
Balanced Coloring for Parallel Computing Applications

Hao Lu1, Mahantesh Halappanavar2, Daniel Chavarrı́a-Miranda2,

Assefaw Gebremedhin1, and Ananth Kalyanaraman1

E-mail: luhowardmark@eecs.wsu.edu, {hala, daniel.chavarria}@pnnl.gov, {assefaw, ananth}@eecs.wsu.edu
1 Washington State University 2 Pacific Northwest National Laboratory

Abstract—Graph coloring is used to identify subsets of
independent tasks in parallel scientific computing applications.
Traditional coloring heuristics aim to reduce the number of
colors used as that number also corresponds to the number of
parallel steps in the application. However, if the color classes
produced have a skew in their sizes, utilization of hardware
resources becomes inefficient, especially for the smaller color
classes. Equitable coloring is a theoretical formulation of
coloring that guarantees a perfect balance among color classes,
and its practical relaxation is referred to as balanced coloring.
In this paper, we revisit the problem of balanced coloring in
the context of parallel computing. The goal is to achieve a
balanced coloring of an input graph without increasing the
number of colors that an algorithm oblivious to balance would
have used. We propose and study multiple heuristics that aim
to achieve such a balanced coloring, present parallelization
approaches for multi-core and manycore architectures, and
cross-evaluate their effectiveness with respect to the quality
of balance achieved and performance. Furthermore, we study
the impact of the proposed balanced coloring heuristics on
a concrete application - viz. parallel community detection,
which is an example of an irregular application. The thorough
treatment of balanced coloring presented in this paper from
algorithms to application is expected to serve as a valuable
resource to parallel application developers who seek to improve
parallel performance of their applications using coloring.

Keywords-Balanced coloring; Tilera manycore architecture;
community detection; graph algorithms.

I. INTRODUCTION

Decomposing a computational task into constituent parts
that can be executed simultaneously or identifying elements
of composite data that can safely be updated simultaneously
is a pervasive primitive in parallel computing. An imme-
diately associated need is that of scheduling the identified
subtasks (or data update operations) onto the processing
units of a platform. In such a scenario, one would for
performance reasons need to both maximize the amount
of parallel execution (or data update) attained in a given
step and minimize the total number of steps needed. In
cases where the computational or data dependency between
entities can be abstracted using a graph, this dual objective
can be modeled and solved as a graph coloring problem.

The standard graph coloring problem aims at minimizing
the number of colors used (that is, the number of inde-
pendent subsets or color classes) without any requirement
on the size of the color classes relative to each other.
It therefore permits cases where the color classes can be
highly unbalanced. In fact, by their nature, most practical

algorithms for the standard graph coloring problem produce
highly skewed color classes. This will be undesirable in the
scenario sketched earlier because of load imbalance.

In this paper we consider the design, implementation
and performance evaluation of algorithms for a variant of
the graph coloring problem that also requires that color
classes be balanced in their sizes. There is a body of work
on equitable colorings—a theoretical formulation in which
color classes are required to be perfectly balanced—in the
graph theory literature, but little or no prior work exists
on fast, practical balanced coloring algorithms and their
parallelization on contemporary and emerging platforms. We
seek to reduce this deficiency. The scope and contributions
of the paper are as follows:

• (Algorithms) We investigate a variety of techniques,
grouped in two main categories, for achieving balanced
coloring. Algorithms in the first category aim to obtain
a balanced coloring in a single attempt (ab initio).
Those in the second category begin with an initial
coloring oblivious to balance and use that informa-
tion to produce a new coloring that is also balanced
(guided). We propose three different types of guided
balanced coloring algorithms (each of which could
further be specialized to tune for performance) and
examine several variants of ab initio approaches.

• (Parallelization) We parallelize all of the balanced
coloring algorithms we explore targeting two different
architectures: conventional multicore x86 architectures
and a specialized many-core platform, Tilera TileGx36.

• (Application) We demonstrate the impact of balanced
coloring on community detection — which is a widely
used graph application. Our results show that using
balanced coloring for this application could yield per-
formance improvements while preserving quality.

The paper is organized as follows. We provide background
and motivate our work in Sec. II. We describe the sequential
versions of the various algorithms we explore for balanced
coloring in Sec. III and discuss how they are parallelized
in Sec. IV. We review essential features of the platforms
for which the implementations are targeted in Sec. V. We
present and discuss experimental results in Sec. VI. We
conclude in Sec. VII.

2015 IEEE 29th International Parallel and Distributed Processing Symposium

1530-2075/15 $31.00 © 2015 IEEE

DOI 10.1109/IPDPS.2015.113

7

II. BACKGROUND

A. Basics of Equitable and Balanced Coloring
A coloring of a graph is an assignment of colors to

vertices such that any two adjacent vertices get different
colors. A coloring is said to be equitable if the sizes of
any two color classes differ by at most one. The concept of
equitable coloring was introduced by Meyer in a 1973 paper
[1], but its history goes even further back to a conjecture by
Erdös, a conjecture settled in 1970 by Hajnal and Szemerédi
[2] forming their celebrated theorem: a graph with maximal
degree Δ is equitably k-colorable if k ≥ Δ+1. This bound is
sharp. The equitable coloring problem asks for an equitable
k-coloring with the smallest possible k. The problem is
NP-hard, as the classical coloring problem can be trivially
reduced to it. Furmanczyk [3] provides a survey of work on
equitable colorings until the early 2000’s.

In equitable coloring, as stated earlier, the difference
in size between any pair of color classes is required to
be at most one. This ideal can for some practical needs
be unnecessarily stringent and too costly to attain. In the
closely related heuristic variant we refer to here as balanced
coloring, the restriction is relaxed; the difference in color
class size instead is allowed to be at most a “small” number
greater than 1. One formal way to state this is to say that
each color class is bounded by some parameter l. Bodleander
and Fomin [5] study this problem and show that it, as well
as the equitable coloring problem itself, can be solved in
polynomial time for graphs with bounded treewidth.

Equitable coloring and balanced coloring find impor-
tant applications in various areas. Examples include load-
balanced partitioning for domain decomposition methods
[6], parallel sparse matrix computations on irregular grids
[7], and various types of scheduling and timetabling prob-
lems [8]. Tucker in a 1973 paper [9] discusses how equitable
coloring theory has been used in helping out Operations
Researchers at the Urban Science Department at Stony
Brook, who were faced with a challenging routing problem
that sought to optimize scheduling of garbage collecting
trucks in the city.

Balanced coloring in the context of parallel scientific
computing was studied by Gjertsen, Jones and Plassmann
[10], where they developed a balanced parallel coloring
heuristic building on their own earlier work on parallel graph
coloring that was unconcerned with balancing color classes
[11]. Their balanced coloring heuristic leverages a similarity
with approximation algorithms for bin packing [12].

B. A Foundational Scheme
For the standard graph coloring problem, despite its NP-

hardness, the greedy scheme outlined in Algorithm 1 is often
found quite effective in practice, since the scheme gives
usable solutions and can be implemented to run in linear-
time for graphs that arise in practice.

The scheme Greedy can be specialized in a variety of
ways depending on a) the technique used to determine the
order in which the vertices are processed and b) the strategy

Algorithm 1 Greedy

Greedy (G = (V,E))
for each v ∈ V in some order do

Assign v a color not used by any of its neighbors

used to pick a color (among a set of permissible colors) for
a vertex at a given step.

A common strategy used with regards to (b) is to pick the
smallest (we assume colors are positive integers) permissible
color for a vertex in each step. This strategy is sometimes
referred to as First Fit (FF), since, considering the bin
packing analogy mentioned earlier, it strives to place the
vertex in the first bin (color) it could be placed in. The
rationale behind choosing the smallest color is that one can
then guarantee that the number of colors used by the scheme
is bounded from above by Δ+1 (where Δ is the maximum
degree in the graph) regardless of the order in which the
vertices are processed and by K + 1 (where K is the core
number of the graph) if the degeneracy order of the vertices
is used. A degeneracy order, also known as Smallest Last
ordering, can be obtained in linear-time.

The FF strategy is attractive for the bounds on the
number of colors it assures. The color classes it produces,
however, are highly skewed, with a vast majority containing
significantly smaller number of vertices — an expected
result out of selecting the first available bin for every
vertex. The chart in Fig. 1a confirms this trend on a graph
obtained by crawling an internet domain (uk-2002). Small-
sized color classes can become scalability bottlenecks in
an end-application, where typically the color classes are
processed in different steps (to honor dependencies) and the
smaller classes limit the degree of parallelism during those
steps.

C. Motivating Application: Parallel Community Detection

Overcoming such scalability bottlenecks is in part what
motivated our current work. We sought to investigate algo-
rithms for achieving balanced coloring and their effective
use in parallel computing applications. As a case-study we
focus in this work on the use of balanced coloring in the
context of a parallel community detection implementation,
a suite called “Grappolo” that we developed for multi-
core and manycore architectures [14], [13]. The parallel
implementation is based on the sequential Louvain heuristic
[15]. The Louvain method, which is one of the most widely
used community detection algorithms, uses the modularity
function [16] as the objective function to be maximized.

Grappolo consists of multiple phases, each in turn con-
taining multiple iterations. Within each phase, the algorithm
starts with every vertex placed in a community of its own.
A series of iterations is then performed until a convergence
criterion is met. Within each iteration, all vertices are
scanned in parallel. For each vertex, a greedy decision is
made as to whether the vertex should migrate to a different
community (selected from one of its neighbors) or should

8

(a) Greedy Coloring, Input: uk-2002 (b) Community Detection, Input: cnr

Figure 1. a) The size distribution of the color classes obtained by the Greedy First Fit coloring heuristic for an input graph (uk-2002) obtained through
a web crawl of the .uk domain. b) The evolution of modularity gain across the iterations of a parallel implementation of the Louvian method [13]. Four
curves are depicted there. Two of the curves correspond to results obtained when coloring (skewed and balanced) is used in the parallel implementation,
the third corresponds to results when coloring is not used, and the fourth corresponds to results on a serial implementation.

stay in its current community, so as to maximize the net
modularity gain. This approach places multiple constraints
on concurrent processing of neighboring vertices. In pre-
vious work, we had extensively explored the use of graph
coloring in effectively addressing the challenges associated
with these constraints [13]. Our findings showed that the
use of coloring significantly accelerates convergence and, for
many input cases, also improves the quality of communities
output (as measured by the modularity function). However,
since the color classes are processed in parallel one at a time,
large skews in color class sizes reduced overall scalability,
particularly for inputs such as the uk-2002 (see Fig. 1).
Balanced coloring could potentially provide a significant
performance boost here while preserving the quality of
output (since we still respect the partial ordering of vertices
imposed by coloring). The chart in Fig. 1b demonstrates the
impact of coloring on Grappolo’s output quality (modularity
gain) and performance (convergence).

III. ALGORITHMS FOR BALANCED COLORING

In this section, we present multiple heuristics to compute
a balanced coloring of an input graph. We explore two cate-
gories of approaches. Approaches in the first category aim at
obtaining a balanced coloring in a single attempt. We refer to
these as “ab initio” approaches. Those in the second category
follow a two-step procedure, where an initial coloring ob-
tained using a balance-oblivious procedure, is subsequently
balanced in the second step. Since in all the approaches in
this second category the information produced by the initial
coloring is used to guide the respective balancing strategies,
we refer to them as “guided” approaches.

A. Ab initio strategies

Within the ab initio category, we consider two well-known
variants of the Greedy scheme outlined in Algorithm 1 that

differ in how the choice of color to be assigned to a vertex in
each step is done. In the first variant (Greedy-LU) a vertex
is assigned the Least Used (LU) permissible color (not used
by any neighbor) among all currently available colors. If
no permissible color exists, then a new color is created
and assigned to the vertex. In the second variant (Greedy-
Random) a vertex is assigned a color picked at random from
the set of permissible colors. The particular Greedy-Random
variant we consider assumes the existence of a reasonable
bound B on the number of colors needed. One such easy-to-
compute bound is B = Δ + 1. Then, a vertex v is assigned
a randomly chosen color from the set of permissible colors
P (v) ⊆ {1, 2, . . . , B}. Manne and Boman analyze balanced
greedy coloring using the strategies LU and Random in the
context of sparse random graphs [17].

B. Guided strategies

In the guided category, we study different approaches for
obtaining a balanced coloring given an initial coloring. We
note here that all of the proposed guided approaches can
be applied to an initial coloring produced by an arbitrary
coloring method. However, a subset of these approaches is
designed to exploit certain properties of an initial coloring
produced by the Greedy coloring scheme that uses the FF
color choice strategy (henceforth abbreviated as Greedy-FF).

Given an input graph G = (V,E), let the number of colors
used by the initial coloring step be C. In all our guided
strategies, we make use of the quantity γ = |V |/C to guide
our methods. Note that in a strictly balanced setting, the
size of each color class would be roughly γ. Consequently,
we call the color classes (bins) whose sizes are greater than
γ over-full and those whose sizes are less than γ under-
full. (We use the terms bin and color class interchangeably
throughout the paper.)

Broadly, we can classify our guided strategies into two

9

Table I
A COMPREHENSIVE LIST OF BALANCING STRATEGIES PRESENTED AND STUDIED IN THIS PAPER. THE INPUT GRAPH IS DENOTED BY G = (V, E).

Strategy Category Description
Greedy-LU ab initio Run Algorithm 1 with LU color choice among permissible colors.
Greedy-Random ab initio Run Algorithm 1 with Random color choice among permissible colors.
Shuffling-unscheduled guided Run Algorithm 1 with FF color choice strategy. Based on the obtained coloring identify over-full and

under-full bins. Move select vertices from over-full to under-full bins without changing the number of
color classes. Further specializations include Vertex-centric FF (VFF) and Color-centric LU (CLU).

Shuffling-scheduled guided Run Algorithm 1 with FF color choice strategy. Based on the obtained coloring identify over-full and
under-full bins. Move select vertices from over-full to under-full bins in a scheduled manner without
changing the number of color classes.

Recoloring guided Run Algorithm 1 with FF color choice strategy. Let the number of colors used be C. Let γ = |V |/C.
Construct an ordered set of vertices W = {V (C), V (C − 1), . . . , V (1)}, where V (i) denotes the set
of vertices having the color i. Re-color vertices in W in that order using Algorithm 1 such that in each
step, a vertex v is assigned the smallest permissible color k such that the size of bin k is less than γ.

types. In the first type, a subset of vertices from each over-
full bin is moved to under-full bins so that a better balance
is attained. Since this is achieved without increasing the
number of color classes, we refer to this type of methods
Shuffling-based. In the second type, all vertices are colored
afresh (moved to new bins), this time with a balance
constraint imposed. We call this Recoloring.

The Shuffling methods in turn comprise two specializa-
tions: unscheduled and scheduled moves. The motivation for
this distinction comes from parallel performance needs that
will be explained in Section IV.

The Recoloring method takes advantage of an interesting
property of the Greedy-FF scheme. Suppose a coloring of
a graph G = (V,E) is obtained using Greedy-FF in some
vertex order. Let the number of colors used be C. Now
suppose the vertices of G are ordered such that vertices
in the same color class are listed consecutively. Then re-
applying Greedy-FF using this new ordering will produce a
new coloring of G using C or fewer colors. Culberson [18]
applied this idea iteratively in his method called Iterated
Greedy (IG) to successively reduce the number of colors and
draw the number as close to the optimal as possible. There
is a degree of freedom in how the color classes themselves
could be ordered for IG to be successful. One of the better
strategies is to list the color classes in reverse order — i.e.,
beginning from the vertices of the highest color index.

We build on this property to devise our Recoloring method
for balancing. A key extension in our case is that we
maintain the sizes of bins during the new coloring and use
those to impose balance. In particular, in each step of the re-
coloring, a vertex is assigned the smallest permissible color
k such that the size of the bin k is less than γ.

Table I summarizes the various balancing methods we
discussed in this section.

IV. PARALLEL ALGORITHMS

We parallelized all of the guided balanced coloring al-
gorithms presented in Section III for the shared memory
model. For each heuristic we developed two OpenMP-based
implementations — one for conventional multicores and
another for the Tilera manycore platform. To obtain the
initial coloring we used a parallel implementation available

for Greedy-FF from a previous effort [19]. In this section,
we describe the parallel algorithms underlying the imple-
mentations of the balancing schemes.

To parallelize our shuffling-based approaches, we consid-
ered two ways of moving a vertex from an over-full bin to
an under-full bin. The first type of move is “unscheduled”.
Here, the choice of the target bin for a given vertex is
decided dynamically (using either the FF or LU strategy)
based on the state of the color bins — encompassing both
size and composition. This approach strives to achieve a
good balance, if possible; as a trade-off, however, it entails
the cost needed to keep each dynamic state up-to-date. More
specifically, concurrent updates to the sizes of the same bin
need to be synchronized.

To mitigate the cost of updates, we explored an alternative
we call “scheduled” moves, where the target bin for a
vertex in an over-full bin is statically determined using
a heuristic, and the check to verify if such a move is
permissible is deferred until the move is actually attempted.
If a move attempt creates a “conflict”, which is possible
if a neighboring vertex is already in the same target bin,
no further attempt is made and the vertex remains in its
original bin. The advantage of this approach is the expected
improvement in parallel performance, as no atomic operation
or lock is needed to update bin sizes. However, this approach
could potentially terminate without achieving a balance.

A. Parallelization using Unscheduled Moves

For obtaining guided balanced coloring using unscheduled
moves, we considered two parallelization schemes. In the
vertex-centric schemes, the loop-parallelization is around a
set of vertices, and vertices from different color classes are
allowed to be processed concurrently. In the color-centric
schemes, vertices processed concurrently must belong to the
same color class. In both schemes, only vertices in over-
full bins are considered for color reassignment. Furthermore,
once an over-full bin i reaches balance (i.e., |V (i)| = γ) at a
certain point in the execution, then vertices from that bin are
no longer considered for color reassignment. Hence, these
schemes represent partial recoloring methods that proceed
until either a balance is achieved or a balance is no longer

10

possible (i.e., there exist no more permissible moves from
any of the remaining over-full bins).

Vertex-centric parallelization scheme: Processing ver-
tices from possibly different color classes exposes maximum
concurrency. However, it could also cause conflicts. To han-
dle such conflicts in parallel we adopt the Speculation-and-
Iteration framework described in [19]. The basic idea in this
framework is to maximize concurrency by temporarily toler-
ating inconsistencies. Consider a simple loop-parallelization
over the set of vertices in the Greedy scheme (using FF or
LU) outlined in Algorithm 1. Such a parallelization will not
preclude the possibility of a pair of adjacent vertices from
being colored at the same time and receiving the same color.
In our adoption of the speculation-and-iteration framework,
once vertices are moved to their target color classes, the
idea is to detect conflicts (in parallel) in a separate phase
in the same round and resolve them in a subsequent round.
The algorithm proceeds iteratively in this fashion until all
conflicts are resolved.

A template for the vertex-centric parallelization scheme is
presented in Algorithm 2. This algorithm corresponds to the
Vertex-centric First Fit (VFF) balancing method. It should be
easy to see that the same algorithm can be easily adapted to
the Vertex-centric Least Used (VLU) balancing method with
a change to the target bin (k) selection criterion.

Algorithm 2 Vertex-centric parallel scheme for balanced
coloring (using FF)

VertexParallelGuidedBalancing(G = (V,E))
Obtain an initial coloring of G
Let U be the set of vertices from over-full bins
while U �= 0 do

for v ∈ U do in parallel
Let k be the smallest index of an under-full bin

that is permissible � FF
if k exists then

color[v]← k
Update size of bin k � synchronized step

R← ∅
for v ∈ U do in parallel � check for conflicts

for w ∈ adj(v) do
if (color[w] = color[v] and v > w) then

R← R ∪ {v}
U ← R

Note that the maximum number of conflicts per a ver-
tex v in the above algorithm can be upper-bounded by
min{d(v), b}, where d(v) is the number of vertices adjacent
to v and b is the number of under-full bins. This upper-bound
is rather weak. In practice, we observed that the closely
related quantity – the actual number of iterations needed to
clear all conflicts – is typically a small constant.

Color-centric parallelization scheme: In the color-
centric scheme for parallelization, we allow only vertices
from the same color class to be processed concurrently. This
is achieved by processing one over-full color class at a time

and performing the moves departing from that over-full bin
in parallel until a balance is achieved or no more move is
possible. This scheme, therefore, avoids conflicts, and the
balancing procedure requires no more than a single pass
of the over-full bins. However, the trade-off is in parallel
performance of the balancing procedure, which requires
as many parallel steps as there are number of over-full
bins in the initial coloring. A template for the color-based
parallelization scheme is shown in Algorithm 3.

Algorithm 3 Color-centric parallel balanced coloring

ColorParallelGuidedBalancing(G = (V,E))
Obtain an initial coloring of G
Let Q be the set of over-full colors (bins)
for each j ∈ Q do

Let V (j) denote the set of vertices with color j
for v ∈ V (j) do in parallel

Let k be the smallest index of an under-full bin
that is permissible to v � FF

if k exists then
color[v]← k
Update size of bin k � synchronized step

Initial coloring: We note here a special property emerg-
ing from the use of Greedy-FF for generating the initial
coloring. Any initial coloring produced by Greedy-FF sat-
isfies the following property: Assume a linear ordering of
colors from 1, . . . , C. If a vertex v is assigned color j, where
j > 1, then it implies that v contains at least one neighbor in
each of the previous colors 1, . . . , j−1 (otherwise, v would
have been assigned a smaller color). Therefore, if we follow
the Greedy-FF initial coloring by another FF-based strategy
during the subsequent balancing step (e.g., VFF or CFF),
then the closest permissible bin, say k, we identify through
that procedure would also correspond to a color that has a
high incidence of edges on the source over-full color bin.
Given that k represents a permissible bin despite its high
incidence makes it intuitively an attractive target for this
vertex. On the other hand, an LU-based strategy (VLU or
CLU) operates oblivious to the ordering of the initial colors,
and is therefore better suited for scenarios where the initial
coloring was generated by schemes other than Greedy-FF.

It is for these reasons that we use the Greedy-FF strategy
for initial coloring for VFF and CFF, while for VLU and
CLU the use of any other initial coloring scheme is allowed.

B. Parallelization using Scheduled Moves

To parallelize guided balancing using scheduled moves
we take advantage of both the incidence property (observed
above) and another size-related property of the Greedy-FF
initial coloring: owing to its First Fit strategy, Greedy-FF
is expected (but not guaranteed) to assign more vertices to
smaller-indexed color classes. In other words, color classes
are expected (but not guaranteed) to be in non-increasing
order of their sizes as one proceeds from color 1 through

11

color C. This expectation agrees with the size distributions
depicted in Fig. 1.

Our parallel algorithm with scheduled moves is outlined
in Algorithm 4. Intuitively, we identify an arbitrary subset of
surplus vertices from the sequence of over-full bins and mark
each of them for assignment to a corresponding under-full
color1. At this point, no explicit checks are made to identify
conflicts. In the next step, all vertices from the over-full bins
that were scheduled for recoloring are processed in parallel
to check if any of them conflicts with the assigned target
bin. A move is completed only if it generates no conflicts.

Algorithm 4 Parallel shuffling using scheduled moves

ScheduledBalancing(G = (V,E))
Obtain an initial coloring of G using Greedy-FF
Let QO be an ordered set of over-full colors in increasing

order of color index
Let QU be an ordered set of under-full colors in decreas-

ing order of color index
Let L (initially ∅) maintain a list of moves from over-full

to under-full bins
for each j ∈ QO do

Let V (j) denote {u ∈ V | color[u] = j}
Select V ′(j) ⊆ V (j) such that |V ′(j)| = |V (j)| − γ
for each k ∈ QU AND V ′(j) �= ∅ do

Let V ′
k(j) ⊆ V ′(j) denote vertices that can be

moved to k such that |V ′
k(j)|+ |V (k)| ≤ γ

L← L ∪ V ′
k(j)

V ′(j)← V ′(j) \ V ′
k(j)

for V ′
k(j) ∈ L do

for v ∈ V ′
k(j) do in parallel

if (k is a permissible color for v) then
color[v]← k

This simple approach requires no synchronization on the
bin sizes. However it could leave the bins imbalanced. To
improve the chance of obtaining a better balance, we fill the
under-full bins (set QU in Algorithm 4) in the decreasing
order of color index (we refer to this approach as Scheduled
Reverse, or more simply, Sched-Rev). Attempting to fill the
under-full bins in this decreasing order tends to preserve, to
the extent possible, color co-assignment of vertices — i.e.,
two vertices being moved from the same source over-full bin
are likely to co-locate in the same target under-full bin, thus
minimizing the chance of conflicts. This is a consequence
of the aforementioned size-related property of the Greedy-
FF initial coloring. In contrast, if the under-full bins were
to be filled in the increasing order of color index, then the
incidence property of Greedy-FF is likely to introduce more
conflicts, preventing more vertices in the over-full bins from
moving.

1This step is performed serially in our current implementation since it
was very quick for most inputs; however, if required, this step can also be
parallelized using parallel prefix (details omitted).

C. Parallel Recoloring
The parallelization we use for the balancing based on

Recoloring is outlined in Algorithm 5. This is similar to the
vertex-centric parallel scheme given in Algorithm 2 with
the main difference being that we recolor all the vertices
from scratch and that balance is imposed as the recoloring
proceeds. The rationale for ordering the color classes in W
in reverse order of their introduction in the initial coloring
is that, as mentioned in section III-B, the re-coloring would
then be highly likely to use fewer colors, since now the
vertices that were “difficult” to color initially are processed
earlier.

Algorithm 5 Parallel Recoloring for Balance

ParallelRecoloring(G = (V,E))
Obtain an initial coloring of G using Greedy-FF
Let C be the number of colors used, and let γ = |V |/C
Let V (j) denote {u ∈ V | color[u] = j}
Construct ordered set W = {V (C), V (C−1), . . . , V (1)}
Initialize bin[i] = 0, for i = 1, . . . , C
U ←W
while U �= ∅ do � perform a fresh coloring

for v ∈ U do in parallel
color[v]← smallest permissible color k such that

bin[k] < γ
Increment bin[k] by 1 � synchronized step

R← ∅
for v ∈ U do in parallel

for w ∈ adj(v) do
if (color[w] = color[v] and v > w) then

R← R ∪ {v}
U ← R

D. Complexity
With careful choice of data structures, the sequential

Greedy scheme (Algorithm 1) that underlies all of our
parallel algorithms, can be implemented such that its runtime
is upper-bounded by O(|V | ·Δ), where Δ is the maximum
degree in the graph. In each of the templates outlined in
Algorithms 2 through 5, the total “additional” work incurred
due to parallelization is no more than the work involved in
Algorithm 1. Furthermore, the number of rounds required
by the iterative variants (Algorithm 2 and Algorithm 5),
as argued earlier, is typically a small constant in practice.
Therefore, we conclude that the net parallel work in any of
our schemes can be upper-bounded by O(|V | ·Δ).

V. IMPLEMENTATION ON THE TILERA PLATFORM

We have ported our parallel balanced coloring algorithms
to the Tilera manycore platform. The Tilera TileGX36
system implements a manycore processor based on a two-
dimensional mesh topology. Each core (called a “tile” in
Tilera’s terminology), consists of a 3-way VLIW processing
unit, a private 32KB, 2-way set associative L1 data cache, a
private 32KB, direct-mapped instruction cache and a 256KB,

12

8-way set associative unified L2 cache. The cache line
granularity is 64 bytes across all three caches. Each tile
is connected via multiple links to several networks-on-chip
(NOCs) in a 2D mesh configuration2.

Tilera’s caching policies are the salient features that we
exploit to optimize this application. For each individual
memory page, the system can set the home tile of its data
in the cache subsystem. There are two principal modes for
setting the home tile of a memory page: homed (a particular
tile is the home for the whole page) and hashed (individual
cache lines on the page are distributed in a round-robin
manner to the L2 caches of all tile).

For the balanced coloring algorithms and the community
detection application we use a heap manager with a backing
store of homed huge pages (16 MB/page) for all thread
private data. The global shared data structures (Compressed
Sparse Row Representation of the graph, arrays of colors and
bin sizes) are allocated on default-sized pages (64 KB/page)
using the hashed policy. Previous experience with basic
coloring and community detection on Tilera [14] has shown
this configuration to be the most performant one for all input
data sets. The OpenMP threads created by the application are
pinned to contiguous sets of cores on the manycore mesh
architecture in order to avoid costly thread migration and
subsequent cache misses.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

Test Platforms: We used two platforms for testing: the
Tilera TileGX36 presented in Section V and an Intel Xeon
X7560 platform. The TileGX36 platform is equipped with 32
GB of DDR3 memory separated into two 16 GB banks, with
the cores running at 1.2 GHz3. The community detection
code has been parallelized using OpenMP and Tilera-specific
extensions for memory management, synchronization and
atomic operations.

The Intel multicore platform has four sockets and 256 GB
of memory. Each socket is equipped with eight cores running
at 2.266 GHz, leading to a total of 32 cores. The system is
equipped with 32 KB of L1 and 256 KB L2 caches per core,
and 24 MB of L3 cache per socket. Each socket has 64 GB
of DDR3 memory with a peak bandwidth of 34.1 GB per
second4.

Test inputs: The test inputs used in different experiments
are summarized in Table II. All inputs were downloaded
from the University of Florida sparse matrix collection [20],
with the exception of MG2 which is a custom-built bio-
logical network. These inputs were chosen to encompass a

2These NOCs include one for coherence traffic, a user-programmable
message passing NOC, and a dedicated I/O NOC

3The TileGX36 runs a custom version of Linux adapted for Tilera’s
hardware. The compiler and runtime environment are adapted from GCC
4.8.2 and retargeted for the TileGX’s 64-bit VLIW cores.

4We use GCC 4.8.2 to compile an x86 version of the code that uses
OpenMP for its parallelization. We use numactl to pin OpenMP threads
to cores.

variety in graph sizes and color class properties such as the
number of colors and color size distribution (Table III).

Table II
STATISTICS ON STRUCTURE OF THE REAL-WORLD NETWORKS USED IN

OUR STUDY.

Input Num. Num. Degree stats
graph vertices (n) edges (m) max. avg.

CNR 325,557 2,738,970 18,236 16.28
coPapersDBLP 540,486 15,245,729 3,299 56.41
Channel 4,802,000 42,681,372 18 17.77
MG2 11,005,829 674,142,381 5,466 122.50
uk-2002 18,520,486 261,787,258 194,955 28.27
Europe-osm 50,912,018 54,054,660 13 2.12

B. Balance Quality Assessment
In this section, we compare the quality of balance in

the color class sizes produced by the different balancing
schemes proposed in the paper. (Please refer to Table I for
an overview of all the schemes.) To measure balance, we
use the Relative Standard Deviation of the color class sizes
(expressed in %), which is the ratio of the standard deviation
to the average color size. The closer this value is to 0.00%
the better is the balance. For the schemes {Recoloring,
Greedy-LU and Greedy-Random} we also compared the
number of colors they produce to the number of colors
produced by the Greedy-FF scheme (initial coloring).

Table III shows the results of our quality assessment.
First, we observe the very large skews in the color sizes
produced by the Greedy-FF scheme (which was the primary
motivation behind this work). With respect to balancing, we
observe that schemes VFF and CLU generally outperform
all other schemes in either category (guided or ab initio).
We note here that if the initial coloring was generated by
a scheme other than Greedy-FF, then CLU is expected to
outperform VFF. The Sched-Rev scheme was also effective
in reducing the skew although the degree of balance achieved
was lower than VFF and CLU - as can be expected due to its
scheduled strategy. One way to improve the performance of
the scheduled strategy is to iterate the procedure a constant
number of times; however the tradeoff is that it would
increase run-time.

Among the schemes that do not guarantee the same
number of colors as Greedy-FF (viz. Recoloring, Greedy-
LU and Greedy-Random), we observed consistently that all
those three schemes produced more colors than the Greedy-
FF scheme. However, the number of colors produced by
Recoloring was generally close to the number of colors
produced by Greedy-FF and other guided schemes (VFF,
CLU), and the balancing obtained was comparable to the
Sched-Rev scheme. On the other hand, Greedy-LU and
Greedy-Random produced significantly higher number of
colors making them less desirable from the end-application
perspective. As described in Section IV-C, the main ad-
vantage of the Recoloring scheme is that it processes the
vertices with larger color indices earlier. Since these vertices
have higher degree and consequently harder to color, there is

13

Table III
QUALITY OF BALANCE OBTAINED BY THE DIFFERENT HEURISTICS ON DIFFERENT INPUTS. ENTRIES IN EACH CELL SHOW THE RELATIVE STANDARD

DEVIATION (IN %) OF COLOR CLASS SIZES OBTAINED BY A GIVEN HEURISTIC (THE LOWER THE VALUES, THE BETTER THE BALANCE). THE GUIDED

SCHEMES VFF AND CLU PRODUCE THE SAME NUMBER OF COLORS AS THE INITIAL COLORING SCHEME (GREEDY-FF). THE NUMBER OF COLORS

PRODUCED BY THE OTHER HEURISTICS IS PROVIDED IN PARANTHESIS (NEXT TO THEIR RESPECTIVE RSD VALUES).

Input Init. coloring Guided schemes Ab initio schemes
graph Greedy-FF VFF CLU Sched-Rev Recoloring Greedy-LU Greedy-Random

CNR 587.73% (85) 0.03% 0.04% 16.44% 13.81% (88) 12.03% (211) 24.29% (209)
coPapersDBLP 342.41% (336) 0.69% 0.15% 12.01% 10.17% (340) 0.11% (337) 23.15% (338)
Channel 128.99% (12) 0.00% 7.16% 7.55% 35.75% (14) 4.84% (16) 20.05% (17)
MG2 1272.31% (2,143) 0.38% 0.21% 9.57% 25.34% (2335) 18.09% (2169) 94.37% (2172)
uk-2002 1885.15% (943) 0.08% 0.01% 4.88% 3.53% (945) 2.94% (1010) 28.34% (1018)
Europe-osm 126.87% (5) 0.00% 0.00% 6.70% 39.90% (6) 0.00% (7) 12.07% (6)

potential benefit in processing them earlier in the Recoloring
scheme. However, the balancing constraint imposed during
the recoloring process coupled with parallel execution which
disturbs the intended order of vertex processing explains the
less-than-optimal performance displayed by this scheme.

For an illustration of the effect of the different balancing
schemes, refer to Fig. 2, which shows the sizes of all the
color classes produced by the different balancing schemes.

C. Performance Evaluation
The balancing schemes were also compared against one

another for their parallel performance. We tested both our
Tilera and x86 implementations on a range of inputs and
thread counts. Tables IV and V show the run-times taken
by the VFF balancing scheme5. The corresponding speedup
charts are shown in Fig. 3.

The results show that the scaling in Tilera manycore
is significantly superior to the scaling results in x86. For
instance, a top speedup of 13× was observed on 16 Tilera
cores. The improved scalability delivered by the Tilera
manycore platform can be largely attributed to a scalable
on-chip network interconnect, which reduces the costs of
synchronization and latency for irregular memory accesses.
On the other hand, we found synchronization overhead to
be a significant factor impacting the parallel performance on
the x86 architecture. We confirmed this by comparing the
run-times between the VFF (that uses atomic operations to
update bin sizes) and Sched-Rev (that does not). On the
x86 architecture, we consistently observed Sched-Rev to
be 8× or more faster than VFF on all inputs tested. The
corresponding performance gain on the Tilera platform was
a more modest 2×.

The speedup trends observed on both architectures across
the three inputs also show the impact of the number of initial
colors on parallel performance. In both speedup charts, MG2
(2K colors) is the best-performing, followed by uk-2002
(943 colors) and then by Channel (12 colors). Intuitively,
fewer colors imply a higher probability for concurrent bin
size updates.

With respect to absolute times, on a per-core basis the
Tilera platform is much slower than the x86 system. The

5We select VFF because it was one of the schemes that produced the
best balancing results (as was discussed in SectionVI-B).

main reason is the relatively modest frequency and instruc-
tion level parallelism (ILP) of the Tilera cores (3 packed
operations per VLIW instruction, statically scheduled by
the compiler), in comparison to double the frequency on
the x86 system and very aggresive & wide superscalar
instruction scheduling. However, at full system scale the
improved scalability of the Tilera platform makes up the
difference with respect to x86 and even surpasses its absolute
performance for some inputs.

Table IV
PARALLEL RUN-TIME (IN SECONDS) OF THE VFF SCHEME ON

DIFFERENT NUMBER OF CORES OF THE TILERA PLATFORM. TIMES

SHOWN ARE ONLY FOR THE BALANCING PROCEDURE (I.E., INITIAL

COLORING TIME IS not INCLUDED).

Input Number of threads
graph 1 2 4 8 16 32 36

Channel 7.55 4.57 3.37 2.59 2.23 2.06 2.13
uk-2002 163.22 84.68 45.59 26.32 16.87 12.11 11.66
MG2 460.22 254.66 154.16 85.97 54.56 34.95 33.29

Table V
PARALLEL RUN-TIMES (IN SECONDS) OF THE VFF SCHEME ON

DIFFERENT NUMBER OF CORES OF THE INTEL X86 PLATFORM. TIMES

SHOWN ARE ONLY FOR THE BALANCING PROCEDURE (I.E., INITIAL

COLORING TIME IS not INCLUDED).

Input Number of threads
graph 2 4 8 16 32

Channel 0.45 2.51 2.54 2.01 2.67
uk-2002 21.05 15.71 18.07 21.01 23.57
MG2 46.92 23.15 14.4 14.98 10.08

In Table VI, we compare the run-times of three of the
most competitive balancing schemes {VFF, Sched-Rev and
Recoloring} on the Tilera manycore platform. As expected
the Sched-Rev scheme outperforms the other two schemes.
More specifically, we observed Sched-Rev to be ∼2× faster
than VFF6. Considering the fact that Sched-Rev also per-
formed appreciably well in terms of balance quality (Sec-
tion VI-B), we conclude that it provides the best trade-off
between quality and performance among all the balancing
schemes presented in this paper.

6This performance improvement was even more pronounced in x86
architecture as noted earlier.

14

(a) Channel (b) CNR

Figure 2. Distribution of color class sizes produced by the different balanced coloring schemes (horizontal axis corresponds to colors (bins) and vertical
axis to sizes of color classes). Recall that smaller color class sizes correspond to reduced parallelism in the end-application, while higher number of colors
corresponds to increased number of parallel steps within the application. For Channel, color class sizes from all balancing schemes are shown. For CNR,
color class sizes from only the balancing schemes that produce less number of colors are shown.

(a) Speedup on Tilera (b) Speedup on x86 (c) Community detection

Figure 3. (a, b) Speedup obtained by our Tilera manycore and x86 multicore implementations of the VFF balancing scheme. Speedups are relative to
one (Tilera) or two (x86) thread execution. (c) Application study: Evolution of modularity values within the first phase of a parallel community detection
implementation (Grappolo) on uk-2002, performed with the use of VFF balanced coloring. The chart also shows the corresponding modularity curves for
the runs made without balanced coloring and the best performing serial implementation [15].

Table VII
EVALUATION OF THE BALANCING HEURISTICS ON A PARALLEL COMMUNITY DETECTION APPLICATION, Grappolo. ALL TIMING RESULTS ARE IN

SECONDS AND WERE OBTAINED ON 36 THREADS OF THE TILERA MANYCORE PLATFORM.

Input w/o balanced coloring w/ balanced coloring
graph Run-time Modularity Run-time Modularity

Init. coloring Community detection Init. coloring VFF balancing Community detection

CNR 0.15 3.98 0.9124 0.15 0.15 4.16 0.9119
Channel 1.87 38.85 0.9348 1.87 2.13 20.94 0.9328
MG2 37.31 954.81 0.9984 37.31 33.29 483.80 0.9984
uk-2002 7.83 406.81 0.9895 7.83 11.66 254.27 0.9894
Europe-osm 17.95 358.26 0.9988 17.95 20.98 369.19 0.9988

Table VI
PARALLEL RUN-TIMES (IN SECONDS) OF THE THREE BALANCING

SCHEMES {VFF, SCHED-REV AND RECOLORING} ON 16 TILERA

CORES.

Input graph VFF Sched-Rev Recoloring

Channel 2.23 2.19 3.28
uk-2002 16.87 8.71 36.97
MG2 54.56 27.70 185.19

D. Impact on the Community Detection Application
To evaluate the effectiveness of the proposed balanced

coloring schemes in a real world application, we studied the
parallel community detection code, Grappolo, described in
Section II-C. Since VFF was one of the leading schemes
for balance quality, we used VFF as our default balancing
scheme on the Tilera platform. We ran Grappolo in two
modes: i) using the original skewed coloring, and ii) using
the balanced coloring produced by VFF.

15

Table VII shows the results of our evaluation in the
context of community detection using Grappolo. In this
table, we compare both end-to-end performance (run-time)
and output quality (modularity). We note here that the our
current implementation of Grappolo is configured to use col-
oring only during the first phase of its algorithm. However,
the algorithm itself is multi-phase and configuring to use
coloring in subsequent phases is one of our planned future
extensions. However, for this paper, we used coloring only
for the first phase, and therefore, the benefits of balanced
coloring observed in Table VII are understated.

From the table, we can observe the following: The over-
head introduced in balancing is compensated by the run-
time gains achieved in the community detection. This is true
for three of the five inputs tested — for instance, in the
case of MG2, balancing yields a total end-to-end run-time
savings of 44.11%. Note that this is for a single execution of
the community detection code. In practice, a user may run
multiple instances of community detection under different
parametric settings (while the coloring is a one-time prepro-
cessing task). The CNR input is the smallest in the number
of vertices and edges that we processed and the gains from
parallelism (w/ or w/o balancing) is insignificant. As for
Europe-osm, the first phase only consumed 6% of the total
run-time and therefore the benefits of balanced coloring are
not directly evident from Table VII.

The results in Table VII also demonstrate the ability of
the VFF balanced scheme to preserve quality of output (in
terms of modularity). In fact, we observed that introducing
balancing has a positive impact on the progression of mod-
ularlity in the first phase, as illustrated in Fig. 3(c) — which
is a consequence of the revised ordering of vertices due to
balanced coloring.

VII. CONCLUSIONS

In this paper, we provided a thorough treatment of the
problem of balanced coloring, with our contributions span-
ning algorithm development, parallelization, and application.
Specifically, we presented multiple balancing schemes, de-
veloped parallel implementations on conventional multicores
and an emerging manycore platform (Tilera), and evaluated
their effectiveness in achieving a balanced coloring and how
such results translate to gains in an application’s perfor-
mance using community detection as a motivating case-
study. Coloring is used in a number of parallel computing
applications to identify independent tasks, and we expect the
detailed study presented in this paper involving a family of
balancing algorithms and their implementations on emerging
architectures to serve as a valuable reference to application
developers who seek to improve parallel performance of
their applications using coloring.

ACKNOWLEDGEMENTS
This research was support in parts by U.S. Department of

Energy grants DE-SC-0006516, DE-AC05-76RL01830, and
DE-SC-0010205, and the U.S. Department of Defense under
the Autotuning for Power, Energy & Resilience (ATPER)
project.

REFERENCES

[1] W. Meyer, “Equitable coloring,” Amer. Math. Monthly,
vol. 80, pp. 920–922, 1973.

[2] A. Hajnal and E. Szemerédi, Proof of a conjecture of P. Erdös.
London: North-Holland, 1970, pp. 601–623.

[3] H. Furmańczyk, Equitable coloring of graphs. Providence,
Rhode Island: American Mathematical Society, 2004, pp. 35–
53.

[4] M. Kubale, Ed., Graph Colorings. Providence, Rhode Island:
American Mathematical Society, 2004.

[5] H. Bodleander and F. Fomin, “Equitable colorings of bounded
treewidth graphs,” Theoret. Comput. Sci., vol. 349, no. 1, pp.
22–30, 2005.

[6] B. Smith, P. Bjørstad, and W. Gropp, Domain Decomposition;
Parallel multilevel methods for elliptic Partial Differential
Equations. Cambiridge: Cambridge University Press, 1996.

[7] R. Melhem and V. Ramarao, “Multicolor reorderings of sparse
matrices resulting from irregular grids,” ACM Transaction of
Mathematical Software, vol. 14, pp. 117–138, 1988.

[8] J. Blazewick, K. Ecker, E. Pesch, G. Schmidt, and J. Weglarz,
Scheduling computer and manufacturing processes. Berlin:
Springer, 2001, 2nd edition.

[9] A. Tucker, “Perfect graphs and an application to optimizing
municipal services,” SIAM Review, vol. 15, pp. 585–590,
1973.

[10] J. Robert K. Gjertsen, M. T. Jones, and P. Plassmann, “Parallel
heuristics for improved, balanced graph colorings,” Journal
of Parallel and Distributed Computing, vol. 37, pp. 171–186,
1996.

[11] M. T. Jones and P. Plassmann, “A parallel graph coloring
heuristic,” SIAM Journal of Scientific Computing, vol. 14, pp.
654–669, 1993.

[12] J. E.G. Coffman, M. Garey, and D. Johnson, Approximation
Algorithms for Bin Packing: A Survey. PWS Publishing
Company, 1997, pp. 46–86.

[13] H. Lu, M. Halappanavar, and A. Kalyanaraman, “Parallel
heuristics for scalable community detection,” arXiv preprint
arXiv:1410.1237, 2014.

[14] D. Chavarrı́a-Miranda, M. Halappanavar, and A. Kalyanara-
man, “Scaling graph community detection on the tilera many-
core architecture,” in HiPC 2014, Goa, India, Dec. 2014, p.
In Press., 00000.

[15] V. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre,
“Fast unfolding of communities in large networks,” Journal
of Statistical Mechanics: Theory and Experiment, p. P10008,
2008, 02101.

[16] M. E. Newman, “Fast algorithm for detecting community
structure in networks,” Physical review E, vol. 69, no. 6, pp.
66–133, 2004, 02459.

[17] F. Manne and E. Boman, “Balanced greedy colorings of
sparse random graphs,” in The Norwegian Informatics Con-
ference, NIK’2005, 2005, pp. 113–124.

[18] J. Culberson and F. Luo, “Exploring the k-colorable landscape
with iterated greedy,” in Cliques, coloring and satisfiability:
Second DIMACS implementation challenge, D. Johnson and
M. Trick, Eds. American Math. Society, 1996, pp. 245–284.

[19] U. Çatalyürek, J. Feo, A. H. Gebremedhin, M. Halappanavar,
and A. Pothen, “Graph coloring algorithms for multi-core and
massively multithreaded architectures,” Parallel Computing,
vol. 38, pp. 576–594, 2012, 00009.

[20] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1–25,
Dec. 2011, 01043.

16

