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Abstract—Phenomics is an emerging branch of modern biology that uses high throughput phenotyping tools to capture multiple

environmental and phenotypic traits, often at massive spatial and temporal scales. The resulting high dimensional data represent a

treasure trove of information for providing an in-depth understanding of how multiple factors interact and contribute to the overall growth

and behavior of different genotypes. However, computational tools that can parse through such complex data and aid in extracting

plausible hypotheses are currently lacking. In this article, we present Hyppo-X, a new algorithmic approach to visually explore complex

phenomics data and in the process characterize the role of environment on phenotypic traits. We model the problem as one of

unsupervised structure discovery, and use emerging principles from algebraic topology and graph theory for discovering higher-order

structures of complex phenomics data. We present an open source software which has interactive visualization capabilities to facilitate

data navigation and hypothesis formulation. We test and evaluate Hyppo-X on two real-world plant (maize) data sets. Our results

demonstrate the ability of our approach to delineate divergent subpopulation-level behavior. Notably, our approach shows how

environmental factors could influence phenotypic behavior, and how that effect varies across different genotypes and different time

scales. To the best of our knowledge, this effort provides one of the first approaches to systematically formalize the problem of

hypothesis extraction for phenomics data. Considering the infancy of the phenomics field, tools that help users explore complex data

and extract plausible hypotheses in a data-guided manner will be critical to future advancements in the use of such data.

Index Terms—Computational phenomics, topological data analysis, graph algorithms, hypothesis extraction, visualization
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1 INTRODUCTION

HIGH-THROUGHPUT technologies are beginning to change
the way we observe and measure the natural world. In

medicine, physicians are using imaging and other specialized
sampling devices to keep a longitudinal log of patients’
drug/therapy response and other disease-related pheno-
types. In agricultural biotechnology, phenotyping technolo-
gies such as cameras and LiDARs are being used to measure
physiological and morphological features of crops in fields.
Further, advancements in genotyping technologies (sequenc-
ing) have made it possible to characterize and track genetic
diversity and changes at a high resolution, and decode
genetic markers that are key to performance traits. Taken
together, advancements in these technologies are leading to a
rapid explosion of high-dimensional data, obtained from a
variety of sources.

A distinctive feature of these inherently high-dimensional
data sets is that their generation is motivated more based on
the availability and easy access to high-throughput technology

as opposed to specific working hypotheses. While there
are some broad high-level questions or research themes that
motivate the collection of data, the specific questions that relate
to testable hypothesis and eventual discoveries (e.g., what
genetic variations impact a physical trait, or how a combina-
tion of environmental variables control a phenotype) are not
readily available a priori.

Consider the case of plant phenomics [1], [2]. Under-
standing how different crop varieties or genotypes (G) inter-
act with environments (E) to produce different varying
performance traits (phenotypes (P )) is a fundamental goal of
modern biology (G� E ! P ) [3], [4]. To address this funda-
mental albeit broad goal, plant biologists and farmers have
started to widely deploy an array of high-throughput sens-
ing technologies that measure tens of crop phenotypic traits
in the field (e.g., crop height, growth characteristics, photo-
synthetic activity). These technologies, comprising mostly
of camera and other recording devices, generate a wealth
of images (visual, infrared, thermal) and time-lapse videos
that represent a detailed set of observations of a crop popu-
lation as it develops over the course of the growing season.
Additionally, environmental sensors help in collecting daily
field measurements that represent the growth conditions.
Furthermore, through the use of sophisticated genotyping
technologies, the genotypes of the different crop varieties
are also cataloged.

From this medley of plant genotypes, phenotypes, and
environmental measurements, scientists aim to extract plau-
sible hypotheses that can be field-tested and validated.
However, the task remains significantly challenging, mainly
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due to the dearth of automated software capabilities that are
capable of handling complex, high-dimensional data sets.
Scatter plots (such as the example shown in Fig. 1) and cor-
relation studies can reveal only high-level correlations and
behavioral patterns/differences within data. However, it is
common knowledge that different individuals or subgroups
of individuals behave differently under similar stimuli.
For instance, while it is useful to know that a given environ-
mental variable (e.g., humidity) shows an overall positive cor-
relation to a performance trait (say, crop height), such high-
level correlations obfuscate the variations within a popula-
tion—e.g., how different subgroups or genotypes respond to
different intervals in the environmental values; or how one
environmental variable interacts/interplays with another to
affect the performance trait; or how the same genotype
expresses variability in its performance under different
environments (plasticity).

1.1 Our Contributions

In this paper, we present a novel computational approach
for extracting hypotheses from high-dimensional data sets
such as ones collected in phenomics. We formulate the
problem of hypothesis extraction as one of: (a) identifying
the key connected structural features of the given data, and
(b) exploring the structural features in a way to facilitate
extraction of plausible hypotheses.

1.1.1 Structure Identification

Our approach uses emerging principles from algebraic topology
[5], [6] as the basis to observe and discern structural features
from raw phenomics data. The use of algebraic topology is
motivated by its ability to discern higher-order structure
within complex data, as later expounded in Section 2.1.

1.1.2 Topological Object Exploration

While topological representations offer a compact way to
represent and explore the data, the problem of how to navi-
gate such representations in order to glean hypothesis infor-
mation is still unexplored. In this paper, we formulate this
problem formally as identifying a) interesting flares and b)
interesting paths. The features we target encapsulate differ-
ent properties of the data, as detailed below.

Interesting Flares. Flares show how a subset of points (i.e.,
subpopulation) branches into smaller subpopulations when
exposed to certain environmental stimuli—e.g., a set of
plant individuals (or varieties) that shows divergent behav-
ior in their growth characteristics when one of the environ-
mental parameters (say, temperature) crosses a certain
value. Identifying such flares could help us identify subpo-
pulations of interest and track their behavioral evolution at
a finer granularity of the population.

Interesting Paths. A path, on the other hand, highlights a
trail of point clusters along which a “performance” variable
increases (or decreases). In other words, a path can reveal
different subpopulations that are prevalent in different per-
formance intervals. This can in turn help us contrast differ-
ent population subtypes or subsets by their performance
under different environmental conditions. An illustrative
example highlighting this feature is shown in Fig. 1.

We first define these features formally, and then present
algorithms to extract them from the topological objects
constructed. For ranking purposes, we define a notion of
interestingness.

1.1.3 Software

We have implemented our approach as a software tool,
which we call Hyppo-X (stands for: Hypothesis extraction
for phenomics). The tool is available as open source in the
GitHub repository [7].

Even though we demonstrate its utility in the context of
plant phenomics, our approach can be applied more
broadly to other similar application contexts where the goal
is to identify interesting subpopulations in general in an
unsupervised manner from complex, high-dimensional bio-
logical data sets.

2 RELATED WORK

We are not aware of any other automated or semi-automated
hypothesis extraction approaches for high-dimensional data
sets. In what follows, we present some related work, both in
topology and in plant phenomics, in order to put our contri-
butions in context.

2.1 Topology and Applications

There are several important properties that make algebraic
topology particularly effective for gleaning structural fea-
tures out of high-dimensional data. First, topology studies
shapes in a coordinate-free way, which enables comparison
among data sets from diverse sources or coordinate sys-
tems. Second, topological constructions are not sensitive to
small changes in data, and robust against noise. Third, topol-
ogy works with compressed representations of spaces in the
form of simplicial complexes (or triangulations) [5], which

Fig. 1. Scatter plot of a maize crop data set containing points grown in
two locations—Kansas (KS) and Nebraska (NE). Each data “point” is an
[individual, date/time] combination, with x-axis representing the Days
After Planting (time) and y-axis representing humidity as an environmen-
tal variable. While the scatter plot shows higher humidity values in KS
than in NE in general, it does not in itself have the capability to show
intra-population variation with respect to a performance variable. To this
end, the “interesting paths” generated by our TDA framework can be
useful. These paths are shown overlaid on the scatter plot; each path
highlights a subset of points that are connected by consistent perfor-
mance behavior (growth rate in this example). This could help us identify
behaviorally-coherent subpopulations within large populations that are
otherwise nontrivial to observe.
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preserve information relevant to how points are connected.
Compared to more traditional techniques such as principal
component analysis, multidimensional scaling, manifold
learning, and cluster analysis, topological methods are
known to be more sensitive to both large and small scale
patterns [8].

Topological data analysis (TDA) has been applied to a
wide range of application domains such as cancer genomics,
voting patterns of lawmakers, and players’ statistics in pro-
fessional sports [8], [9], [10]. It has also been applied to vari-
ous problems within computational biology including
structural biology [11], [12], [13] and gene expression analy-
sis [14]. The foundational work in TDA most relevant to this
paper was done by Carlsson and coworkers [8]. In [15], they
describe a framework called Mapper to model and visualize
high-dimensional data that reveals hidden structure. Most
of this work has been on the visualization front. A topology-
based approach was also rated as the best overall entry at
an expression QTL (eQTL) visualization competition orga-
nized by the BioVis community [16].

2.2 Tools for Plant Phenomics

Tools to decode associations between genotypes and pheno-
types have been under development for over two decades.
These tools look at the genetic variation observed at one or
more loci across the genome and study their correlation to
quantitative traits. The techniques used can be summarized
as follows: i) Linkage mapping usually begins with prior
knowledge of the order of genetic markers and the goal of
the mapping is to identify which markers co-segregate with
a phenotype in a segregating population. It is usually used
for traits controlled by fewer genes; ii) Quantitative Trait
Locus (QTL) mapping that extends linkage to an interval of
co-located markers along the genome; and iii) GWAS is

typically used for traits controlled by many genes. Typically
all individuals within a diversity panel are scored for both
genotypes at many markers AND phenotypes. Statistical
approaches are then used to identify statistically significant
associations between markers and variation in trait values.
In relation to capturing environmental variability, efforts
have been sparse. [17] presented an experimental frame-
work supplemented by GWAS to model environmental
effects on phenotypes. [18] provided a generalized linear
model-based method to capture gene to environment inter-
actions. In another related work, Yang et al. [19] study the
effect of environmental variables on photosynthesis effi-
ciency in plants using a curve fitting approach.

The approach presented in this paper complements the
above body of works in several ways including a newway to
formulate the problem as one of unsupervised structure dis-
covery, and in its method and capabilities (e.g., compact
representation, visualization, and exploratory data analysis).

3 HYPPO-X: OUR IMPLEMENTATION OF THE

MAPPER FRAMEWORK

The first step in our approach is to construct topological rep-
resentations using the connectivity properties of the data.
The motivation is to obtain higher order structural informa-
tion about the high-dimensional data prior to gleaning
hypotheses. We present an implementation for the abstract
Mapper algorithmic framework [15] for this purpose.

Fig. 2 is a schematic illustration of our approach. In what
follows, we describe in detail the implementation of each
step of the framework.

Input. We are given a set of n points S in a d-dimensional
space, representing the space of interest X. In the case of
phenomics, a point x 2 S represents a crop individual that is
measured at a particular time t, and the dimensions repre-
sent the attributes which describe the point at that time.
These include a set E of m factors (e.g., time, temperature,
humidity, etc.), and a performance trait, the phenotype p
(e.g., plant height or growth rate). Note that these dimen-
sions represent continuous variables (A point may also
have other non-continuous or static variables (e.g., the geno-
type). For the purpose of our topological representations we
will use only the continuous variables).

Output.We aim to create a highly compact coordinate-free
representation ofX as a simplicial complex, using a clustering
(overlapping) of the points inX (represented by P here).

Simplicial Complex.A simplicial complex is a collection of sim-
plices (nodes, edges, triangles, tetrahedra, etc.) that fit together
nicely—all subsimplices of each simplex are included in the
collection, and any two simplices that intersect do so in a
lower dimensional subsimplex. Specifically, each cluster is
represented by a node (0-simplex). Whenever two clusters
have a non-empty intersection, we add an edge (1-simplex),
and when three clusters intersect, we add a triangle (2-sim-
plex), and so on.

We now provide the main algorithmic details of the
approach.

3.1 Filtering

The first component of the framework is a continuous func-
tion f : X ! Z to a real-valued parameter space Z, called

Fig. 2. A schematic illustration of our Hyppo-X framework for analyzing
phenomics data. The input is a high-dimensional point cloud. For the
purpose of this schematic illustration, we show two arbitrary filters (fx
and fy) to bin the point cloud into overlapping intervals. Subsequently,
all points that fall into each interval are clustered using a distance func-
tion. Finally, we construct a topological object (shown as a simplicial
complex) by considering each cluster as a node, and edges, triangles, or
tetrahedrons formed between clusters that show either a 2-way, 3-way,
or 4-way intersections respectively. Once a topological object is created,
it can be visualized, and interesting features such as flares and paths
can be extracted.
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the filter function. For each factor Zj, we define a filter func-
tion fj : X ! Zj. We generate the open cover Uj ¼ fUijg of
Zj as follows:

1) We divide each factor Zj into nj intervals (“sub-
regions”), each of length ‘j. Thus the entire d-
dimensional region is divided into n1 � n2 � . . .� nm

subregions, where each subregion represents a hyper-
rectangle of area ‘1 � ‘2 � . . .� ‘m. Let the center of
ith hyper-rectangle be fC1i; C2i; . . .; Cmig.

2) We fix the center of each hyper-rectangle, and
increase the length along each factor Zj by a certain
percentage aj such that an overlapping region is cre-
ated between consecutive pairs of the open sets Uij

and Uiþ1;j, i.e., Uij \ Uiþ1;j 6¼ ;. After increasing the
length of all sides in this fashion, the new area of the
hyper-rectangle is ‘1ð1þ a1Þ � . . .� ‘mð1þ amÞ. Each
interval length ‘j is chosen empirically, based on
whether we want to observe the variation of pheno-
type with small or large changes in the filter function,
as suggested by the domain expert. Once ‘j is chosen,
we choose the aj value such that the resulting topo-
logical object is stable—see Section 3.5 for details. A
2D example is shown in Fig. 3.

We formulate the efficient determination of individual
point sets belonging to each hyper-rectangle as a problem of
range querying. Specifically, we implement the following
querying function:

Range Query. Given X and a hyper-rectangle h, return the
subset of points inX that lie in h.

To run this query efficiently, we use k-dimensional
hyper-octtrees [20], [21], which is a well known spatial
data structure that uses recursive bisection to index a spa-
tially distributed set of points. The compressed version of
an n-leaves hyper-octree can be constructed in OðnlognÞ
time [20]. Once constructed, a balanced binary search tree
that uses the order of the leaves is constructed. Using this
auxiliary data structure, in combination with the hyper-
octree, enables an OðlognÞ worst case search time for both
point and cell searches [20]. To answer the regional query
for a hyper-rectangle h, we perform a top-down traversal
of the hyper-octree by selectively retaining only those
paths that can include at least one point within h. This
can be achieved by keeping track of the corners of the
cell defined by each internal node in the tree. This
approach ensures that each such query can be answered
in time that is bounded by the number of points in the
hyper-rectangle.

3.2 Generation of Partial Clusters

Each open set (hyper-rectangle) computed by applying the
filter functions is processed independently for generation of
partial clusters. The goal of clustering is to partition the set
of points in each hyper-rectangle based on their phenotypic
performance.

Let U represent an open set of points fx1; x2; . . .xtg. Note
that each point x 2 U has a phenotypic trait value denoted
by pðxÞ. We define a distance function d based on the pheno-
typic values of points in U as follows. Given two points with
trait values pðxiÞ and pðxjÞ, the distance dði; jÞ ¼ jpðxiÞ�
pðxjÞj. Note that trait values are used for the purpose of com-
puting the distance function as they are reflective of perfor-
mance or behavior, and our overall goal is to characterize
such performance or behavior as a function of the factors rep-
resented by the filter variables.

Given U and distance function d, a partial clustering is
defined by a partitioning of the points in U . We denote the
set of partial clusters resulting from any given open set U as
CU . Subsequently, we denote the set of all partial clusters
formed from all open sets (hyper-rectangles) by C ¼ S

UCU .
For the purpose of clustering, any distance-based cluster-

ingmethod can be applied.We implemented a density-based
clustering approach very similar to that of DBSCAN [22]. It
covers two key points: a) the set of partial clusters generated
from within a hyper-rectangle represents a partitioning of
those points; and b) two partial clusters generated from a pair
of adjacent (overlapping) hyper-rectangles could potentially
have a non-empty intersection in points. In fact it is this inter-
section that renders connectivity among the partial clusters
generated, the information for which will be used in the sub-
sequent step of simplicial complex generation.

3.3 Construction of Simplicial Complexes

From the set of partial clusters C, we construct a simplicial
complex M as follows. We describe the details for the 2D
case, where no more than four open sets (hyper-rectangles)
can mutually intersect. The extension to higher dimensions
is straightforward. Starting with an empty simplicial com-
plex, we implement the following steps:

1) A 0-simplex (or vertex) is added to the simplicial
complexM for every partial cluster.

2) Next, a 1-simplex (edge) is added to M for every
non-empty 2-way intersection between any two par-
tial clusters. Note that such intersections could exist
only between partial clusters originating from differ-
ent open sets.

3) Following the same procedure as above, we also add
2-simplices (triangles) and 3-simplices (tetrahedra)
to M by enumerating only those 3-way and 4-way
intersections, respectively, that could be non-empty.

The required multi-way intersections are computed
using the range querying function described earlier (in
Section 3.1).

The Mapper algorithm [15] produces highly compressed
visual representations of high-dimensional data that reveal
significant structural aspects. For example, consider the
instance where X is a set of points in R2 sampled from a
noisy unit circle (see Fig. 3). We use the height of the points
(i.e., their y-coordinate values) as the filter function. We

Fig. 3. The Mapper algorithm applied to a set of points sampled from a
noisy circle. We use the height of the points (y-coordinate) as the filter
function. We consider a cover of Z � ½�1; 1� using n ¼ 3 overlapping
intervals, with adjacent intervals overlapping roughly by a third (i.e.,
a ¼ 33%). The final Mapper is shown on the right.
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consider a cover ofZ, which is almost ½�1; 1�, into n ¼ 3 over-
lapping intervals, with adjacent intervals overlapping
roughly by a third (i.e., a ¼ 33%). The pullback cover of X
then has four pieces, with the subset of points with height in
the middle interval forming two connected components.
We then use the euclidean distance between the points (in
R2) as the distance function to cluster the points in each com-
ponent using, e.g., single linkage clustering. Thus we get one
node per component, which we color from blue to red
according to the mean height of the points in each node. We
also get four connecting edges capturing the overlap of the
clusters. Note that we go from around 20 points in X to just
four nodes and four edges in the Mapper. At the same time,
this highly compact representation captures the underlying
structure ofX—the circle.

3.4 Graph Formulation

We construct a weighted directed graph G ¼ ðV;EÞ repre-
sentation of the 1-skeleton of M along with some additional
information. We set V as the set of vertices (0-simplices) of
M, and E as the set of edges (1-simplices) of M. We assign
directions and weights to the edges as follows. Each vertex
u 2 V denotes a subset of points from X that constitute a
partial cluster. We denote this subset as XðuÞ. We let gðuÞ
and fiðuÞ denote the average values of the phenotypic trait
(pð:Þ) and the filter function fi, respectively, for all points in
u; recall that we defined functions p and fi in Sections 3.2
and 3.1 respectively. Then,

gðuÞ ¼ Sx2XðuÞ pðxÞ
jXðuÞj (1)

and

fiðuÞ ¼
Sx2XðuÞ fiðxÞ
jXðuÞj ; i ¼ 1; . . .; h: (2)

For an edge e ¼ ðu; vÞ in E, we assign as its weight as:
vðeÞ ¼ jgðuÞ � gðvÞj . Notice vðeÞ � 0 for all edges e in G. In
addition, the direction of the edge e is set from the lower
weight vertex to the higher weight vertex—i.e., if vðuÞ �
vðvÞ then e : u! v, and e : v! u otherwise. We let n ¼ jV j
and m ¼ jEj denote the numbers of vertices and edges in G,
respectively.

3.4.1 Edge

If the simplicial complex was constructed using h out of the
m continuous variables (as filter functions), then along each
edge, each continuous variable fi can independently increase
or decrease. Since we are trying to link the change of each of
these variables relative to the change in phenotype (along an
edge), we record a h-bit signature for each edge.

We assign a h-bit binary signature SigðeÞ ¼ b1b2. . .bh to the
oriented edge e ¼ ðu; vÞ (i.e., e : u! v) to capture the covari-
ation of g and the filter functions fi. We set bi ¼ 1 if fiðuÞ �
fiðvÞ, and bi ¼ 0 otherwise. In other words, let an edge’s
direction be u! v. Then, if the mean value for the continu-
ous variable fi increases from u to v, then the corresponding
signature bit is 1; and 0 otherwise.

Fig. 4 illustrates a directed, signed edge in our represen-
tation. Signatures can be used as a way to study co-varying
filter variables, as is explained in Section 4.2.

Note that based on the above edge definition, there can-
not be any cycles in GðV;EÞ, making it a Directed Acyclic
Graph (DAG).

3.5 Persistent Homology

We employ the concept of persistent homology [23] to
choose the final topological object for further analysis. In
particular, the method in which overlapping intervals are
chosen (by specifying growing overlap percentages ai, see
Section 3.1) is already guided by this principle. Termed mul-
tiscale mapper, growing the intervals in this fashion ensures
the topological objects formed (at each set of growing ai val-
ues) satisfy a monotonic inclusion property [24]. Hence
results from persistent homology could be used to guaran-
tee (theoretical) stability of the topological object formed (in
the sense of persistence). At the same time, no implementa-
tion of multiscale mapper is known. Instead, we increase
each ai in steps of 2.5 percent, and construct the topological
objects for each set of ai values. We then construct the per-
sistence barcodes (in dimensions 0, 1, and 2) using the
sequence of topological objects formed by employing Java-
Plex, a standard software tool for this purpose. We then
pick ai’s such that all three barcodes do not change for val-
ues at or higher than the chosen cutoff, ensuring the corre-
sponding topological object chosen is indeed stable.

3.6 Computational Complexity Analysis

For a given value of a, the computational complexity of the
whole pipeline depends on the following three steps: a) store
data into hyper-octtree and access data from that tree, b) clus-
ter phenotypic points, and c) generate 1D skeleton of simpli-
cial complex. We already discussed the time complexity to
store and access the data in memory using hyper-octtree. The
time complexity isOðnlognÞwhere n ¼ jXj. On next step, we
apply clustering algorithm to all the phenotypic points belong
in a hyper-rectangle. According to Section 3.2, U is the set of
all phenotypic points for a hyper-rectangle. The time com-
plexity of clustering using DBSCAN algorithm is OðjUjÞ and
the total time for all the hyper-rectangles is: OðjU jÞ �Qm

i¼1 ni.

Finally, C is the set of clusters and we used union-find
algorithm to generate 1D skeleton of simplicial complex. The
time complexity of this step is: Oðlog jCjÞ. The overall time

complexity is: T ¼ OðnlognÞ þOðjU jÞ �Qm
i¼1 ni þOðlog jCjÞ.

We see that time complexity for clustering is the most domi-
nating part among these three steps. Therefore, the time com-
plexity is:OðjU jÞ �Qm

i¼1 ni.

4 EXTRACTING INTERESTING FEATURES

In this section, we define two features—flares and paths—
that can be extracted from the topological representations

Fig. 4. An edge e between two intersecting partial clusters (nodes u and
v). The direction of the edge indicates the direction in which the mean
phenotypic/performance value increases. The signature sðeÞ is a k-bit
vector that captures the directions of change for each of the k filter func-
tions (e.g., environmental variables) along the edge—0 implies decreas-
ing and 1 implies increasing. The ith bit corresponds to the ith filter
function.
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we construct (in Section 3), and subsequently describe our
algorithms to extract those features. Interesting flares and
paths hold two different types of information: flares are
more useful to identify subpopulation divergence, whereas
paths are more useful to identify and analyze subpopula-
tions over the performance spectrum.

4.1 Interesting Flares

We propose a framework to detect and use “flares” (defined
below) that characterize branching phenomena in phenom-
ics data sets.

We first construct a directed graph G based on the pro-
cess discussed in Section 3.4. Given an edge e ¼ fu; vg, we
direct the edge by default from the cluster showing a lower
phenotypic performance as measured by its mean pheno-
typic value to one with the higher mean phenotypic value
(see Fig. 4). This scheme allows us to track a trail of clusters
that show an improving trajectory in performance by a
user-selected phenotypic trait (e.g., yield or plant height). In
order to capture branching phenomena effectively, we mod-
ify this directing procedure by using mean phenotypic val-
ues of subset of individuals belonging to shared genotypes
between nodes u and v.

Definition 4.1. A source (terminal) node in a directed graph is
one that has no incoming (outgoing, respectively) edges. A
branching node in a directed graph is one that has at least two
outgoing edges.

Note that, by the above definitions, a source node can
also be potentially a branching node. Furthermore, we use
the term simple path to refer to a path in the graph in which
no node, with the possible exception of the sentinel nodes
(beginning and ending) of the path, is a branching node.

We define a stem and a branch associated with a branch-
ing node as follows (see Fig. 5 for an illustration).

Definition 4.2. Given a branching node u, a stem is a possibly
empty simple path that ends in u.

Note that there can be multiple stems ending at a branch-
ing node u. There are two classes of such stems—those that
are entirely non-overlapping (i.e., simple paths ending at u
that are otherwise node-disjoint) and those that are nested
(i.e., they originate from different starting nodes in the same
parent simple path ending at u).

Definition 4.3. Given a branching node u, a branch refers to a
non-empty path (simple or not) that originates at u.

Note that two branches originating at the same branching
node can possibly intersect. Furthermore, there are at least
two branches originating at a branching node (by definition
of a branching node).

Let BðuÞ denote the set of all branches originating at a
branching node u and SðuÞ denote the set of non-overlapping
(i.e., non-nested) stems ending at u.

Definition 4.4.We define a flare to be a unique combination of a
branching node u, a stem s 2 SðuÞ, and a subset B0ðuÞ 	 BðuÞ.
Here, we do not enforce that a stem be non-empty, to allow
detection of flares strictly originating at a given branching
node. However, we do enforce that each branch selected is non-
empty (i.e., has at least one edge) and that the subset selected
B0ðuÞ 	 BðuÞ contains at least two or more branches (as illus-
trated in Fig. 5).

The selection of the stem and branches to include in a flare
is computed deterministically as a function of the branching
node. Intuitively, the idea is to examine the set of individuals
“covered” by the branching node, and then “cast a net” in
either direction, on all simple paths leading up to u (candi-
date stems) and on all the branches originating at u, as far as
there is a non-empty intersection with the individual set of
the branching node (see Fig. 6).

The rationale for this selection scheme is as follows. In an
application such as phenomics, each “point” included in
a cluster is typically a given plant crop (“individual”)
observed in certain time and space. Therefore, by thewaywe
construct our topological object using intersections between
adjacent clusters, the same individual may continue to
appear in a sequence of clusters (i.e., in a path) on either side
of a branching node. Therefore, by considering the set of
individuals covered by a branching node, and examining
how that set distributes itself across the branches, we can dis-
cover interesting subpopulation-level variations (or differen-
ces in the way they respond to various environmental
filters). In a population where there is also a large genetic
diversity, one can adapt the same procedure to include the
set of genotypes covered (instead of plant individuals).

Detection of Flares. More formally, let NðuÞ denote the set
of individuals covered in the cluster corresponding to u.
Then, we follow the trail of clusters in either direction to
incrementally grow the corresponding stem or branch, as
follows. For stem computation, we enumerate all the simple
paths ending at u, and for each such simple path (candidate
stem), we begin at the node vwhich is the immediate prede-
cessor of u and compute NðvÞ \NðuÞ. If the intersection is
non-empty then we include v in the current stem and itera-
tively walk to the next predecessor (until either the simple
path terminates or the intersection becomes empty). Note
that at each step, we compute the intersection with NðuÞ.

A similar procedure is carried out to enumerate all
branches originating at u, walking forward instead of back-
ward, with the caveat that we do not need to restrict the elon-
gation process to only simple paths in the forward direction.

Fig. 5. An illustration of a flare.

Fig. 6. Conceptual illustration of how flares are constructed from a given
branching node u. Stems are selected from the set of incoming simple
paths, and branches are selected from the DAGs rooted at u. The
boundaries of the selection are determined by “casting a net” on either
side of u and including all “areas” where there is shared individual
coverage.See text above for further details.

1540 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 18, NO. 4, JULY/AUGUST 2021



In other words, if we encounter another branching node, the
algorithm proceeds recursively, except that at every subse-
quent step going forward from the second branching node,
the intersection is computed only relative to the original
branching node u.

Note that the above procedure is deterministic, in that
given a branching node, the reach of a flare involving that
branching node is determined by the reach of the set of indi-
viduals in u on either side of u in the DAG. In fact, this pro-
cedure would also detect all the flares involving u. More
precisely, the cross-product of SðuÞ and B0ðuÞ (as specified
in Definition 4.4) yields the set of all flares involving u.

Scoring Flares. In order to compare and relatively rank
flares, we devise a simple scheme to score each flare. Given
a flare f , we compute its “interestingness score” as follows.

First, we associate a weight to all edges. The weight of an
edge is given by the absolute difference in the phenotypic
performance (cluster means) between the two correspond-
ing clusters. Intuitively, the larger the performance varia-
tion, the more interesting that edge is to a branch. Note that
since we use the absolute value of the difference, all edge
weights are positive.

We score the flare using its edge weights as follows (see
Fig. 7). Note that there is a unique subgraph induced by
each flare and that subgraph also will be acyclic (as it is
derived from a DAG). Therefore, we perform a simple bot-
tom-up/post-order traversal of that induced DAG, starting
at each terminal node and climbing up the parent and the
ancestor levels. At each step, we perform a simple gather-
scatter way to propagate the scores across levels. More spe-
cifically, at a node u, all the scores of its child branches are
added (“gather”), and the value is then equally divided
(“scatter”) among its predecessor branches. The algorithm
terminates when it reaches the root branching node u of this
flare. This simple upward accumulation nature of the proce-
dure ensures that it runs in time that is linear in the size of
the DAG. Once scored, the flares can be rank ordered in the
decreasing order of score and displayed.

In our current implementation, only branches contribute
to the score of a flare at a branching node. Stems do not con-
tribute, the rationale being that examining the branches typ-
ically suffices for explaining how a population, covered at
the branching node, diverges. However, the procedure can
be extended to include stem scores as needed. The informa-
tion contained in the stem is still useful during our subse-
quent analysis and interpretation.

4.2 Interesting Paths

We propose a framework to detect and use “paths” (defined
below) that helps to identify interesting subpopulation in
phenomics data sets.

Definition 4.5. An interesting k-path for a given k with
1 � k � n� 1 is a directed path P ¼ ½ei1 ; . . .; eik � of k edges in

G, such that SigðerÞ is identical for all r ¼ i1; . . .; ik. An inter-
esting path is a path of arbitrary length in the interval
½1; n� 1�.

Definition 4.6. Given an interesting k-path P ¼ ½ei1 ; . . .; eik � in
G as specified in Definition 4.5, we define its interestingness
score as follows.

IðP Þ ¼
Xk

r¼1
vðeirÞ � log ð1þ rÞ: (3)

In particular, the contribution of an edge e 2 P to IðP Þ is set
to vðeÞ � log ð1þ rankðe; P ÞÞ, where rankðe; P Þ is the rank
or order of edge e as it appears in P .

Intuitively, we use the rank of an edge as an inflation fac-
tor for its weight—the later an edge appears in the path, the
more its weight will count toward the interestingness of
the path. This logic incentivizes the growth of long paths.
The log function, on the other hand, helps temper this
growth in terms of number of edges.

Optimization Problems. We now present multiple optimi-
zation problems with the broader goal of identifying inter-
esting path(s) that maximize interestingness score(s).

MAX-IP. Find an interesting path P in G such that IðP Þ is
maximized.

IP. Find a collection P of interesting paths in G such that
the total interestingness score IðPÞ ¼P

P2P IðP Þ is maxi-
mized (P will exactly cover E, i.e., each e 2 E is part of
exactly one P 2 P).

A detailed analysis the above optimization problems (and
related variants) with their respective complexity results and
proofs are provided in a separatemanuscript [25]. In what fol-
lows, we present an exact algorithm for the MAX-IP problem.
We also present an efficient heuristic for the IP problem.
Both these algorithms are implemented in our Hyppo-X

framework.

4.2.1 The MAX-IP Problem

The goal of MAX-IP is to identify an interesting path with the
maximum interestingness score. We show MAX-IP is P on
directed acyclic graphs.

Lemma 4.7.MAX-IP on a directed acyclic graphG ¼ ðV;EÞ is in P.
Proof. We present a polynomial time algorithm for MAX-IP

on a DAG (as proof of Lemma 4.7). The input is a DAG
G ¼ ðV;EÞwith n vertices andm edges, with edgeweights
vðeÞ � 0 and signatures SigðeÞ for all e 2 E. The output is
an interesting path P 
 which has the maximum interest-
ingness score in G. We use dynamic programming, with
the forward phase computing IðP 
Þ and the backtracking
procedure reconstructing a corresponding P 
.

Let T ði; jÞ denote the score of a maximum interesting
path of length j edges ending at edge ei for i 2 ½1;m�. Since
an interesting path could be of length at most ðn� 1Þ, we
have j 2 ½1; n� 1�. Therefore the values in the recurrence
can be maintained in a 2-dimensional table of size
m� ðn� 1Þ, as illustrated in Fig. 8. The algorithm has
three steps:

� Initialization: T ði; 1Þ ¼ vðeiÞ � log ð2Þ;where 1 �
i � m.

Fig. 7. Illustration of how the interestingness score propagates through a
flare. Computation proceeds as an accumulation process from the
branches to the stems.
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� Recurrence: For an edge e ¼ ðu; vÞ 2 E, we define a

predecessor edge of e as any edge e0 2 E of the form

e0 ¼ ðw; uÞ and Sigðe0Þ ¼ SigðeÞ. Let PredðeÞ denote
the set of all predecessor edges of e. Note that

PredðeÞ can be possibly empty. We define the
recurrence for T ði; jÞ as follows.

T ði; jÞ ¼ max
ei0 2PredðeiÞ

�
T ði0; j� 1Þ þ vðeiÞ � log ð1þ jÞ�

(4)

� Output: We report the score that is maximum in
the entire table. A corresponding optimal path P 


can be obtained by backtracking from that cell to
the first column. tu

Proof of Correctness. Any interesting path in G can be at
most n� 1 edges long. As a particular edge could appear
anywhere along such a path, its rank can range between 1
and n� 1. Hence the m� ðn� 1Þ recurrence table T suffi-
ciently captures all possibilities for each edge in E. The fol-
lowing key observation completes the proof. Let P 
ði; jÞ
denote an optimal scoring path, if one exists, of length

j 2 ½1; n� 1� ending at edge ei 2 E. If P 
ði; jÞ exists and if

j > 1, then there should also exist P 
ði0; j� 1Þ where

i0 2 PredðeiÞ. Furthermore, the edge ei could not have

appeared in P 
ði0; j� 1Þ because G is acyclic. Therefore, due

to the edge-disjoint nature of P 
ði0; j� 1Þ and the remainder
of P 
ði; jÞ (which is ei), the principle of optimality is pre-
served—i.e., themaximumoperator in Eqn. (4) is guaranteed
to ensure optimality of T ði; jÞ.

Complexity Analysis. The above dynamic programming
algorithm can be implemented to run in OðmnÞ space and a
worst-case time complexity of OðmndinÞ, where din denotes
the maximum indegree of any vertex in V .

Algorithmic Improvements. The above dynamic program-
ming algorithm for MAX-IP for DAGs can be implemented
to run in space and time smaller in practice than the worst
case limits suggested above. First, we note that computing
the full table T is likely to be wasteful, as it is likely to be
sparse in practice. The sparsity of T follows from the obser-
vation that an interesting path of length j ending at edge ei
can exist only if there exists at least one other interesting
path of length j� 1 ending at one of ei’s predecessor edges.
We can exploit this property by designing an iterative
implementation as follows.

Instead of storing the entire table T , we store only the rows
(edges), and introduce columns on a “need basis” by main-
taining a dynamic listLðeiÞ of column indices for each edge ei.

S1) Initially, we assign LðeiÞ ¼ f1g, as each edge is
guaranteed to be in an interesting path of length at
least 1 (the path consisting of the edge by itself).

S2) In general, the algorithm performs multiple itera-
tions; within each iteration, we visit and update the
dynamic lists for all edges in E as follows. For every
edge ei0 2 PredðeiÞ, LðeiÞ ¼ LðeiÞ [ f‘þ 1 j ‘ 2 Lðei0 Þg.
The algorithm iterates until there is no further
change in the lists for any of the edges.

The number of iterations in the above implementation can
be bounded by the length of the longest path in the DAG (i.e.,
the diameter dmax), which is less than n. Also, we implement
the list update from predecessors to successors such that each
edge is visited only a constant number of times (despite the
varying products of in- and out-degrees at different vertices).
To this end, we implement the update in S2 as a two-step pro-
cess: first, performing a union of all lists from the predecessor
edges of the form ð
; vÞ so that the merged lists can be used to
update the lists of all the successor edges of the form ðv; 
Þ.
Thus thework in each iteration is bounded byOðmÞ.

Taken together, even in the worst-case scenario of
ðdmax þ 1Þ iterations, the overall time to construct these
dynamic lists is OðmdmaxÞ. Furthermore, during the list con-
struction process, if one were to carefully store the predeces-
sor locations using pointers, then the computation of the
T ði; jÞ recurrence in each cell can be executed in time pro-
portional to the number of non-empty predecessor values in
the table. Overall, this revised algorithm can be imple-
mented to run in time OðmdmaxdinÞ, and in space propor-
tional to the number of non-zero values in the matrix.

Further, the above implementation is also inherently par-
allel since the list value at an edge in the current iteration
depends only on the list values of its predecessors from the
previous iteration.

4.2.2 An Efficient Heuristic for IP

In addition to an exact algorithm forMAX-IP (Section 4.2.1), we
also present an efficient heuristic for finding IP. The IP formu-
lation aims at identifying a set of edge-disjoint interesting
paths in G such that the overall sum of their scores is maxi-
mized. IP is relevant in contexts where the user is interested
not only in themaximum-scoring path but alsomultiple others
that cover different parts (and hence different subpopulations)
of G. Once identified, these paths can be rank ordered in
descending order of their scores for display purposes.

Algorithm 1. Greedy Heuristic for IP on DAGs

Input: DAG G ¼ ðV;EÞwith vðeÞ; SigðeÞ 8e 2 E
Output: A set of edge-disjoint interesting paths P in G
P ¼ ;
repeat
P  Compute MAX-IP on G ¼ ðV;EÞ and return a most inter-
esting path
P  P [ fPg
Remove edges in P from E

until E ¼ ;
return P

Fig. 8. Table T ði; jÞ for the MAX-IP algorithm.
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Algorithm 1 shows the pseudocode for our IP heuristic.
The approach is a simple greedy strategy, in which we itera-
tively find the next best scoring path (by calling MAX-IP),
add it to the working set of paths, and remove all edges of
that path from the graph. This procedure is carried out until
there are no more edges left. The algorithm has a worst-case

runtime complexity of Oðm2dmaxdinÞ.

5 EXPERIMENTAL EVALUATION

In our experiments, we used two real-world maize data sets.
For the first batch of experiments described in Section 5.1,
we used a maize data set containing growth information of
two maize genotypes that were cultivated in two different
locations in the U.S. (Kansas and Nebraska). We refer to this
data set as the “KS/NE” data set. We used this data set to
test various functionalities of our Hyppo-X framework
including hypotheses extraction in the case of single filter
function (Section 5.2) and two filter functions (Section 5.3)
using both flares and paths. For the second batch of experi-
ments, we used another maize data set collected from two
field locations in Nebraska that had identical conditions
except for one environmental parameter—one location was
irrigated while the other was not. This data set covers indi-
viduals from 80 genotypes (as described in Section 5.4). We
refer to this data set as “irrigation-controlled” data set.

5.1 KS/NE Data Set

This maize data set consists of phenotypic and environmen-
tal measurements for two genotypes (abbreviated here for
simplicity as A and B), grown in two geographic locations
(Nebraska (NE) and Kansas (KS)). The data consists of daily
measurements of the genotypes’ growth rate alongside mul-
tiple environmental variables, over the course of the first 100
days of the growing season. For the purpose of our analysis
we treat each unique [genotype, location, time] combination

as a “point”. Consequently, the above data set consists of
N ¼ 400 points. Here, “time” is measured in Days After
Planting (DAP). An “individual” in this data set refers to a
plant individual that corresponds to a [genotype, location]
combination. Each point has one phenotypic value (observed
growth rate) and 10 environmental variables, including
(among others) humidity, temperature, rainfall, solar radia-
tion, soil moisture, and soil temperature.

To study flares and paths, we constructed topological
objects out of the KS/NE data set, using single and two filter
function(s).

5.2 Single Filter Function

First, we constructed our topological object using DAP as
the filter and used the difference in growth rates to calculate
pairwise distances between points (in the clustering step).
This study is aimed at understanding how the population
of individuals (of both genotypes in both locations) show
varying trends in phenotypic performance (i.e., growth rate
here) as a function of time.

The resulting object along with the detected flares are
shown in Fig. 9, based on which we make the following
observations.

1) Until around DAP �40, all four subpopulations
behave similarly (as shown by the leading trail of
clusters).

2) Around DAP �40, two branching events emerge: i)
The first branching event occurs when the {KS,B}
subpopulation separates from the rest due to a sig-
nificantly accelerated growth spurt (compared to the
rest). ii) The second event corresponds to the {KS,A}
subpopulation separating from the rest. Fig. 9B
shows the cluster nodes colored by growth rate.

3) It is not until DAP � 70 that the Nebraska varieties
show a similar separation in their behavior.

Fig. 9. Topological object constructed using DAP as a single filter function and our method detected interesting flares from the object. The horizontal
color bar indicates the gradient of DAP, with the value increasing from left to right. (A) Each cluster (node) of the topological object is rendered as a
pie-chart showing the distribution of their four classes of individuals. Long arcs of different colors show interesting flares, and the corresponding
branching nodes are identified with bold border. The blue flare (long arc spanning DAP 1 through 60) was ranked as the top interesting flare.
(B) Each cluster colored by its mean growth rate (phenotype), with branches showing active growth (high phenotype) marked.

KAMRUZZAMAN ET AL.: HYPPO-X: A SCALABLE EXPLORATORY FRAMEWORK FOR ANALYZING COMPLEX PHENOMICS DATA 1543



All the above branching events were successfully
detected by our flare detection algorithm (shown by long
arcs of different colors) in a runtime of 9 milliseconds after
the Mapper graph is built. The runtime to construct mapper
graph from the KS/NE data set was 38.7 milliseconds. Note
that our method is unsupervised—the information about the
source genotypes and locations (pie-chart distribution in
Fig. 9A) was applied only after the analysis was completed,
just to aid in our interpretation. These results demonstrate
our method’s ability to successfully delineate interesting
subpopulations that show divergent behavior in an unsu-
pervised manner.

Our path detection algorithm also identified interesting
paths in the object of Fig. 9 which are already covered by
either a stem of a flare or a branch of a flare or both. Therefore,
the observationswe canmake based on paths using the single
filter function DAP are similar to ones wemade using flares.

5.3 Two Filter Functions

In the results for single filter function given above, the fact
that genotype B in Kansas shows a significantly altered
behavior compared to the same genotype in Nebraska indi-
cates that there could be causal environmental factors at
play that influence the phenotype. To better characterize
such potential candidates for key environmental variables,
we conduct two-filter studies (one filter being time or DAP,
and another filter being one of the many environmental var-
iables recorded). We explored choices of a multitude of
environmental variables. In the interest of space, we present
the results for {DAP, humidity} combination as it led to
more interesting observations compared to other variables.

Flares. Fig. 10 shows the corresponding topological object
on which we show flares. Based on this figure, we make the
following observations:

1) Fig. 10A shows that in the initial growth period (1–10
DAP), the performance at both locations are highly
comparable, as is evidenced by the clustering of both
locations.

2) Around DAP 11 the locations diverge into two sepa-
rate branches (as shown in panel (A)). This separa-
tion is correlated with variation in local humidity
values (see panel (C))—more specifically, while
Nebraska experienced steadily low humidity values
until around DAP 50, Kansas experienced fluctuat-
ing and often high humid conditions for most of the
period until around DAP 60. This period of high
humidity fluctuation also coincides with the acceler-
ated growth rate that Kansas experiences from
around DAP 40 (panel (B)). As for Nebraska, the
increase in growth rates occur eventually around
DAP 60 (panel (B)) and that too coincides with
higher values in humidity (panel (C)).

Path Analysis. In the next step, we ran our interesting
path detection algorithm, as described in Section 4.2. All
runs were performed with the following settings: i) each
path detected is such that all its edges have the same signa-
ture; and ii) each path should have at least 3 edges.

The collection of paths that were detected by our algorithm
roughly divide the topological object (Fig. S1B in the supple-
mentary document, which can be found on the Computer

Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TCBB.2019.2947500) into three growth stages at
each location (Kansas/Nebraska) based on the growth-rate of
plants with respect to the time (DAP). These growth stages
are a) Early growth stage, b)Mid-growth stage, and c)Mature
growth stage—as shown in Fig. S1 (in the supplementary doc-
ument, available online).

� Early growth stage: The collection of co-located paths
P7; P10; P11; P12 helps us understand how the geno-
type behaves in its early stages of development in the
two locations. More specifically, both paths [P7; P11]
capture nodes that contain points from both locations
because their performances in similar conditions
(DAP and humidity) are also quite similar; however,
after roughly 22 days after planting (Fig. S1C, avail-
able online), the points from KS and NE separate
(into P10 and P12 respectively).

� Mid-growth stage in Kansas: The sequence of paths
[P6; P5; P1], which also includes the most interesting
path by interestingness score (P1), represents the
active growth period for the KS population (see
Fig. S1B, available online). In this period, the growth
rate increased from 1.38 cm/day to 8.03 cm/day,
from approximately 35 days after planting to 61 days
after planting (see Fig. S1C, available online). In con-
trast, the plants in NE, despite being the same geno-
type, had very low growth rates during roughly the
same period in time (39 days after planting to 60 days
after planting; see paths [P9; P8] of both Figs. S1B and
S1C, available online).

Incidentally, examining the humidity trends in the
same period for these two locations (see Fig. S1D,
available online), we see that the humidity was very
low in NE compared to KS, and that the increase in
humidity values for the NE population (after 56 days
after planting) coincides with the increased activity in
its growth rate (see Figs. S1C and S1D, available
online)—thereby giving us an indicator that humidity
may have an active role in NE, perhaps more so
than in KS, in accelerating growth rate during the
mid-stages of development.

� Mid-growth stage in Nebraska: The sequences of paths
[P9; P8] and [P3; P4] represent the active growth
period of the NE population (more specifically, the
growth burst starts from the middle of the path P8),
where the growth rate increases from 1.19 cm/day to
6.57 cm/day (Fig. S1B, available online) This high
activity period starts from approximately 56 days
after planting and ends roughly at 80 days after plant-
ing. As indicated above, this active growth rate coin-
cideswith the period having higher humidity for NE.

� Mature growth stage: The path P2 helps us under-
stand how the genotype behaves in its later stages
of development in the two locations. More specifi-
cally, path P2 starts with points from both locations
because their performances in similar conditions
(DAP and humidity) are also quite similar. How-
ever, after roughly 92 days after planting (Fig. S1C,
available online), plants in both locations do not
grow much.
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� The path P7 and P2 illustrate that plants of the geno-
type B do not grow as much before 22 days after
planting and after 92 days after planting, respectively.

To better understand the results of Hyppo-X and contrast
the capability of ourmethodwithmore traditional approaches,
we plotted all the genotypeB points as a scatter plot, based on
their DAP and humidity (see Fig. 1). The coloring of the points
are by their location. As can be seen, the plot shows a clear sep-
aration between NE and KS humidity values, with NE
exposed to lower humidity values than KS, in general. Note
that this is a coarse-level information which could have been
easily obtained through a correlation test as well. However the

limitation of such correlation tests is that they point to global
trendswithout providing insight into the variabilities thatmay
exist across different subpopulations at different scales. On the
other hand, identifying such subpopulation-based variability
(as output by the paths and flares from Hyppo-X) could prove
useful in delineating key environmental or temporal triggers
that impact crop performance, and on how that behavior
varies within a diverse population. That is where our topol-
ogy-based approach can be useful—to make such inferences
from the data and formulate testable hypotheses.

To better illustrate this advantage, we overlaid the inter-
esting path sequences identified by our paths (discussed

Fig. 10. The topological object constructed using only the individuals of genotype B, using DAP and humidity as the two filter functions. The horizontal
color bar indicates the gradient of DAP, with its value increasing from left to right. (A) Each cluster (node) is rendered as a pie-chart showing the distri-
bution of its individuals from the two locations (KS and NE) for genotype B. Parts (B) and (C) show the same topological object, however with each
cluster (node) colored by the growth rate (phenotype) and humidity (environment), respectively. Our method captured one large flare, which is
indicated by the red branched arc in Part (A).
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above) on to the scatter plot. These path sequences are
shown as arcs in Fig. 1. As can be seen, our interesting paths
show four major “features” within this scatter plot:

i) the initial sequence where both NE and KS varieties
behave similarly in their initial developmental stages,
before branching out (around 22 DAP);

ii) the period of active growth for [KS,B] between
roughly 35 and 61 days after planting; and

iii) the period of active growth for [NE,B] appearing
much later, between roughly 56 and 80 days after
planting.

iv) The path that separates at around 22 days after
planting, merges back after 92 days after planting.

More interestingly, at the end of our interesting paths
([P9; P8]) for [NE,B] is also for the first time the humidity
value experienced a spike for that location—increasing from
values under 35 to around 50s—effectively implying (or at
least indicating) a probable cause for increased growth activ-
ity. After that trigger, minor fluctuations in humidity seemed
to have little effect in the growth rate, which continued to
increase through 80 days after planting. This study sets up a
testable link between a genotype (B) and environmental vari-
able (in this case, humidity) toward a performance trait
(growth rate).

These results and observations suggest two plausible
hypotheses: (a) that humidity is likely to influence the
growth rate; and (b) that this degree of influence is more pro-
nounced on genotype B than for genotype A. The precise
time and humidity intervals where such effects manifest are
shown by the flare.

This illustrative example serves to demonstrate that our
topology-based method also has the potential to enrich fur-
ther the information that can be obtained through conven-
tional methods such as scatter plots.

5.4 Application on Irrigation-Controlled Data Set

5.4.1 Irrigation Data Set

This maize data set consists of phenotypic and environmental
measurements for 80 genotypes, grown in two field locations
in Nebraska (NE), USA. Over the growing season, one field
location solely depended on rainfall whereas irrigation facility
wasprovided to the other field location.Apart from this irriga-
tion facility, all other environmental parameters are identical
in both field locations. The data consists of dailymeasurements
of the genotypes’ growth rates alongside multiple environ-
mental variables, over the course of the first 80 days of the
growing season. For the purpose of our analysis we treat each
unique [genotype, time] combination as a “point”. For each
point, we computed the growth rate difference from the irri-
gated location to the non-irrigated location. Consequently, the
above data set consists of N ¼ 6400 points. Here, “time” was
measured in Days After Planting. An “individual” in this data
set refers to a specific genotypic plant.

Topological Object Construction: First, we constructed our
topological object using DAP as a single filter function
(parameter setting for this analysis is given in supplementary
Table S1, available online) and phenotypic difference
between points for clustering. This study is aimed at under-
standing how the population of individuals (genotypes)

show varying trends in phenotypic performance (i.e., growth
rate here) as a function of time with respect to two distinct
controlled environments (irrigated and non-irrigated). The
resulting object is shown in Fig. 11. The runtime to construct
mapper graph from this data set was 490 milliseconds and
the time to detect all flareswas 44.47 (ms).

Object Exploration. From the resulting topological object
shown in Fig. 11, we observed phenotypic variation of some
of the genotypes when they were exposed in two different
controlled environments (irrigated and non-irrigated).
According to Fig. 11A, all the nodes along the bold black
colored arc (i.e., the “spine”) show similar performance,
which indicates that the points belonging to these nodes
have small growth rate variation between irrigated and
non-irrigated environments. On the other hand, the nodes
those are marked by red-colored arcs contain points which
show large growth rate variation between irrigated and
non-irrigated environments. The genotypes listed in
Table S2 in the supplementary document, available online,
are retrieved from the points belonging to the nodes marked
by red arcs (Fig. 11B).

The set of genotypes covered in the nodes marked by red
arcs are interesting because each of them shows phenotypic
variation when exposed to two environments. Originally,
our working hypothesis was that this phenotypic diver-
gence is a result of irrigation versus non-irrigation, or some
other factors that affected growth in these plants. Upon
careful examination by domain scientists who generated the
data (Hey and Schnable, coauthors of this manuscript), we
indeed confirmed that the plants selected in these genotypes
were affected by a root-worm disease. Root-worm is an
insect that cuts roots of a plant, which lead to the death of
the plants. Our method is able to detect such affected geno-
typic plants in a unsupervised way. For a closer look, we
zoomed into part of the topological object (Fig. 11B) and
marked the starting and ending DAP for each of the geno-
types listed in Table S2 in the supplementary document,
available online.

The above application on the irrigation controlled data
set also shows the ability of our framework to extract
another type of topological feature—one of spines where
majority of the points follow one behavioral pattern while a
small subset of points deviate (as divergent paths). For
instance, in Fig. 11 spines are indicated by the thick black
arc, while the divergent paths are identified by red arcs. An
extension of our framework could be to score and identify
interesting spines similar to how we identified flares and
paths. Another related extension is one of finding highly
traversed paths in the topological object and compare them
to less traversed paths.

6 CONCLUSION

We have presented a scalable exploratory framework for
navigating high-dimensional data sets and applied it to
plant phenomics data to analyze the effect of environmental
factors on phenotypic traits. At its core, our approach is fun-
damentally different from state-of-the-art techniques in
many ways as outlined below. First, it inherits the advan-
tages of topology including its use of coordinate-free repre-
sentations, robustness to noise, and natural rendition of
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compact representations. Second, by allowing the user to
define multiple filter functions, it enables them to study the
combined effect of multiple factors on target performance
traits. Third, through its clustering and visualization capa-
bilities, it provides a way for domain experts to readily
observe emergent behavior among different groups or sub-
populations without requiring the knowledge of any priors.
This feature enables scientists to identify subpopulations,
compare them, and perform more targeted studies to for-
mulate and test hypotheses.

Our approach is scalable in that it can scale to large data
sets containing possibly tens of thousands of points, reduc-
ing such large data to tens or hundreds of partial clusters,
thereby making visualization and exploration possible.

While the scope of this work can be further expanded
through application to a broader range of phenomics data
collections, the results presented in this paper show a prom-
ising application of topology and its role in hypothesis
extraction from high-dimensional data sets. Considering the
nascency of the phenomics field, tools for users to explore
data and help extract plausible hypothesis in a data-guided
manner from large-scale complex data will be important
going forward.
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