
Parallel Heuristics for Scalable Community
Detection

Hao Lu, Ananth Kalyanaraman
School of Electrical Engineering and Computer Science

Washington State University

Pullman, WA

Email: {luhowardmark,ananth}@wsu.edu

Mahantesh Halappanavar, Sutanay Choudhury
Computational Sciences and Mathematics Division

Pacific Northwest National Laboratory

Richland, WA

Email: {hala,sutanay.choudhury}@pnnl.gov

Abstract—Community detection has become a fundamental
operation in numerous graph-theoretic applications. It is used to
reveal natural divisions that exist within real world networks
without imposing prior size or cardinality constraints on the
set of communities. Despite its potential for application, there
is only limited support for community detection on large-scale
parallel computers, largely owing to the irregular and inherently
sequential nature of the underlying heuristics. In this paper, we
present parallelization heuristics for fast community detection
using the Louvain method as the serial template. The Louvain
method is an iterative heuristic for modularity optimization.
Originally developed by Blondel et al. in 2008, the method has
become increasingly popular owing to its ability to detect high
modularity community partitions in a fast and memory-efficient
manner. However, the method is also inherently sequential,
thereby limiting its scalability. Here, we observe certain key prop-
erties of this method that present challenges for its parallelization,
and consequently propose heuristics that are designed to break
the sequential barrier. For evaluation purposes, we implemented
our heuristics using OpenMP multithreading, and tested them
over real world graphs derived from multiple application do-
mains (e.g., internet, citation, biological). Compared to the serial
Louvain implementation, our parallel implementation is able to
produce community outputs with a higher modularity for most
of the inputs tested, in comparable number of iterations, while
providing real speedups of up to 8× using 32 threads. In addition,
our parallel implementation was able to exhibit weak scaling
properties on up to 32 threads.

I. INTRODUCTION

Community detection, or graph clustering, is becoming
pervasive in the data analytics of various fields including
(but not limited to) scientific computing, life sciences, social
network analysis, and internet applications [1]. As data grows
at explosive rates, the need for scalable tools to support fast
implementations of complex network analytical functions such
as community detection is critical. Given a graph, the problem
of community detection is to compute a partitioning of vertices
into communities that are closely related within and weakly
across communities. Modularity is a metric that can be used to
measure the quality of communities detected [2]. Community
detection is an NP-Complete problem, but fast heuristics exist.
One such heuristic is the Louvain method [3].

Our basis for selecting the Louvain heuristic for paral-
lelization hinges on its increasing popularity within the user
community and owing to its strengths in algorithmic and
qualitative robustness. With well over 1,000 citations to the

original paper (as of this writing), the user base for this method
has been rapidly expanding in the last few years. Yet, there is
no scalable parallel implementation available for this heuristic.
As network sizes continue to grow rapidly into a scale of
tens or even hundreds of billions of edges [4], the memory
and runtime limits of the serial implementation are likely to
be tested. However, parallelization of this inherently serial
algorithm can be challenging (as discussed in Sections II and
IV).

The parallel solutions presented in this paper (Section V)
provide a way to overcome key scalability challenges. In
devising our algorithm, we factored in the need to parallelize
without compromising the quality of the original serial heuris-
tic and yet be capable of achieving substantial scalability. We
also factored in the need for stable solutions across different
platforms and programming models. The resulting algorithm,
presented in Section V-D, is a combination of heuristics that
can be implemented on both shared and distributed memory
machines. As demonstrated in our experimental section (Sec-
tion VI), our implementations provide outputs that have either
a higher or comparable modularity to that of the serial method,
and is able to reduce the time to solution by factors of up to
8×. These observations are supported over a number of real-
world networks.

Contributions: The main contributions of this paper are:

i) Introduction of effective heuristics for parallelization of
the Louvain algorithm on multithreaded architectures;

ii) Experimental studies using seven real-world networks
obtained from varied sources including the DIMACS10
challenge website, University of Florida sparse matrix
collection and biological databases;

iii) A simple and clarified derivation of modularity computa-
tion that can benefit other researchers exploring commu-
nity detection algorithms; and

iv) Demonstration of the effectiveness of our parallel heuris-
tics through comparison with the respective serial solu-
tions.

II. PROBLEM STATEMENT AND NOTATION

Let G(V,E, ω) be an undirected weighted graph, where
V is the set of vertices, E is the set of edges and ω(.) is
a weighting function that maps every edge in E to a non-
zero, positive weight1. In the input graph, edges that connect

1If the graph is unweighted, then we treat every edge to be of weight 1.

2014 IEEE 28th International Parallel & Distributed Processing Symposium Workshops

978-1-4799-4116-2/14 $31.00 © 2014 IEEE

DOI 10.1109/IPDPSW.2014.155

1374

a vertex to itself are allowed — i.e., (i, i) can be a valid edge.
However, multi-edges are not allowed. Let the adjacency list
of i be denoted by Γ(i) = {j|(i, j) ∈ E}. Let ki denote the
weighted degree of vertex i — i.e., ki =

∑
∀j∈Γ(i) ω(i, j). We

will use n to denote the number of vertices in G; M to denote
the number of edges in the graph; and m to denote the sum
of all edge weights — i.e., m =

∑
∀i∈V ki.

A community within graph G represents a (possibly
empty2) subset of V . In practice, for community detection,
we are interested in partitioning the vertex set V into an
arbitrary number of disjoint non-empty communities, each
with an arbitrary size (> 0 and ≤ n). We call a community
with just one element as a singlet community. We will use
C(i) to denote the community that contains vertex i in a
given partitioning of V . We use the term intra-community edge
to refer to an edge that connects two vertices of the same
community. All other edges are referred to as inter-community
edges. Let Ei→C refer to the set of all edges connecting vertex
i to vertices in community C. And let ei→C denote the sum
of the weights of the edges in Ei→C (also referred to as the
degree of a community).

ei→C =
∑

∀(i,j)∈Ei→C

ω(i, j) (1)

Let aC denote the sum of the degrees of all the vertices in
community C.

ac =
∑

∀i∈C
ki (2)

Modularity: Let P = {C1, C2, . . . Ck} denote the set of
all communities in a given partitioning of the vertex set V in
G(V,E, ω), where 1 ≤ k ≤ n. Consequently, the modularity
(denoted by Q) of the partitioning P is given by the following
expression [2]:

Q =
1

2m

∑

∀i∈V
ei→C(i) −

∑

∀C∈P
(
aC
2m

· aC
2m

) (3)

Intuitively, modularity is a statistical measure for assessing
the quality of a given community-wise partitioning (or equiv-
alently, “clustering”). A “good” clustering method is one that
clusters closely related elements (vertices) as part of the same
community (or “cluster”) while separating weakly related ele-
ments into different clusters. In other words, the goal becomes
one of maximizing intra-community links while keeping the
number of inter-community edges low. This explains the first
term in Eqn. (3). However, if the goal is simply to maximize
the contribution from intra-community edges, then one could
potentially assign all vertices into one community. But such a
solution is likely to be meaningless in practice. To overcome
this problem, the second term in the Eqn. (3) was introduced.
This term represents the fraction of intra-community edges one
would expect in an “equivalent” graph (i.e., another graph with
the same numbers of vertices and edges, and the same vertex
degrees) but with just the edges randomly reconnected.

2The notion of empty communities do not have a practical relevance. We
have intentionally defined it this way so as to make our later algorithmic
descriptions easier. It is guaranteed, however, that all output communities at
the end of our algorithm will be non-empty subsets.

Modularity is not the ideal metric for community detection
and issues such as resolution limit have been identified [1], [5],
and consequently, a few variants of modularity definitions have
been devised [5], [6], [7] are available. However, the definition
provided in Eqn. (3) continues to be the more widely adopted
version in practice, including in the Louvain method [3], and
therefore, we will use that definition for this paper.

Community detection: Given G(V,E, ω), the problem
of community detection is to compute a partitioning P of
communities that maximizes modularity. This problem has
been shown to be NP-Complete [8].

III. THE LOUVAIN ALGORITHM

In 2008, Blondel et al. presented an algorithm for the
community detection [3]. The method, called the Louvain
method, is an iterative, greedy heuristic capable of producing
a hierarchy of communities. The main idea of the algorithm is
rather simple and can be summarized as follows: Starting with
each vertex in a separate community initially, the algorithm
progresses from one iteration to another until the modularity
gain becomes negligible (as defined by a predefined threshold).
Within each iteration, the algorithm linearly scans the vertices
in an arbitrary but predefined order. For every vertex i, the
algorithm examines all its neighboring communities (i.e., the
communities containing i′s neighbors) and computes the mod-
ularity gain that would result if i were to move to each of those
neighboring communities from its current community. Once
the gains are calculated, the algorithm assigns a neighboring
community that would yield the maximum modularity gain,
as the new community for i (i.e., new C(i)), and updates the
corresponding data structures that it maintains for the source
and target communities. Alternatively, if all gains turn out to be
negative, the vertex stays in its current community. An iteration
ends once all vertices are linearly scanned in this fashion. After
a phase terminates, the algorithm proceeds to the next phase
by collapsing all vertices of a community to a single “meta-
vertex”; placing an edge from that meta-vertex to itself with
an edge weight that is the sum of weights of all the intra-
community edges within that community; and placing an edge
between two meta-vertices with a weight that is equal to the
sum of the weights of all the inter-community edges between
the corresponding two communities. The result is a condensed
graph G′(V ′, E′, ω′), which then becomes the input to the next
phase. Subsequently, multiple phases are carried out until the
modularity score converges. Note that each phase represents a
coarser level of hierarchy in the community detection process.

At any given iteration, let ΔQi→C(j) denote the modularity
gain that would result from moving a vertex i from its current
community C(i) to a different community C(j). This term can
be calculated in two parts: i) The gain in modularity owing to
i leaving C(i) is given by:

ΔQC(i)\{i} = −ei→C(i)\{i}
m

+
(aC(i)\{i} + ki)

2 − a2C(i)\{i}
(2m)2

= −ei→C(i)\{i}
m

+
2 · ki · aC(i)\{i} + k2i

(2m)2
(4)

and, ii) The gain in modularity owing to i joining C(j) is

1375

given by:

ΔQC(j)∪{i} =
ei→C(j)

m
−
(aC(j) + ki)

2 − a2C(j)

(2m)2

=
ei→C(j)

m
− 2 · ki · aC(j) + k2i

(2m)2
(5)

Therefore,

ΔQi→C(j) = ΔQC(i)\{i} +ΔQC(j)∪{i}

=
ei→C(j) − ei→C(i)\{i}

m

+
2 · ki · aC(i)\{i} − 2 · ki · aC(j)

(2m)2
(6)

Consequently, the new community assignment for i at an
iteration is as follows:

C(i) = argmax
C(j)

ΔQi→C(j), ∀j ∈ Γ(i) ∪ {i} (7)

Note that the new C(i) will equal the old C(i) if none of the
modularity gains to any of the other neighboring communities
evaluates to a positive value. In the implementation, one can
maintain several data structures such that each instance of
ΔQi→C(j) can be computed in constant time. Consequently,
the algorithm’s time complexity per iteration is O(m). While
no upper bound has been established on the number of
iterations or on the number of phases, it should be evident
that the algorithm is guaranteed to terminate with the use of
a cutoff for the modularity gain (because of the modularity
being a monotonically increasing function until termination).
In practice, the method needs only tens of iterations and fewer
phases to terminate on most real world inputs.

IV. CHALLENGES IN PARALLELIZATION

Any attempt at parallelizing the Louvain method should
factor in the sequential nature in which the vertices are visited
within each iteration of the original algorithm and the impact
it has on the overall modularity convergence. Visiting the
vertices sequentially gives the advantage of working with the
latest information available from all the preceding vertices in
this greedy procedure. Furthermore, in the serial algorithm,
when a vertex computes its new community assignment (using
Eqn.(7)), it does so with the guarantee that no other part of the
community structure is concurrently being altered. There can
be no such guarantee in parallel. In other words, if communi-
ties are updated in parallel, it could lead to some interesting
situations with an impact on the convergence process.

A. Negative gain scenario

To illustrate the case in point, consider the example sce-
nario illustrated in Figure 1, where two vertices i and j are both
connected to a third vertex k with all three of them are in three
different communities initially — i.e., i ∈ C(i), j ∈ C(j),
k ∈ C(k) s.t. C(i) �= C(j) �= C(k). If both vertices i and
j evaluate the possibility of moving to C(k) independently,
using Eqn.(6), then from each of their perspectives, their
predicted value for the new modularity is Qold + ΔQi→C(k)

and Qold+ΔQj→C(k), respectively. However, if both i and j

decide to move to C(k) in parallel, then the actual value for
the new modularity will be Qold +ΔQ{i,j}→C(k), where:

ΔQ{i,j}→C(k) = ΔQi→C(k) +ΔQj→C(k)

+
ω(i, j)

m
− 2 · ki · kj

(2m)2
(8)

If (i, j) /∈ E, ω(i, j) = 0, implying:

ΔQ{i,j}→C(k) = ΔQi→C(k) +ΔQj→C(k)

−2 · ki · kj
(2m)2

≤ ΔQi→C(k) +ΔQj→C(k) (9)

Furthermore, if ΔQi→C(k) +ΔQj→C(k) <
2·ki·kj

(2m)2

⇒ ΔQ{i,j}→C(k) < 0 (10)

On the other hand, if
ω(i,j)
m >

2·ki·kj

(2m)2 (can be true only if

(i, j) ∈ E), then:

ΔQ{i,j}→C(k) > ΔQi→C(k) +ΔQj→C(k) (11)

This is because ΔQi→C(k) > 0 and ΔQj→C(k) > 0; the latter
two inequalities follow from the fact that i and j chose to
move to C(k). Note that if this happens, then parallel version
could potentially surpass the serial version toward modularity
convergence. Inequalities (9-11) imply the following lemma:

Fig. 1. Illustration of the negative gain scenario using an example of three
vertices (Lemma 1).

Lemma 1: At any given iteration of the Louvain algorithm,
if community updates for vertices are performed in parallel,
then the net modularity gain achieved cannot be guaranteed to
be always positive.

The above lemma has a direct implication on the conver-
gence property of the Louvain method, one way or another.
Pessimistically speaking, if the net modularity gain can be-
come negative between consecutive iterations of the algorithm,
then there is no theoretical guarantee that the algorithm will
terminate. Even if the chances of non-termination turn out to
be bleak, it could potentially slow down the rate at which the
algorithm progresses toward a solution, causing more number
of iterations. For this reason, the number of iterations that
the algorithm takes to converge toward the solution and the
quality of the solution relative to the serial algorithm’s can be
good indicators of the effectiveness of a parallel strategy. Note
that the above example with three vertices can be extended to
scenarios where multiple unrelated vertices are trying to enter
a community at its periphery without mutual knowledge.

1376

B. Swap and local maxima scenarios

There is also another type of scenario that could impede the
progression of the parallel algorithm toward a solution. Con-
sider a simple example where two vertices i and j connected
by an edge (i, j) ∈ E s.t., C(i) = {i} and C(j) = {j}. In the
interest of increasing modularity, if the two vertices make a
decision to move to each other’s community concurrently, then
such an update could potentially result in both vertices simply
swapping their community assignments without achieving any
modularity gain. This could also happen in a more generalized
setting, where subsets of vertices between two different com-
munities swap their community assignments, each unaware of
the other’s intent to also migrate. Swap conditions or cyclic
migration patterns could lead to a deadlock which need to
be detected and surpassed in parallel. Note that this is not a
problem with the serial algorithm, as only one decision is made
at any given point of time.

A parallel algorithm also runs the risk of settling on
a locally optimal solution when there is a better solution
available. This could happen even in serial; in parallel such
scenarios may arise if a single community gets partitioned
into equally weighted sub-communities, in which there is no
incentive for any individual vertex to merge with any of the
other sub-communities; and yet, if all vertices from each of
the sub-communities were to merge together to form a single
community the net modularity gain could be positive. An
example of this case will be shown later in Section V-C.
Getting stuck in a locally optimal solution, however, can be
resolved when the algorithm progresses to subsequent phases
(as will be described in Section V-C).

V. PARALLEL HEURISTICS

In this section, we present our ideas to tackle the chal-
lenges outlined above in parallelizing the Louvain heuristic
community detection.

A. Coloring

Vertex coloring could provide an effective way to address
some of the cases presented in both scenarios (negative gain
and swap) in practice. It should be easy to see that using
distance-1 coloring to partition the vertices into colors prior
to the processing would prevent the vertex-to-vertex swap
scenarios explained under Section IV-B. In this scheme, ver-
tices of the same color are processed in parallel, and this is
equivalent of guaranteeing that no two adjacent vertices will
be processed concurrently. However, distance-1 coloring may
not be adequate to address the other potential complications
that may arise during parallelization (see Section IV-A).

Corollary 2: Applying and processing in parallel the ver-
tices by distance-1 coloring does not necessarily preclude the
possibility of negative modularity gains between iterations.

Proof: Follows directly from the three vertex example
case presented for Lemma 1.

In fact the same result can be shown for even an arbitrary
distance-k coloring scheme.

Lemma 3: Applying and processing the vertices by a
distance-k coloring scheme, where k > 1, still does not
preclude the possibility of negative modularity gains between
iterations.

Proof: Let i and j be two vertices that are separated
by a shortest path distance of at least k + 1 hops in the
graph. Furthermore, let the two vertices belong to two different
communities: C(i) �= C(j). This implies that under a distance-
k coloring scheme, it is possible for vertices i and j to be
processed concurrently. Even though the vertices are separated
by at least k + 1 hops, there are two cases in which it is
still possible for them to concurrently update the same target
community. The cases are illustrated in Figure 2. Let i′ and j′
denote some neighbor of i and j, respectively. Case a) shows
the possibility where there could exist i′ ∈ Γ(i) and j′ ∈ Γ(j)
such that C(i′) = C(j′), and vertices i and j decide to move
to C(i′) (as dictated by Eqn.7). Case b) shows the possibility
where there could exist i′ ∈ Γ(i) such that C(i′) = C(j),
and vertex i decides to move to C(j) and vertex j decides to
stay. In both cases, the vertices i and j would update the same
target community in a concurrent fashion, and by Lemma 1,
that could potentially lead to negative modularity gains.

Fig. 2. Illustration for showing the different cases for which even an arbitrary
distance-k coloring used for processing the vertices in parallel may still not be
sufficient to prevent negative modularity gains (Lemma 3). In all three cases,
vertices i and j are separated by a shortest path distance of at least k + 1.

Despite these lack of guarantees for a positive modularity
gain between iterations, coloring still could be effective as a
heuristic in practice. The cases outlined above in the proof for
the Lemma 3 are expected to be rare, given the number of
conditions that need to be met. The disadvantage of coloring,
however, is that it may reduce the degree of parallelism. Note
also that the coloring could add an overhead, but it is a
preprocessing step that needs to be performed only once prior
to each phase, and there are efficient coloring implementations
available [9].

B. The vertex following heuristic

In this section, we will layout a particular property of the
serial Louvain algorithm in the way it treats vertices with
single neighbors, and devise a heuristic around it. For the
lemma and the proof below, we will assume the version of
Louvain algorithm which continues with iterations within a
phase, until the communities stop changing.

Lemma 4: Given an input graph G(V,E, ω), let i and j be
two vertices in E such that (i, j) ∈ E and |Γ(i)| = 1. Then,
the final solution should have C(i) = C(j) — i.e., i should
be part of the same community as j.

Proof: There are two parts to this proof. First, we will
show that vertex i will join C(j) in the first iteration (Claim
1). Second, we will show that if at any iteration, say r (r ≥ 1),
j decides to leave i for a newer community, then either in the
current (r) or next (r + 1) iteration, i will again become part
of j′s community (Claim 2).

1377

Claim I) At the start of the first iteration, C(i) = {i} and
C(j) = {j}. There are two sub-cases:
Ia) i is processed after j (i.e., i > j); or
Ib) j is processed after i (i.e., i < j).

Sub-case Ia) Since j is the only neighbor of i, vertex i only
has two choices: i) to stay in a separate community by itself;
or ii) to join j′s community. The choice will be determined by
calculating the modularity gain to migrate to C(j) as follows:

ΔQi→C(j) =
ω(i, j)

m
+

−2 · ki · aC(j)
(2m)2

=
ω(i, j)

m
− ω(i, j) · aC(j)

2m2
(∵ Γ(i) = {j})

For i to decide against moving to C(j):

ΔQi→C(j) ≤ 0

⇒ ω(i, j)

m
− ω(i, j) · aC(j)

2m2
≤ 0

⇒ ω(i, j)

(2m)2
(2m− aC(j)) ≤ 0 (12)

⇒ 2m− aC(j) ≤ 0 (∵ ω(i, j)

(2m)2
> 0)

⇒ 2m ≤ aC(j)

But this is not possible because aC(j) ≤ 2m for any com-
munity (by the definition in Eqn.2) and in this case, since
i /∈ C(j), aC(j) ≤ (2m − ω(i, j)) < 2m. This implies that i
will have no choice but to move to C(j) in the first iteration.

Sub-case Ib) It may happen that vertex i is processed before
j in this iteration, in which case, i will first move to C(j)
(by the result of sub-case (1)). However, it is possible that
later when j is processed, it decides to move out of its current
community (same as C(i)) to a different community, say C(k).
This move will imply the following updates: C(i) = C(i)\{j}
and C(j) = C(k) = C(k) ∪ {j}. Consequently, C(i) �= C(j)
at the end of this iteration. If this happens, then this reduces
to the case addressed in Claim II (see below).

Claim II) Let at some iteration r (r ≥ 1), vertex j move
out of the community containing i — i.e., C(i) �= C(j).
Subsequently, when vertex i is processed (in iteration r or
r + 1), i will evaluate its modularity gain to the new C(j),
and move to C(j) if and only if ΔQi→C(j) > 0.

ΔQi→C(j) =
ω(i, j)

m
+
2 · ki · aC(i)\{i} − 2 · ki · aC(j)

(2m)2

=
ω(i, j)

2m2

{
2m+ aC(i)\{i} − aC(j)

}

(∵ ki = ω(i, j))

≥ ω(i, j)

2m2

{
2m− aC(j)

}
(∵ aC(i)\{i} ≥ 0)

If i were to decide against moving to C(j), ΔQi→C(j) ≤
0. Given that the above inequality is a lower bound for
ΔQi→C(j):

⇒ ω(i, j)

2m2

{
2m− aC(j)

} ≤ 0 (13)

Inequality.(13) is in the same form as Inequality.(12). Conse-
quently, i is guaranteed to move to C(j).

We refer to this as the vertex following (VF) rule and
it applies only to vertices which have a single neighboring
vertex. Since this rule says that regardless of the rest of the
graph, a vertex with only a single neighbor will also follow
that neighbor in its community assignment, there is no need to
consider making decisions on single neighbor vertices during
the algorithm’s iterations. However, we should not completely
ignore these vertices either as their links may dictate the
community assignments for the other vertices. Therefore, we
preprocess the input such that all vertices satisfying the single
neighbor property are merged as part of their respective
neighbor’s community initially. More specifically, let i be a
single neighbor vertex and its neighbor be j. Then, we remove
vertex i from the graph, and replace j with a new vertex j′,
such that Γ(j′) = {Γ(j) \ {i}} ∪ {j′} and ω(j′, j′) = ω(i, j)
if (j, j) /∈ E; and ω(j′, j′) = ω(j, j)+ω(i, j) otherwise. Note
that if for some single neighbor vertex i, its neighbor j is also
a single neighbor, then the i is merged with j only if i < j
(as a convention).

This preprocessing not only could help reduce the number
of vertices that need to be considered during each iteration,
but it also allows the vertices that contain multiple neighbors
(which represent the hubs in the networks) be the main drivers
of community migration decisions. This is more important
under a parallel setting because if the single neighbor vertices
were retained in the network the hub nodes may tend to grav-
itate temporarily toward one of their single neighbor mates,
thereby delaying progression of solution or getting stuck in a
local maxima.

C. The minimum label heuristic

Section IV-B elaborated on the possibilities of swapping
conditions that may delay the parallel algorithm’s convergence
to a solution. In this section we present a heuristic designed to
address some of these cases. Let us consider the simple case
of two vertices i and j outlined in Section IV-B. Here both
vertices are initially in communities of size one, and a decision
in favor of merging at any given iteration will lead them to
simply swap their respective communities without resulting in
any net modularity gain. This is outlined in the Case 1a of
Figure 3. Such a swap can be easily prevented by introducing
a labeling scheme where it can be enforced that only one of
them move to other’s community. More specifically, let the
communities at any given stage of the algorithm be labeled
numerically (in an arbitrary order). We will use the notation
�(C) to denote the label of a community C. Then the heuristic
is as follows:

The singlet minimum label heuristic: In the parallel
algorithm, at any given iteration, if a vertex i which is in
a community by itself (i.e., C(i) = {i}), decides (in the
interest of modularity gain) to move to another community
C(j) which also contains only one vertex j, then that move
will be performed only if �(C(j)) < �(C(i)).

This heuristic prevents single-member communities from
swapping their vertices as that will not result in a net modu-
larity gain.

The above heuristic can be generalized to many other cases
of swapping or local maxima. For instance, let us consider the
4-clique of {i4, i5, i6, i7} shown in Figure 3: case 2, assuming
that each vertex is in its own individual community to start

1378

Fig. 3. Examples of cases which can be handled by using the minimum degree/labeling heuristic. The dotted arrows point to the direction of the vertex migration.
Case 1 shows a scenario of vertex swap between two communities. Case 2) shows the evolution of two different communities {i1, i2, i3} and {i4, i5, i6, i7}.
Without the application of any heuristic (Case 2b), the algorithm may either form partial communities (e.g., {i1}, {i2, i3}) or may settle on a local maxima
(e.g., {i4, i6}, {i5, i7}). Whereas the use of a minimum label heuristic could help the communities converge to the final solutions faster (as shown in Case 2b).

with. Here, in the absence of an appropriate heuristic there is
a chance that the algorithm would settle on a local maxima.
For instance, maximum modularity gains can be achieved at
vertex i4 by either moving to C(i6) or C(i7), and similarly
for vertex i5. However, if i4 moves to C(i6) and i5 to C(i7),
then the resulting solution {i4, i6}, {i5, i7} (shown in case
2a of Figure 3) will represent a local maxima from which
the algorithm may not proceed in the current phase. This
is because, once these partial communities form, there is no
incentive for i4 or i6 to individually move to the community
containing {i5, i7}, without each other’s company. This is a
limitation imposed by the Louvain heuristic, which makes
decisions at the vertex level. However, if we label and treat
the communities in a certain way then such local maxima
situations can be avoided.

The generalized minimum label heuristic: In the parallel
algorithm, at any given iteration, if a vertex i has multiple
neighboring communities yielding the maximum modularity
gain, then that vertex which has the minimum label among
them will be selected as i′s destination community.

In the example for Figure 3:case 2, vertices i6 and i7 will
both yield the maximum modularity gain for vertices i4 and i5.
However, using the above minimum label heuristic, all three
vertices {i4, i5, i7} will migrate to C(i6), while i6 stays in
C(i6) — i.e., assuming �(C(i4)) < �(C(i5)) < �(C(i6)) <
�(C(i7)).

While we found the above heuristics to be generally effec-
tive in mitigating several swapping and local maxima situations
(see Section VI), they do not provide a protection against all
such cases. While swap situations may delay convergence, it
can be shown that they can never lead to nontermination of
the algorithm due to the use of a predefined cutoff for the
net modularity gain. Similarly, the local maxima situations
explained generally get resolved in subsequent phases, where
the representation of the individual sub-communities as meta-
vertices is likely to lead them to merge with one another
forming the containing communities eventually in the output.
Due to the lack of space, the proofs for these assertions are
not provided here in this paper.

D. Parallel algorithm

Our parallel algorithm has the following major steps:

1) Preprocessing (Optional): Apply the vertex following
heuristic by merging all single neighbor vertices as part of
their respective neighboring vertices initially (as explained
in Section V-B).

2) Preprocessing: Label the vertices from 1 . . . n in any
particular order of choice.

3) Preprocessing (Optional): Color the input vertices using
distance-k coloring. In this paper, we used distance-1
coloring. For coloring, we used the parallel implementation
from [9].

4) Phases: Execute phases one at a time as per Algorithm 1.
Within each phase, the algorithm runs multiple iterations
of the Louvain algorithm until there is no longer any
appreciable modularity gain between successive iterations.
The iterations are the main parallel steps, and the algorithm
for each iteration is also shown within Algorithm 1.

5) Input transformation: Between two successive phases, the
community assignment output of the completed phase is
used to construct the input graph for the next phase. This
is done by representing all communities of the completed
phase as “vertices” and accordingly introducing edges,
identical to the manner in which it is done in the serial
algorithm. Note that one can think of applying all the
above three preprocessing steps to the inputs going into
each of the phases, starting from the second phase, as
well. However, due to the high levels of graph contraction
obtained in the transformation step, we typically found it
unnecessary.

While the pseudocode shown in Algorithm 1 is more
representative of a shared memory multicore algorithm, the
same set of heuristics and ideas carry over to distributed
memory parallelism except for the implementation.

We note here that the above parallel algorithm, with the ex-
ception of coloring heuristic, is stable in that it always produces
the same output regardless of the number of processors used.
This is owing to the fact that at each iteration the decisions
made by every vertex are based on the state of communities
from the previous iteration (proof trivial). When coloring is

1379

Algorithm 1 The parallel Louvain algorithm (a single phase).

1: procedure PARALLEL LOUVAIN(G(V,E, ω), C)
2: Initialization
3: for each i ∈ V in parallel do
4: C(i)← {i}; �(C(i))← i
5: Ci

int ← 0 � counter for the #intra-community edges due to i

6: for each j ∈ Γ(i) do
7: Ci

tot ← Ci
tot + ω(i, j)

8: QC ← 0 � Current modularity

9: QP ← −∞ � Previous modularity

10: while true do � Iterate until modularity gain becomes less than

a user specified threshold.

11: � Stage-1: For each vertex, compute the modularity gain

from moving to a neighboring cluster.

12: for each i ∈ V in parallel do
13: Cold ← C(i)
14: Ni ← C(i) � Neighboring communities of i

15: for each j ∈ Γ(i) do
16: Ni ← Ni ∪ Cj

17: maxGain← 0
18: Cnew ← Cold

19: for each c ∈ Ni in parallel do
20: curGain← Calculate ΔQi→c

21: if ((curGain > maxGain) or (curGain =
maxGain and �(c) < �(Cnew)) then � Minimum label heuristic

22: maxGain← curGain
23: Cnew ← c
24: if maxGain > 0 then
25: Cold ← Cold \ {i}
26: Cnew ← Cnew ∪ {i}
27: � Stage-2: Compute the net modularity for this iteration.

28: for each c ∈ C AND c �= ∅ in parallel do
29: Cc

int ← 0
30: Cc

tot ← 0

31: for each (i, j) ∈ E in parallel do
32: if C(i) = C(j) then
33: Ci

int = Ci
int + ω(i, j)

34: Ci
tot = Ci

tot + ω(i, j)
35: else
36: Ci

tot = Ci
tot + ω(i, j)

37: Cj
tot = Cj

tot + ω(i, j)

38: exx ← 0
39: a2

x ← 0
40: for each c ∈ C AND c �= ∅ in parallel do
41: exx+ = Cc

int

42: a2
x+ = (Cc

tot)
2

43: QC = exx
m
− a2

x
(2m)2

44: if |QC−QP
QP

| < θ then � θ is a user specified threshold.

45: break � Phase termination

46: else
47: QP ← QC

applied, the use of differing number of threads within a given
iteration could potentially vary the order in which decisions
are made, thereby leading to potential variations in the output
modularities. In our experiments, we found the magnitudes of
such variations to be negligible.

E. Implementation

We implemented our parallel heuristics in C++/OpenMP.
It is to be noted that the heuristics themselves are agnos-
tic to the underlying parallel architecture. There are a few
implementation level variations to the algorithm presented

in Algorithm 1. In Stage-2, the modularity calculation hap-
pens in steps 38 − 43. The steps from 27 − 37 calculates
the intra- and inter-community edge counts required for the
modularity calculation. In our actual implementation we do
not explicitly execute these steps. Instead we aggregate these
values during Stage-1, as net modularity gains are being
calculated. This saves significant rework. Secondly, steps
25−26 show the update for the source and target communities
for each vertex i. We implemented these updates using in-
trinsic atomic operations __sync_fetch_and_add() and
__sync_fetch_and_sub().

F. Analysis

Within each parallel iteration of Algorithm 1, the vertices
are scanned in parallel, and for every vertex their vertex neigh-
borhood is scanned first to curate the set of distinct neighboring
communities (steps 14 − 16). Subsequently, the main step of
modularity gain calculation is performed only for each distinct
neighboring community (steps 19 − 23), which is equal to
vertex degree initially but is expected to rapidly reduce as
the iterations progress. Consequently, the worst-case runtime
complexity per iteration is O(max{M+n·λ

p , λmax}), where
p denote the number of processing cores, λ is the average
(unweighted) degree of a vertex and λmax is the maximum
(unweighted) degree of a vertex. The space complexity is
linear in the input for shared memory implementation (i.e.,
O(m + n)), whereas O(m+n

p) for the distributed memory
implementation.

VI. EXPERIMENTAL EVALUATION

A. Experimental setup

The test platform for our experiments is an Intel Xeon
X7560 server with four sockets and 256 GB of memory. Each
socket is equipped with eight cores running at 2.266 GHz,
leading to a total of 32 cores. The system is equipped with 32
KB of L1 and 256 KB L2 caches per core, and 24MB of cache
per socket. Each socket has 64 GB of DDR3 memory with a
peak bandwidth of 34.1 GB per second. Further details of the
machine are available in [10]. The software was compiled with
Intel 11.1 compilers using -fast option. We also enabled
non-uniform memory distribution using numactl command
and enabled thread binding by using KMP_AFFINITY set to
scatter. This option places the threads across the system
as evenly as possible. In all the experiments, we placed one
thread per core.

We tested our heuristics on 7 different real world input
graphs, the statistics of which are summarized in Table I.
With the exception of inputs labeled “MG1” and “MG2”, all
other inputs were downloaded from the DIMACS10 challenge
website [4], [11], and the University of Florida sparse matrix
collection [12]. “MG1” and “MG2” are graphs constructed for
two different ocean metagenomics data, using the construction
procedure described in [13].

Each of the real world inputs were tested using multiple
variants of our implementation that use different combination
of heuristics, to allow for the evaluation of each heuristic.
These variants are as follows:

• baseline: represents our parallel implementation with
only the Minimum Labeling (ML) heuristic;

1380

TABLE I. INPUT STATISTICS FOR THE REAL WORLD NETWORKS USED IN OUR EXPERIMENTAL STUDY. “RSD” STANDS FOR THE RELATIVE STANDARD

DEVIATION OF THE GRAPH’S NODE (UNWEIGHTED) DEGREES, AND IS GIVEN BY THE RATIO BETWEEN THE STANDARD DEVIATION OF THE DEGREE AND

THE MEAN.

Input No. vertices No. edges Degree statistics (λ)
graph (n) (M) max. avg. RSD

CNR 325,557 2,738,970 18,236 16.826 13.024

coPapersDBLP 540,486 15,245,729 3,299 56.414 1.174

Channel 4,802,000 42,681,372 18 17.776 0.061

Europe-osm 50,912,018 54,054,660 13 2.123 0.225

MG1 1,280,000 102,268,735 148,155 159.794 2.311

uk-2002 18,520,486 261,787,258 194,955 28.270 5.124

MG2 11,005,829 674,142,381 5,466 122.506 2.370

TABLE II. DISTANCE-1 COLORING STATISTICS FOR THE ORIGINAL INPUT GRAPHS. “COLOR SIZE” IS MEASURED IN THE NUMBER OF VERTICES

BELONGING TO THE SAME COLOR.

Input No. colors Color size statistics Time (in sec) to color
graph max. min. avg. RSD using 16 threads

CNR 85 183,614 1 3,830 5.786 0.025

coPapersDBLP 336 59,319 1 1,609 3.477 0.094

Channel 155 1,117,935 154 436,545 1.236 0.299

Europe-osm 5 24,605,946 48,772 12,727,964 1.046 0.920

MG1 799 290,969 1 1,602 7.780 1.129

uk-2002 943 10,684,895 1 19,640 18.876 0.976

MG2 2,143 2,289,843 1 5,136 12.748 9.909

• baseline+VF: represents the baseline implementation
with the application of the Vertex Following (VF) heuris-
tic in a preprocessing step;

• baseline+Color: represents the baseline implementation
with the application of the coloring heuristic applied in a
preprocessing step;

• baseline+VF+Color: represents the baseline implemen-
tation with the application of both the VF and coloring
heuristics (in that order).

B. Performance evaluation

Figures 4a-g show the parallel runtimes of the different
implementation variants listed above for each of the test inputs,
as a function of the number of cores (2 through 32). Figures 5a-
g show the evolution of modularity from the first iteration of
the first phase to the last iteration of the last phase, for each
implementation variant.

baseline+VF: The primary improvement expected out
of the VF heuristic over the baseline implementation is
the reduction in runtime for each iteration, due to the re-
duced number of vertices processed. However, the effec-
tiveness of the VF heuristic is also tied to the number of
single degree vertices in the original input graph. Among
the inputs tested, we applied the VF heuristic to the fol-
lowing: {CNR,coPapersDBLP,Channel,Europe-osm,uk-2002}.
There was no need to apply the heuristic on MG1 and
MG2 inputs because their single degree vertices (∼10%) had
already been pruned off when the graphs were generated3.
As can be observed from the runtime charts in Figure 4,
the runtime improvement is most pronounced in CNR and
uk-2002. This can be attributed to their respective skewed
degree distributions, as confirmed by their high RSD values in
Table I. The Channel input is devoid of single degree vertices
and therefore its baseline case is identical to its baseline+VF
(shown). The baseline+VF results for coPapersDBLP and
Europe-osm are interesting in that, even though the runtime

3As a result, there are no “baseline” results to show on MG1 and MG2.

per iteration reduced with the application of VF, the change
in the input graph adversely led to an increase in the overall
number of iterations for convergence, thereby increasing time
to completion. This is confirmed by the respective modularity
curves in Figure 5b,d. This is in contrast to inputs CNR and
uk-2002, where the application of VF also results in faster
modularity gains.

baseline+Color: The primary design intent of coloring is
to reduce the number of iterations required to converge on a
solution, and in the process, also reduce the time to solution.
However, note that the cost of coloring is reduced parallelism
within each iteration; more specifically, the presence of a
numerous small color sets could result in an under-utilization
of thread-level parallelism. In our experimental results, for all
inputs except uk-2002, we found coloring to be highly effective
in reducing both the number of iterations and the overall time
to solution. These results are shown by the baseline+Color
plots in Figures 4 and 5. These improvements were evident in
CNR, coPapersDBLP, Channel, Europe-osm and MG1, with
the run-time reduction anywhere from ∼ 2× (CNR) to 4.6×
(Europe-osm, 32 threads). In contrast, the run-time improve-
ments were either negligible in the case of MG2 or negative
in the case of uk-2002. These observations correlate with the
skew in color size distributions of the respective graphs, as
shown by the coloring statistics for each input in Table II. For
instance, the relatively higher values in the Relative Standard
Deviation (RSD) of the color sizes (Table II) for the inputs
uk-2002 and MG2 indicate the presence of a large number of
small color sizes that could result in thread under-utilization.
We plan to improve the color size distribution by introducing
randomization in the coloring algorithm, towards a better
load balanced distribution. For all inputs, however, the overall
number of iterations required for modularity convergence is
significantly reduced because of coloring (see Figure 5).

We enable coloring only for the first and the last phases.
For the first phase, with coloring enabled, we set the threshold
value to a higher value (10−2). For the rest of the phases,
we use a default threshold of 10−6. Note that the value of

1381

(a) Input: CNR (b) Input: coPapersDBLP (c) Input: Channel

(d) Input: Europe-osm (e) Input: MG1 (f) Input: uk-2002

(g) Input: MG2

Fig. 4. The charts show the parallel runtimes of the different heuristic combinations as a function of the number of threads (cores) used.

threshold determines the minimum value in modularity gain
before the execution is terminated. Since coloring considers
independent nodes to maximize modularity, we reason that the
gain in modularity will be higher than when coloring is not
used.

Effect of both VF and coloring: We also studied the effect
of applying both VF and coloring heuristics, by preprocessing
in two steps — i.e., VF followed by coloring. This was
performed for the inputs CNR, coPapersDBLP, Europe-osm
and uk-2002, which had single degree vertices. The results are
shown by the baseline+VF+Color plots in Figures 4 and 5.
The results show the two heuristics complement one another
by resulting in additive net gains.

Scaling and run-time results: Figure 4 also shows the run-
time scaling of our parallel implementation variants as a func-
tion of the number of threads. A weak scaling trend is apparent
— for the smaller inputs such as CNR the implementation
linear scaling is observed until 8 threads, and for the larger
inputs (e.g., Europe-osm, uk-2002) the scaling extends to 32

threads. However, graph size is not the only factor to affect
scaling; other factors such as the degree distribution can also be
influential. For instance, the best relative speedup was observed
for the medium size Europe-osm input (e.g., on 16 threads, the
baseline+Color achieved a 9.8x improvement in run-time over
the corresponding 2-thread run).

In all our runs, we observed the total run-time of an
execution to be dominated by the run-time for Phase 1. In
most cases, Phase 1 took more than 99% of the total run-
time (detailed phase-wise breakdown not shown due to lack
of space). For instance, for the MG2 input (baseline run),
Phase 1 took 1647 seconds out of the total 1650 seconds
on two threads, and the contributions from Phase 1 were of
similar magnitude or more for other core counts too. This is
expected as after Phase 1, the graph condenses significantly.
More interestingly, we observed a significant variance in the
iteration-wise runtimes within Phase 1. This is counter-intuitive
because the fixed number of vertices and edges within a phase
seem to suggest that the total work should also stay the same

1382

(a) Input: CNR (b) Input: coPapersDBLP (c) Input: Channel

(d) Input: Europe-osm (e) Input: MG1 (f) Input: uk-2002p

(g) Input: MG2

Fig. 5. Charts showing the evolution of modularity from the first iteration of the first phase to the last iteration of the last phase, for each of our parallel
implementation variants using different combination of heuristics. The phase transitions are marked by the steep climbs following plateaus that are indicative
of convergence within a phase. In addition to our results, we also show the serial Louvain implementation’s results to enable a comparison on the highest
modularity achieved and the number of iterations taken to reach to that value.

across the iterations of the phase. The variance is because
of the drastic reduction in the number of communities as the
iterations progress within the first phase (plot not shown). The
number of communities matter because within each iteration
of our parallel algorithm, the number of modularity gain
calculations per vertex is proportional to the number of distinct
neighboring communities of the vertex.

Comparison to serial Louvain: We also comparatively
evaluated the performance of our parallel implementations
proposed in this paper against the publicly available serial
Louvain distribution [14]. For all the inputs tested, the final
modularities achieved by all our parallel versions agree up to a
minimum of three decimal places. In some cases, variance be-
yond the third decimal places was observed in the final output
modularities when coloring was applied across different thread
counts. Table III compares the final modularities achieved
by our parallel implementation versus the best modularities

achieved by the serial Louvain code for each input. The
table also shows the best run-time achieved by our parallel
implementation against the serial run-time. For the inputs CNR
and uk-2002, the serial Louvain outputs a higher modularity
than our parallel implementation, although the differences are
marginal, with the modularity figures agreeing up to the third
decimal place. On the other hand, our parallel implemen-
tation delivers a higher modularity than the serial method
for inputs coPapersDBLP, Channel and MG1. In particular,
the improvements are most pronounced for coPapersDBLP
(+0.009) and Channel (+0.085). As for the run-times, we
observe that our parallel implementation delivers real speedups
in the range of 3.1× to 8.2× over the serial implementation,
for all inputs except Europe-osm and Channel. For Europe-
osm, the serial implementation was crashing, for reasons we
are yet to identify. For the Channel input, observe from Table I
that the degree distribution is highly uniform. This could cause

1383

TABLE III. COMPARISON OF THE BEST MODULARITIES AND RUN-TIMES ACHIEVED BY OUR PARALLEL IMPLEMENTATION VERSUS THE

CORRESPONDING VALUES ACHIEVED BY THE SERIAL LOUVAIN IMPLEMENTATION [14]. ALL RUNS WERE PERFORMED ON THE SAME TEST PLATFORM

DESCRIBED UNDER EXPERIMENTAL SETUP. ENTRIES LABELED “N/A” DENOTE THE CASES WHERE THE SERIAL LOUVAIN IMPLEMENTATION CRASHED.

Input graph
Output modularity Best run-time (in sec)

Heuristic reported (#threads)
our imp. serial Louvain our imp. serial Louvain

CNR 0.912618 0.912784 0.569 4.210 baseline+Color (16)

coPapersDBLP 0.858328 0.848702 2.429 7.747 baseline+VF+Color (32)

Channel 0.935286 0.849672 24.471 28.279 baseline+Color (16)

Europe-osm 0.998853 n/a 66.453 n/a baseline+VF+Color (32)

MG1 0.968725 0.968671 16.334 120.389 baseline+Color (32)

uk-2002 0.989363 0.989700 37.238 305.837 baseline+VF (32)

MG2 0.998426 0.998426 214.876 1099.061 baseline (32)

vertices to migrate to any one of the neighboring communities
with even probability delaying convergence under a parallel
setting. From the Table III, we can also note that the best run-
times are mostly observed using either the baseline+Color or
baseline+VF+Color.

VII. RELATED WORK

The literature on serial community detection is extensive
and cannot be possibly reviewed within this paper. Therefore,
we focus on some of the seminal works in the field and the
recent developments in parallelization. Although the notion
of community detection is not new, the field took a signif-
icant shape with the introduction of the modularity measure
to quantify the quality of community outputs by Newman
and Girvan in 2004 [2]. Newman’s pioneering works on
discovering community structure from networks also included
developing both divisive [2], [15] and agglomerative [16] clus-
tering methods. The divisive method use the edge betweenness
centrality index to detect bridges between communities but
due to the underlying computation involved, it is also very
slow (O(n3) for sparse inputs), limiting its scalability to
sparse networks with tens of thousands of vertices. The other
class of algorithms use an agglomerative clustering approach
where at any stage a greedy merging is performed between
any two communities that provide the maximum modularity
gain. This technique was originally introduced by the classical
Clauset-Newman-Moore (CNM) algorithm [16] and since been
adopted/tailored into many other methods (e.g., [17]). With an
average time complexity of O(n log2 n) this approach have
shown better scaling to networks containing ×105−106 nodes
and ×106 − 107 edges. The Louvain method [3] can also be
thought of as a variant of this agglomerative strategy but with
the key differences being that instead of carrying out the merg-
ing at a community-to-community level, the Louvain heuristic
allows vertices to independently make decisions from within
each community at every time step, and with a flexibility for
those decisions to be undone at later iterations. Although input
dependent, it has been shown that the Louvain approach is
able to produce communities with better modularity scores
than the other agglomerative strategies. On the other hand, the
cluster hierarchies produced by agglomerative techniques tend
to be more meaningful. For an extensive review on community
detection methods and comparisons, please refer to [1], [18].

In the past few years, there have been several efforts in
parallelizing modularity-based community detection. As part
of the DIMACS10 clustering challenge, Riedy et al. presented
a highly parallel agglomerative algorithm [19], [20] that is
an extension to the CNM algorithm. The key difference is
that their approach performs multiple pairwise community

merges in parallel by treating the problem as one of an edge
weighted matching. This strategy provides ample parallelism
to the method and the authors present impressive performance
and speedup figures on multiple data sets. As part of the
same DIMACS10 challenge, Auer and Bisseling [21] present
another way to achieve agglomerative clustering using GPUs.
Their approach uses graph coarsening. This method also shows
appreciable savings in time to solution. In a more recent
study, Bhowmick and Srinivasan [22] present a shared memory
parallel algorithm for the Louvain method. Their approach
is to update the community structures on-the-fly from within
each iteration as vertices are evaluated in parallel. This creates
a need to introduce critical sections in parts which limits
its scalability to small synthetic inputs (×104 vertices). The
modularities reported also show variability across the processor
spectrum. In another recent paper, Staudt and Meyerhenke [23]
present an alternative approach that uses label propagation
to parallelize the Louvain method. One of our future plans
is to compare our method with other recently developed
parallelization approaches such as the above.

VIII. CONCLUSION

In this paper, we introduced effective heuristics for par-
allelizing an important and widely used community detection
method — the Louvain method. We attempted to address the
dual objectives of maximizing concurrency, and retaining the
quality with respect to serial implementations. To this end, we
made two main contributions in this paper. First, we presented
a detailed discussion of the heuristics for parallelization and
provided analytical proofs of their effectiveness. Second, we
empirically supported the observations with a set of carefully
conducted experiments using seven real-world networks rep-
resenting a diverse set of application domains. Compared to
the serial Louvain implementation [14], our parallel imple-
mentation is able to produce community outputs with a higher
modularity for most of the inputs tested, in comparable number
of iterations, while providing real speedups of up to 8× using
32 threads. In addition, our parallel implementation was able
to exhibit weak scaling properties on up to 32 threads.

We believe that the mathematical discussion, heuristics,
and experimental evidence provided in this paper will benefit
a wide range of researchers dealing with increasingly larger
data sets and continually weaker serial hardware performance.
Our future work include: i) extending the experiments to
larger-scale inputs with billions of edges; ii) a comprehen-
sive comparison of communities produced by the serial and
different parallel implementations by delineating differences
by composition and not just modularity; iii) investigating
the value of the vertex following heuristic in the context

1384

of the serial Louvain algorithm and other modularity-based
community detection algorithms; and iv) extension of our
parallel algorithms to account for other modularity definitions
(e.g., [5]) in order to overcome the well known resolution-limit
issues of the standard modularity definition used in this paper.

ACKNOWLEDGMENT

The authors would like to thank Drs. Sanjukta Bhowmick
and Assefaw Gebremedhin for initial discussions, and Dr. Em-
ilie Hogan for reviewing a preliminary draft of the manuscript.
The research was in part supported by DOE award DE-
SC-0006516, NSF award IIS 0916463, and the Center for
Adaptive Super Computing Software Multithreaded Architec-
tures (CASS-MT) at the U.S. Department of Energy Pacific
Northwest National Laboratory (PNNL). PNNL is operated
by Battelle Memorial Institute under Contract DE-AC06-
76RL01830.

REFERENCES

[1] S. Fortunato, “Community detection in graphs,” Physics Reports,
vol. 486, no. 3-5, pp. 75–174, Feb. 2010. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0370157309002841

[2] M. E. J. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Physical Review E, vol. 69, no. 2, p. 026113,
2004. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevE.69.
026113

[3] V. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, p. P10008, 2008.

[4] DIMACS10, “The 10th DIMACS implementation challenge - graph
partitioning and graph clustering,” 00000. [Online]. Available:
http://www.cc.gatech.edu/dimacs10/

[5] V. A. Traag, P. Van Dooren, and Y. Nesterov, “Narrow scope for
resolution-limit-free community detection,” Physical Review E, vol. 84,
no. 1, p. 016114, 2011, 00039.

[6] D. Bader and J. McCloskey, “Modularity and graph algorithms,” SIAM
AN10 Minisymposium on Analyzing Massive Real-World Graphs, pp.
12–16, 2009, cited by 0004.

[7] J. W. Berry, B. Hendrickson, R. A. LaViolette, and C. A. Phillips, “Tol-
erating the community detection resolution limit with edge weighting,”
Physical Review E, vol. 83, no. 5, p. 056119, 2011, cited by 0037.

[8] U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski,
and D. Wagner, “On modularity clustering,” Knowledge and Data
Engineering, IEEE Transactions on, vol. 20, no. 2, p. 172âĂŞ188,
2008. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=4358966

[9] U. Catalyurek, J. Feo, A. H. Gebremedhin, M. Halappanavar, and
A. Pothen, “Graph coloring algorithms for multi-core and massively
multithreaded architectures,” Parallel Computing, 2012, 00002.

[10] A. Azad, M. Halappanavar, S. Rajamanickam, E. Boman, A. Khan,
and A. Pothen, “Multithreaded algorithms for maximum matching
in bipartite graphs,” in Parallel Distributed Processing Symposium
(IPDPS), 2012 IEEE 26th International, 2012, pp. 860–872, 00000.

[11] D. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, “Graph parti-
tioning and graph clustering: 10th DIMACS implementation challenge
workshop,” Contemporary Mathematics, vol. 588, Feb. 2012, 00000.

[12] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–1:25,
2011, 00457.

[13] C. Wu, A. Kalyanaraman, and W. R. Cannon, “pGraph: efficient parallel
construction of large-scale protein sequence homology graphs,” Parallel
and Distributed Systems, IEEE Transactions on, vol. 23, no. 10, pp.
1923–1933, 2012, 00008.

[14] Louvain, “findcommunities,” cited by 0000. [Online]. Available:
https://sites.google.com/site/findcommunities/

[15] M. E. J. Newman, “Analysis of weighted networks,” Phys. Rev. E,
vol. 70, no. 5, p. 056131, Nov. 2004.

[16] A. Clauset, M. E. J. Newman, and C. Moore, “Finding community
structure in very large networks,” Phys. Rev. E, vol. 70, no. 6,
p. 066111, Dec. 2004. [Online]. Available: http://link.aps.org/doi/10.
1103/PhysRevE.70.066111

[17] K. Wakita and T. Tsurumi, “Finding community structure in mega-scale
social networks:[extended abstract].” ACM, 2007, pp. 1275–1276,
00161.

[18] M. E. J. Newman, “The structure and function of complex networks,”
SIAM Review, vol. 45, pp. 167–256, 2003.

[19] J. Riedy, D. A. Bader, and H. Meyerhenke, “Scalable multi-threaded
community detection in social networks.” IEEE, 2012, pp. 1619–1628,
00005.

[20] E. J. Riedy, H. Meyerhenke, D. Ediger, and D. A. Bader, “Parallel
community detection for massive graphs,” in Parallel Processing and
Applied Mathematics. Springer, 2012, pp. 286–296, 00011.

[21] B. F. Auer and R. H. Bisseling, “Graph coarsening and clustering on
the GPU.” 2012, p. 223, 00006.

[22] S. Bhowmick and S. Srinivasan, “A template for parallelizing the
louvain method for modularity maximization,” in Dynamics On and Of
Complex Networks, Volume 2. Springer, 2013, pp. 111–124, 00000.

[23] C. Staudt and H. Meyerhenke, “Engineering high-performance com-
munity detection heuristics for massive graphs,” Parallel Processing
(ICPP), 2013 42nd International Conference on, pp. 180–189, Oct.
2013.

1385

