation of
X—also called the Mapper. In this context, we use the terms “node”
and “cluster” interchangeably.

Given that the intervals in the cover of Z overlap (as defined by
the gain parameter д), clusters resulting from overlapping intervals
of the pullback cover could share data points. Such overlaps of

membership between two clusters is represented by drawing an
edge between the corresponding two nodes in the final object (and a
triangle between three clusters that intersect, a tetrahedron between
four intersecting clusters, and so on). These connections between
clusters (as specified by the edges between the corresponding nodes)
capture the covariation of f with other functions of interest across
the range of values of the filter function.

Note that such covariations could be nonlinear, e.g., there could
be two distinct paths of edges connecting disjoint series of clusters
as one moves along a set of intervals in the cover of Z . Such disjoint
paths capture subpopulations (i.e., subsets of points ofX ) displaying
distinct behavior under “similar” conditions as captured by similar
ranges of values of f . Of course, the distinct behavior would be
explained by one ormore of the other variables defined onX . Indeed,
the key strength of the Mapper algorithm is its natural ability
to identify such nontrivial “structure” while also capturing more
straightforward linear relationships—all in a unified framework.

For example, consider the instancewhereX is a set of points inR2
sampled from a noisy unit circle (see Figure 3). We use the height of
the points (i.e., their y-coordinate values) as the filter function. We
consider a cover ofZ , which is almost [−1, 1], into r = 3 overlapping
intervals, with adjacent intervals overlapping roughly by a third
(i.e., д = 33%). The pullback cover of X then has four pieces, with
the subset of points with height in the middle interval forming
two connected components. We then use the Euclidean distance
between the points (in R2) as the distance function to cluster the
points in each component using, e.g., single linkage clustering. Thus
we get one node per component, which we color from blue to red
according to the mean height of the points in each node. We also
get four connecting edges capturing the overlap of the clusters.
Note that we go from around 20 points in X to just four nodes and
four edges in the Mapper. At the same time, this highly compact
representation captures the underlying structure of X—the circle.

Figure 3: The Mapper algorithm applied to a set of points
sampled from a noisy circle. We use the height of the points
(y-coordinate) as the filter function. We consider a cover of
Z ≈ [−1, 1] using r = 3 overlapping intervals, with adjacent
intervals overlapping roughly by a third (i.e., д = 33%). The
final Mapper is shown on the right.

3.2 Flares
We propose a framework to detect and use “flares” (defined below)
that characterize branching phenomena in phenomics data sets. We
use the undirected graph (i.e., the nodes and edges) of the Mapper
as described above; let this graph be denoted G = (V ,E). Recall
that each node in V is a cluster of points from a single interval in
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the filter function(s) further grouped together by the subsequent
clustering step. Each edge in E represents a pair of clusters from
adjacent intervals that share an intersection of points.

We first construct a directed graph from G. Given an edge e =
{u,v}, we direct the edge by default from the cluster showing a
lower phenotypic performance as measured by its mean pheno-
typic value to one with the higher mean phenotypic value. This
scheme allows us to track a trail of clusters that show an improving
trajectory in performance by a user-selected phenotypic trait (e.g.,
yield or plant height). In order to capture branching phenomena
effectively, we modify this directing procedure by using mean phe-
notypic values of subset of individuals belonging to shared genotypes
between nodes u and v—see Remark 3.5.

If the mean phenotypic values of u and v are equal, we choose
one of the two directions arbitrarily. This procedure guarantees
that we build a directed acyclic graph (DAG). More generally, we
could consider a relaxed variant where we add both directed edges
when nodes u and v have (nearly) identical means. This variant is
left as future work, and we restrict our attention to DAGs in this
paper. We now define a few more terms related to this DAG.

Definition 3.1. A source (terminal) node in a directed graph is one
that has no incoming (outgoing, respectively) edges. A branching
node in a directed graph is one that has at least two outgoing edges.

Note that, by the above definitions, a source code can also be
potentially a branching node. Furthermore, we use the term simple
path to refer to a path in the graph in which no node, with the
possible exception of the sentinel nodes (beginning and ending) of
the path, is a branching node.

We define a stem and a branch associated with a branching node
as follows (see Figure 5 for an illustration).

Definition 3.2. Given a branching node u, a stem is a possibly
empty simple path that ends in u.

Remark 3.3. Note that there can be multiple stems ending at a
branching node u. There are two classes of such stems—those that
are entirely non-overlapping (i.e., simple paths ending at u that
are otherwise node-disjoint) and those that are nested (i.e., they
originate from different starting nodes in the same parent simple
path ending at u).

Definition 3.4. Given a branching node u, a branch refers to a
non-empty path (simple or not) that originates at u.

Note that two branches originating at the same branching node
can possibly intersect. Furthermore, there are at least two branches
originating at a branching node (by definition of a branching node).

Remark 3.5. To capture branches in phenomics data sets accurately,
we modify the way in which we direct the edges in the topological
object as follows. Given an undirected edge e = {u,v} in theMapper,
we direct edge e from the node with the lower mean phenotypic
value to the one with high value, where the respective means are
now taken over the subsets of individuals in u and v that belong to
genotypes present in both nodes. This procedure is illustrated in
Figure 4. In an alternative setting, we use location of the individuals
to determine these subsets to take means over (see Figure 10 in
Section 4.2). If genotype or location information is not available,

these means are computed over only the individuals shared by
nodes u and v .

Figure 4:Modification of edge directions in theMapper from
Figure 2. Using the default approach (zoomed in on left),
edges are oriented from B2 to B1 and from n3 to B2, by consid-
ering the mean phenotype values of all individuals in these
nodes. Using the modified approach, we orient the edge
from B1 to B2 by considering the mean phenotype value of
individuals with only the genotypes shared by these nodes
(i.e., (KS,A), (NE,A), and (NE,B)). A similar modification di-
rects the edge from B2 to n3.

Let B (u) denote the set of all branches originating at a branching
nodeu and S (u) denote the set of non-overlapping (i.e., non-nested)
stems ending at u.

Definition 3.6. We define a flare to be a unique combination of a
branching node u, a stem s ∈ S (u), and a subset B′(u) ⊆ B (u). Here,
we do not enforce that a stem be non-empty, to allow detection of
flares strictly originating at a given branching node. However, we
do enforce that each branch selected is non-empty (i.e., has at least
one edge) and that the subset selected B′(u) ⊆ B (u) contains at
least two or more branches (as illustrated in Figure 5).

u branches
Stem

Branching
Node

…

Figure 5: An illustration of a flare.

The selection of the stem and branches to include in a flare is
computed deterministically as a function of the branching node.
Intuitively, the idea is to examine the set of individuals “covered”
by the branching node, and then “cast a net” in either direction, on
all simple paths leading up to u (candidate stems) and on all the
branches originating atu, as far as there is a non-empty intersection
with the individual set of the branching node (see Figure 6).
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u

branches

Stems
Branching
Node

…

Figure 6: Conceptual illustration of how flares are con-
structed from a given branching node u. Stems are selected
from the set of incoming simple paths, and branches are se-
lected from the DAGs rooted at u. The boundaries of the se-
lection are determined by “casting a net” on either side of
u and including all “areas” where there is shared individual
coverage.See text above for further details.

The rationale for this selection scheme is as follows. In an ap-
plication such as phenomics, each “point” included in a cluster
is typically a given plant crop (“individual”) observed in certain
time and space. Therefore, by the way we construct our topological
object using intersections between adjacent clusters, the same indi-
vidual may continue to appear in a sequence of clusters (i.e., in a
path) on either side of a branching node. Therefore, by considering
the set of individuals covered by a branching node, and examining
how that set distributes itself across the branches, we can discover
interesting subpopulation-level variations (or differences in the
way they respond to various environmental filters). In a population
where there is also a large genetic diversity, one can adapt the same
procedure to include the set of genotypes covered (instead of plant
individuals).

Construction of a flare:More formally, let N (u) denote the set
of individuals covered in the cluster corresponding to u. Then, we
follow the trail of clusters in either direction to incrementally grow
the corresponding stem or branch, as follows. For stem computation,
we enumerate all the simple paths ending at u, and for each such
simple path (candidate stem), we begin at the node v which is
the immediate predecessor of u and compute N (v ) ∩ N (u). If the
intersection is non-empty then we include v in the current stem
and iteratively walk to the next predecessor (until either the simple
path terminates or the intersection becomes empty). Note that at
each step, we compute the intersection with N (u).

A similar procedure is carried out to enumerate all branches
originating at u, walking forward instead of backward, with the
caveat that we do not need to restrict the elongation process to
only simple paths in the forward direction. In other words, if we
encounter another branching node, the algorithm proceeds recur-
sively, except that at every subsequent step going forward from the
second branching node, the intersection is computed only relative
to the original branching node u.

Note that the above procedure is deterministic, in that given a
branching node, the reach of a flare involving that branching node
is determined by the reach of the set of individuals in u on either
side of u in the DAG. In fact, this procedure would also detect all
the flares involving u. More precisely, the cross-product of S (u)

and B′(u) (as specified in Definition 3.6) yields the set of all flares
involving u.

Scoring a flare: In order to compare and relatively rank flares,
we devise a simple scheme to score each flare. Given a flare f , we
compute its “interestingness score” as follows.

First, we associate a weight to all edges. The weight of an edge
is given by the absolute difference in the phenotypic performance
(cluster means) between the two corresponding clusters. Intuitively,
the larger the performance variation, the more interesting that
edge is to a branch. Note that since we use the absolute value of
the difference, all edge weights are positive.

We score the flare using its edge weights as follows (see Figure 7).
Note that there is a unique subgraph induced by each flare and
that subgraph also will be acyclic (as it is derived from a DAG).
Therefore, we perform a simple bottom-up/post-order traversal of
that induced DAG, starting at each terminal node and climbing
up the parent and the ancestor levels. At each step, we perform
a simple gather-scatter way to propagate the scores across levels.
More specifically, at a node u, all the scores of its child branches are
added (“gather”), and the value is then equally divided (“scatter”)
among its predecessor branches. The algorithm terminates when
it reaches the main branching node u of this flare. Once scored,
the flares can be rank ordered in the decreasing order of score and
displayed.

u

x1

xk

+

…

%

Computation proceeds 

Accumulate 
branch scores 

Divide u’s 
score equally
among stems

…

Figure 7: Illustration of how the interestingness score prop-
agates through a flare.

Remark 3.7. In our current implementation, only branches con-
tribute to the score of a flare at a branching node. Stems do not con-
tribute, the rationale being that examining the branches typically
suffices for explaining how a population, covered at the branching
node, diverges. However, the procedure can be extended to include
stem scores as needed. The information contained in the stem is
still useful during our subsequent analysis and interpretation.

Remark 3.8. Our procedure for scoring flares takes running time
linear in the size of the flare.

4 EXPERIMENTAL EVALUATION
We used two real-world maize data sets to test and evaluate the
proposed algorithmic framework to detect flares. One is a small
data set with 400 “points”, whereas the other one is a significantly
larger data set covering more than 300,000 “points”. We describe
the data sets along with the results of our application below.
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4.1 Small-scale evaluation
Input data. This maize data set consists of phenotypic and envi-

ronmental measurements for two genotypes (abbreviated here for
simplicity asA and B), grown in two geographic locations (Nebraska
(NE) and Kansas (KS)). The data consists of daily measurements of
the genotypes’ growth rate alongside multiple environmental vari-
ables, over the course of the entire growing season (100 days). For
the purpose of our analysis we treat each unique [genotype, loca-
tion, time] combination as a “point”. Consequently, the above data
set consists of N = 400 points. Here, “time” was measured in Days
After Planting (DAP). An “individual” in this data set refers to a
plant individual that represents a [genotype,location] combination.

Each point has one phenotypic value (growth rate) and 10 envi-
ronmental variables (including but not limited to: humidity, tem-
perature, rainfall, solar radiation, soil moisture, and soil tempera-
ture). We studied a multitude of these environmental variables; we
present the results using humidity here, as it led to more interesting
observations (compared to the other variables).

Flare analysis. We tested our framework using both single and two
filter function(s).

Single filter function: First, we constructed our topological
object using DAP as a single filter and used the difference in growth
rates to calculate pairwise distances between points (in the cluster-
ing step). This study is aimed at understanding how the population
of individuals (of both genotypes in both locations) show vary-
ing trends in phenotypic performance (i.e., growth rate here) as a
function of time.

The resulting object along with the detected flares are shown in
Figure 8, based on which we make the following observations.

(1) Until around DAP ∼40, all four subpopulations behave simi-
larly (as shown by the common trail of clusters up to that
point).

(2) Around DAP ∼40, two branches are evident: i) The first
branching event occurs when the {KS,B} subpopulation sepa-
rates from the rest due to a significantly accelerated growth
spurt (compared to the rest). ii) The second subsequent
branching event corresponds to the {KS,A} subpopulation
separating from the rest. Figure 8(B) shows the cluster nodes
colored by growth rate.

(3) It is not until DAP ∼70 that the Nebraska varieties show a
separation in their behavior.

All the above branching events were successfully detected by
our flare detection algorithm (shown by long arcs of different col-
ors) in a runtime of 160 milliseconds after the Mapper graph is
built. Note that our method is unsupervised and the information
about the source genotypes and locations (pie-chart distribution in
Figure 8(A)) was applied only after the analysis was completed, to
aid in our interpretation. These results demonstrate our method’s
ability to successfully delineate interesting subpopulations that
show divergent behavior.

Two filter functions: In the above single filter results, the fact
that genotype B in Kansas shows significantly altered behavior
compared to the same genotype in Nebraska indicates that there
could be causal environmental factors at play that influence the
phenotype. To better characterize such potential candidates for

key environmental variables, we conduct a two filter study (one
filter being time or DAP, and another filter being one of the many
environmental variables recorded).

We present here the results for the combination {DAP, humidity}.
Figure 9 shows the corresponding topological object. The time
(DAP) grows from left to right and is shown in a horizontal gradient
color bar. Based on this figure, we make the following observations:

(1) Figure 9(A) shows that at the initial growth period (1–10
DAP), the performance at both locations are highly compa-
rable, as is evidenced by the clustering of both locations.

(2) Around DAP 11 the locations diverge into two separate
branches (as shown in panel (A)). This separation is owing
to the differences in their humidity conditions— more specif-
ically, while Nebraska experienced steadily low humidity
values until around DAP 50, Kansas experienced fluctuating
and often high humid conditions for most of the period until
around DAP 60 (see panel (C)). This period of high humidity
fluctuation also coincides with the accelerated growth rate
that Kansas experiences from around DAP 40. As for Ne-
braska, the increase in growth rates occur eventually around
DAP 60 (panel (B)) and that too coincides with higher values
in humidity (panel (C)).

Summary of findings: These results and observations suggest
that humidity perhaps has a significant effect on growth rates, and
that the effect was more pronounced on genotype (B) than for
genotype (A). The precise time and humidity intervals where such
effects manifest are shown by the flare.

4.2 Large-scale evaluation
Input data. The second data set we used in our experiments

is obtained from the Genomes to Fields (G2F) initiative [7]. The
complete data set contains data for 1,500 maize hybrid varieties
cultivated across 23 states and provinces in the U.S. and Canada.
For the purpose of of our analysis in this paper, we used a subset of
this data which contains 894 genotypes, grown in four geographic
locations: Texas (TX), Nebraska (NE), Missouri (MO) and Ontario,
Canada (ON). The data consists of end-of-the-season measurements
of multiple phenotypic values (Yield, Pollen DAP, Plant height, and
Ear height). It also contains multiple environmental variables, over
the course of the entire growing season (174 days). For the purpose
of our analysis we treat each [field location, state, block, plot, time]
combination as a “point”. Consequently, the above data set consists
of N = 306, 533 points. Similar to the first data set, “time” was
measured in the Days After Planting (DAP) here.

Each point has multiple phenotypic values (Yield, Pollen DAP,
Plant height, and Ear height) and at least five environmental vari-
ables (including but not limited to: temperature, humidity, rainfall,
solar radiation). We present our analysis using temperature as a sin-
gle filter, while using all phenotypic values for performance (choice
of distance function for clustering). For distance based clustering,
we computed the L2 phenotypic distance between pairs of points.
The study is aimed at understanding how the population shows
varying trends in phenotypic performance (i.e., Yield, Pollen DAP,
Plant height, and Ear height here) as a function of temperature.
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Figure 8: Topological object constructed using DAP as a single filter function (shown earlier in Figure 2), now also showing the
interesting flares detected by our method. The horizontal color bar indicates the gradient of DAP, with the value increasing
from left to right. (A) Each cluster (node) of the topological object is rendered as a pie-chart showing the distribution of their
four classes of individuals. Long arcs of different colors show interesting flares, and the corresponding branching nodes are
identified with bold border. The blue flare (long arc spanning DAP 1 through 60) was ranked as the top interesting flare. (B)
Each cluster colored by its mean growth rate (phenotype), with branches showing active growth (high phenotype) marked.

Flare analysis. Figure 10 shows the topological object along with
the detected flares. Based on the figure, we make the following
observations.

(1) The green flare is mostly Texas dominated whereas the other
two flares are mostly Ontario dominated.

(2) The contribution of Nebraska population is almost every-
where, is mixed with other sources, and cannot be separated
based on phenotypic performance.

(3) The long green branches indicate that there has been a di-
vergence in either performance level or environment level.
Figure 11 clearly depicts the divergent phenotypic behavior.

(4) All the higher yield nodes contain either Texas or Missouri
subpopulations.

Branch analysis. Weanalyzed both branches (B1,B2) in Figure 11,
which are captured mostly by the green flare in Figure 10. Our
findings are as follows:

(1) Branch B1 contains 494 genotypes and branch B2 contains
only 6 genotypes. These 6 genotypes of branch B2 are also
represented within branch B1, although they are grown in
different farm plots. In addition, the plants of branch B1
include plants grown in Lincoln, Nebraska, which is absent
in branch B2.

(2) Branch B1 contains 15, 168 points whereas the branch B2
contains only 133 points.

(3) The yield values for points in branch B1 are significantly
lower ([4.275, 272.958]) than those for the points in branch
B2 ([160.787, 274.381])—as can be seen from Figure 11(A).

(4) The temperature values, on the other hand, for both branches
B1 and B2 are nearly comparable—as can be seen from Fig-
ure 11(B).

(5) We also tried other environmental variables as filters, but
did not encounter another variable that behaved differently
between the points of the two branches.

Taken together, the above observations imply the following.
These two branches show divergent behavior and yet temperature
cannot be the attributing factor. In fact, even genotypes are less
likely to offer a reason as to why the yield performance is signifi-
cantly different (low in B1 and high in B2). We note here that, even
though the 6 genotypes in B2 are observed in both branches, along
branch B1 the points corresponding to those genotypes are grown
in different locations within the same state (i.e., different farm plots).
This implies that the same genotype grown in very similar condi-
tions of a state (say TX or MO) but in different farms could have
widely divergent behavior. This could be because of differences in
the agricultural practices, which are not necessarily captured in
the environmental table (e.g., fertilizing practices, water/irrigation
use, crop rotation) could be potential contributing factors to the
observed difference. Further examination along this direction could
provide potentially important insights that relate farming practices
to crop performance.
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Figure 9: The topological object constructed using only the individuals of genotype B, using DAP and humidity as the two filter
functions. The horizontal color bar indicates the gradient of DAP, with its value increasing from left to right. (A) Each cluster
(node) is rendered as a pie-chart showing the distribution of its individuals from the two locations (KS and NE) for genotype B.
Parts (B) and (C) show the same topological object, however with each cluster (node) colored by the growth rate (phenotype)
and humidity (environment), respectively. Our method captured one large flare, which is indicated by the red branched arc in
Part (A).
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Figure 10: Topological object constructed from the larger G2F data set using temperature as a single filter function. Also shown
are the top three interesting flares detected by our method. Our algorithm took 2 seconds to detect all these flares after the
Mapper graph is built. Each cluster (node) of the topological object is rendered as a pie-chart showing the distribution of
the four classes (based on state/province) of individuals. Long arcs of different colors show interesting flares, and the corre-
sponding branching nodes are identified with bold border. The red flare (on the right side) was ranked as the most interesting
flare.

5 SOFTWARE AVAILABILITY
We have implemented the core algorithms for flare detection as part
of the HYPPO-X repository, which includes our open source imple-
mentation of the Mapper framework. The HYPPO-X software repos-
itory is publicly available at https://xperthut.github.io/HYPPO-X.
The core computational modules are implemented in C++ and the
visualization modules are implemented using the JavaScript visual-
ization library D3 [15].

6 CONCLUSION
We study the fundamental problem of identifying and quantifying
divergent subpopulations in complex phenomics data sets, which
show differential behavior under different types of environmen-
tal conditions. We present an algorithmic framework based on
techniques from algebraic topology to identify flares, which are
branching features in phenomics data that characterize divergent
behavior of subpopulations, and rank these flares according to their
interestingness. Results from two phenomics data sets demonstrate
the effectiveness and versatility of our framework in characterizing
divergent subpopulations, and to suggest hypotheses for further
testing by the practitioners.

Our framework is currently prescribed for DAGs. A natural
yet valuable extension to consider would be to allow bidirectional
edges between clusters whose average phenotype values are within
a small tolerance of each other. We would have to generalize our
definitions and algorithms to handle directed graphs. On the theo-
retical side, characterizing the complexity of identifying the most

interesting flare, or all interesting flares in a given topological ob-
ject, is a crucial next step (similar to the corresponding problems
in the case of interesting paths [8]).

Improving the computational efficiency of various steps in our
current pipeline (for DAGs) is of interest as well. In particular, we
plan to work on efficient parallel implementations and on speeding
up the clustering steps in the Mapper framework, which could be
a bottleneck when studying large scale phenomics data sets with
multiple phenotypes of interest.
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