1240

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO.5, MAY 2017

Algorithms for Balanced Graph Colorings
with Applications in Parallel Computing

Hao Lu, Mahantesh Halappanavar, Daniel Chavarria-Miranda, Assefaw H. Gebremedhin,
Ajay Panyala, and Ananth Kalyanaraman, Member, IEEE

Abstract—Graph coloring—in a generic sense—is used to identify subsets of independent tasks in parallel scientific computing
applications. Traditional coloring heuristics aim to reduce the number of colors used as that number also corresponds to the number of
parallel steps in the application. However, if the color classes produced have a skew in their sizes, utilization of hardware resources
becomes inefficient, especially for the smaller color classes. Equitable coloring is a theoretical formulation of coloring that guarantees a
perfect balance among color classes, and its practical relaxation is referred to here as balanced coloring. In this paper, we consider
balanced coloring models in the context of parallel computing. The goal is to achieve a balanced coloring of an input graph without
increasing the number of colors that an algorithm oblivious to balance would have used. We propose and study multiple heuristics that
aim to achieve such a balanced coloring for two variants of coloring problem, distance-1 coloring (the standard coloring problem) and
partial distance-2 coloring (defined on a bipartite graph). We present parallelization approaches for multi-core and manycore
architectures and cross-evaluate their effectiveness with respect to the quality of balance achieved and performance. Furthermore, we
study the impact of the proposed balanced coloring heuristics on a concrete application-viz. parallel community detection, which is an
example of an irregular application. In addition, we propose several extensions to our basic balancing schemes and evaluate their
balancing efficacy and performance characteristics. The thorough treatment of balanced coloring presented in this paper from
algorithms to application is expected to serve as a valuable resource to parallel application developers who seek to improve parallel

performance of their applications using coloring.

Index Terms—Balanced coloring, parallel graph coloring, distance-1 coloring, partial distance-2 coloring, Tilera manycore architecture,

community detection, graph algorithms

1 INTRODUCTION

DECOMPOSING a computational task into constituent
parts that can be executed simultaneously or identify-
ing elements of composite data that can be safely updated
simultaneously is a pervasive primitive in parallel comput-
ing. An associated need is that of scheduling the identified
subtasks (or data update operations) onto the processing
units of a platform. In such a scenario, one would, for per-
formance reasons, need to both maximize the amount of
parallel execution (or data update) attained in a given step
and minimize the total number of steps needed. In cases
where the computational or data dependency between enti-
ties can be abstracted using a graph, this dual objective can
be modeled and solved as a graph coloring problem.

In this paper, we consider two types of graph coloring
problems: distance-1 coloring, which is defined on a general
(unipartite) graph, and, partial distance-2 coloring, which is
defined on a bipartite graph. A distance-1 coloring of a

e H. Lu, A.H. Gebremedhi, and A. Kalyanaraman are with Washington
State University, Pullman, WA 99164. E-mail: luhowardmark@uwsu.edu,
{assefaw, ananth j@eecs.wsu.edu.

e M. Halappanavar, D. Chavarria-Miranda, and P. Panyala are with Pacific
Northwest National Laboratory, Richland, WA 99354.

E-mail: {hala, daniel chavarria, ajay.panyala)@pnnl.gov.

Manuscript received 29 Oct. 2015; revised 31 Aug. 2016; accepted 9 Sept.
2016. Date of publication 21 Oct. 2016; date of current version 12 Apr. 2017.
Recommended for acceptance by R. Vuduc.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TPDS.2016.2620142

general graph G(V, E) is an assignment of colors to vertices
such that any two adjacent vertices receive different colors.
A partial distance-2 coloring of a bipartite graph G, =
(V1, Vo, E) is an assignment of colors to one of the vertex
sets, say V5, such that any two vertices in V5 that are two
edges away from each other receive different colors. More
formal definitions of these problems will be given in
Sections 2 and 5, but we remark at this point that distance-1
coloring is the “usual” graph coloring problem.

Standard formulations of the distance-1 and partial dis-
tance-2 coloring problems aim at minimizing the number of
colors used (that is, the number of independent subsets
or color classes) without any requirement on the size of the
color classes relative to each other. They therefore permit
cases where the color classes can be highly unbalanced. In
fact, by their nature, most practical algorithms for the stan-
dard formulations of these graph coloring problems pro-
duce highly skewed color classes. This will be undesirable
as the smaller color classes may not provide sufficient work-
load for parallel efficiency.

In this paper, we deal with the design, implementation
and performance evaluation of algorithms for the distance-1
and partial distance-2 coloring problems that also require
that color classes be balanced in their sizes.

There is a body of work in the graph theory literature on
equitable distance-1 colorings—a formulation in which color
classes are required to be perfectly balanced—but little work
exists on fast, practical, balanced coloring algorithms
and their parallelization on contemporary and emerging

1045-9219 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



LU ET AL.: ALGORITHMS FOR BALANCED GRAPH COLORINGS WITH APPLICATIONS IN PARALLEL COMPUTING

platforms. Further, to the best of our knowledge, there exists
no prior work on balanced partial distance-2 coloring. We
seek to address these deficiencies.

The scope and contributions of this paper are as follows:

o Algorithms. We investigate a variety of techniques,
grouped in two main categories, for achieving bal-
anced coloring in both the distance-1 and partial dis-
tance-2 coloring cases. Algorithms in the first category
aim to obtain a balanced coloring in a single attempt
(ab initio). Those in the second category begin with an
initial coloring oblivious to balance and use that infor-
mation to produce a new coloring that is also balanced
(quided). We propose three different types of guided
balanced coloring algorithms (each of which could fur-
ther be specialized to tune for performance) and exam-
ine several variants of ab initio approaches.

e Parallelization. We parallelize all of the balanced color-
ing algorithms we explore targeting two different
architectures: conventional multicore x86 architec-
tures and a specialized many-core platform, Tilera
TileGx36.

o  Application and Evaluation. We demonstrate the impact
of balanced distance-1 coloring on community detec-
tion—a widely used graph application. Our results
show that using balanced coloring for this application
could yield significant performance improvements
while preserving quality. In addition, we present a
thorough evaluation of the different heuristics based
on their balancing efficacy and performance.

A preliminary version of this paper that focused only on
distance-1 coloring has appeared in [1]. The remainder of the
paper is organized as follows. We provide background and
motivate our work in Section 2. We describe the sequential
versions of the various algorithms we explore for balanced
distance-1 coloring in Section 3 and discuss how they are
parallelized in Section 4. We discuss how the algorithms
developed for distance-1 coloring are modified to handle the
partial distance-2 coloring case in Section 5. We review essen-
tial features of the platforms for which the implementations
are targeted in Section 6. We present and discuss experimen-
tal results in Section 7. We conclude in Section 8.

2 BACKGROUND

2.1 Basics of Balanced Distance-1 Coloring
Given a general graph G = (V, E), a distance-1 coloring of G is
an assignment of colors to vertices such that any two adjacent
vertices (which are at distance 1 from each other) are assigned
different colors. This is the “usual” coloring problem, and
henceforth, for brevity, we will drop the qualifier “distance-
1” unless we need to distinguish it from distance-2 coloring.
A coloring is said to be equitable if the sizes of any two
color classes differ by at most one. The concept of equitable
coloring was introduced by Meyer in a 1973 paper [2]. Its
history, however, goes even further back to a conjecture by
Erdos, a conjecture settled in 1970 by Hajnal and Szemerédi
[3] forming their celebrated theorem: a graph with maximal
degree A is equitably k-colorable if £ > A + 1. This bound is
sharp. One of the directions of early theoretical research in
this field had been to obtain better upper bounds than A + 1
for special graph classes [4].

1241

The equitable coloring problem asks for an equitable
k-coloring with the smallest possible k. This problem is NP-
hard, as the classical coloring problem can be trivially
reduced to it. Polynomial time equitable coloring algorithms
are known for various special classes of graphs, including
trees [5], r-partite graphs [6], line graphs [6], and planar
graphs [7]. Furmanczyk [8] provides a survey of work on
equitable colorings until the early 2000’s.

In equitable coloring, as stated earlier, the difference in
size between any pair of color classes is required to be at
most one. This ideal can for some practical needs be unnec-
essarily stringent and too costly to attain. In the closely
related heuristic variant we refer to here as balanced coloring,
the restriction is relaxed; the difference in color class size
instead is allowed to be at most a “small” number greater
than 1. One formal way to state this is to say that each color
class is bounded by some parameter . Bodleander and
Fomin [10] study this problem and show that it, as well as
the equitable coloring problem itself, can be solved in poly-
nomial time for graphs with bounded treewidth. In this
work, we take a less formal route and think of balanced
coloring without fixing a parameter /. More specifically,
given a graph G(V,E), the problem is to compute a dis-
tance-1 coloring such that each color class receives approxi-
mately % vertices, where C'is the number of colors used.

Equitable coloring and balanced coloring (in the sense
just mentioned) find important applications in various
areas. Examples include load-balanced partitioning for
domain decomposition methods [11], parallel sparse matrix
computations on irregular grids [12], and various types of
scheduling and timetabling problems [13]. Tucker in a 1973
paper [14] discusses how equitable coloring theory has been
used in helping out Operations Researchers at the Urban
Science Department at Stony Brook, who were faced with a
challenging routing problem that sought to optimize sched-
uling of garbage collecting trucks in the city.

Balanced coloring in the context of parallel scientific
computing was studied by Gjertsen, Jones and Plassmann
[15], where they developed a balanced, distributed memory
parallel coloring heuristic building on their own earlier
work on parallel graph coloring that was unconcerned with
balancing color classes [16]. Their balancing heuristic draws
ideas from approximation algorithms for the bin packing
problem [17] and a coloring work in [18].

The work in [15] has connections to that in this paper, but it
differs both in terms context and approach. In particular, the
context in [15] is a distributed memory setting in which the
vertex set of a graph is already partitioned among processors.
Further, the authors assume that the partitioning is a good
one in the sense that each processor is assigned nearly the
same number of vertices. Based on an initial coloring of
the partitioned graph, the authors then run a balancing heu-
ristic that respects the vertex partitioning (avoids relocation of
vertices to processors). In contrast, in this work, we do not
assume any a priori partitioning of the vertex set. In fact, the
assignment of vertices to processors (or threads) is expected
to be done after the balanced coloring is achieved, which is an
advantage. In terms of approach, the work in [15] focuses on
one class of algorithms: given an initial coloring, how can bal-
ancing be achieved without increasing the number of colors
used? In contrast, here we consider a wider variety of algo-
rithms, provide implementations on modern day multi-core



1242
8.38861e+006 =]
4.1943e+006
2.09715e+006
1.04858e+006 1
524288
262144
—_ 131072 1
B 65536 ] 1
o 32768 |
= 16384 + |
) 8192 | 1
= 4096 | ]
S) 2048 |
® 1024 | 1
o 512
N 28 ]
w

reedy-FF —a

L

i

.

[
)

::GAveragle

0 100 200 300 400 500 600 700 800 900
Color bin index

(a) Greedy Coloring, Input: uk-2002

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO.5, MAY 2017

1

Modularity

SE!’iE' e

~wio colorin
w/ coloring (skewed) —e—

4 w/ coloring (balanced) —e—

0 L L . L . ! L
1] 5 10 15 20 25 30 35 40 45

Iteration number

(b) Community Detection, Input: cnr

Fig. 1. a) The size distribution of the color classes obtained by the Greedy First Fit heuristic for distance-1 coloring on an input graph (uk-2002)
obtained through a web crawl of the .uk domain. b) The evolution of modularity gain across the iterations of a parallel implementation of the Louvain
method [19]. Four curves are depicted there. Two of the curves correspond to results obtained when coloring (skewed and balanced) is used in the
parallel implementation, the third corresponds to results when coloring is not used, and the fourth corresponds to results on a serial implementation.

and manycore platforms, and experimentally evaluate their
performance as well as the trade-offs they offer.

2.2 A Foundational Scheme

For the standard distance-1 graph coloring problem, despite
its NP-hardness, the greedy scheme outlined in Algorithm 1
is often found quite effective in practice, since the scheme
gives usable solutions and can be implemented to run in lin-
ear-time for graphs that arise in practice.

Algorithm 1. Greedy

Greedy (G = (V, E))
for each v € V in some order do
for each w adjacent to v do
Mark the color of w as forbidden to v
Assign v a color not marked as forbidden to v

The scheme Greedy can be specialized in a variety of
ways depending on a) the technique used to determine the
order in which the vertices are processed and b) the strategy
used to pick a color (among a set of permissible colors) for a
vertex at a given step.

A common strategy with regards to (a) is to rank the ver-
tices in a non-ascending order of “degree”, where degree
is suitably defined (e.g., as the number of neighbors, or the
number of already colored neighbors, or the number of dif-
ferently colored neighbors). The intuition is to treat vertices
that are likely to be harder to color, earlier in the process.

A common strategy used with regards to (b) is to pick the
smallest (we assume colors are positive integers) permissible
color for a vertex in each step. This strategy is sometimes
referred to as First Fit (FF), since, considering the analogy
to the bin packing problem mentioned earlier, it strives to
place the vertex in the first bin (color) it could be placed in.
The rationale behind choosing the smallest color is that one
can then guarantee that the number of colors used by the
scheme is bounded from above by A + 1 (where A is the max-
imum degree in the graph) regardless of the order in which
the vertices are processed and by K + 1 (where K is the core
number of the graph) if the degeneracy order of the vertices
is used. A degeneracy order, also known as Smallest Last
ordering, can be obtained in linear-time.

The FF strategy is attractive for the bounds on the num-
ber of colors it assures. The color classes it produces, how-
ever, could be highly skewed, with a vast majority
containing significantly smaller number of vertices—an
expected result out of selecting the first available bin for
every vertex. The chart in Fig. 1a confirms this expectation
on a real world graph. Small-sized color classes can become
scalability bottlenecks in an end-application, where typi-
cally the color classes are processed in different steps (to
honor dependencies) and the smaller classes limit the
degree of parallelism during those steps.

2.3 Community Detection: A Motivating Application
Overcoming such scalability bottlenecks is in part what
motivated our current work. We sought to investigate algo-
rithms for achieving balanced coloring and their effective
use in parallel computing applications. As a case-study, we
consider balanced coloring in the context of parallel commu-
nity detection, based on an implementation called “Grappolo”
that we developed for multi-core and manycore architectures
[19], [20]. The parallel implementation is based on the sequen-
tial Louvain heuristic [21]. The Louvain method, which is one
of the most widely used community detection algorithms,
uses the modularity function [22] as the objective function to
be maximized.

Grappolo consists of multiple phases, each in turn con-
taining multiple iterations. Within each phase, the algo-
rithm starts with every vertex placed in a community of its
own. A series of iterations is then performed until a conver-
gence criterion is met. Within each iteration, all vertices are
scanned in parallel. For each vertex, a greedy decision is
made as to whether the vertex should migrate to a different
community (selected from one of its neighbors) or should
stay in its current community, so as to maximize the net
modularity gain. This approach places multiple constraints
on concurrent processing of neighboring vertices. In previ-
ous work, we had extensively explored the use of graph col-
oring in effectively addressing the challenges associated
with these constraints [19]. Our findings showed that the
use of coloring significantly accelerates convergence and,
for many input cases, also improves the quality of commu-
nities output (as measured by the modularity function).



LU ET AL.: ALGORITHMS FOR BALANCED GRAPH COLORINGS WITH APPLICATIONS IN PARALLEL COMPUTING 1243
TABLE 1
A Comprehensive List of Balancing Strategies for Distance-1 Coloring Presented and Studied in This Paper

Strategy Category Description

Greedy-LU ab initio Run Algorithm 1 with LU color choice among permissible colors.

Greedy-Random ab initio Run Algorithm 1 with Random color choice among permissible colors.

Shuffling-unscheduled — guided Run Algorithm 1 with FF color choice strategy. Based on the obtained coloring identify
over-full and under-full bins. Move select vertices from over-full to under-full bins without
changing the number of color classes. Further specializations include Vertex-centric FF
(VFF) and Color-centric LU (CLU).

Shuffling-scheduled guided Run Algorithm 1 with FF color choice strategy. Based on the obtained coloring identify over-
full and under-full bins. Move select vertices from over-full to under-full bins in a scheduled
manner without changing the number of color classes.

Recoloring guided Run Algorithm 1 with FF color choice strategy. Let the number of colors used be C'. Let

y = |V]/C. Construct an ordered set of vertices W = {V(C),V(C - 1),...,V(1)}, where V(7)
denotes the set of vertices having the color i. Re-color vertices in W in that order using
Algorithm 1 such that in each step, a vertex v is assigned the smallest permissible color k&
such that the size of bin & is less than y.

The input graph is denoted by G = (V, E). The same set of strategies are also extended to obtain a balanced partial distance-2 coloring on bipartite graph inputs.

However, since the color classes are processed in parallel
one at a time, large skews in color class sizes (as shown in
Fig. 1a) can reduce overall scalability, particularly while
processing the smaller color classes. The purpose of balanc-
ing the color classes is thus to improve thread utilization for
those smaller color classes, while ensuring that the overall
output quality of the solution (modularity) is maintained.

The chart in Fig. 1b demonstrates this purpose. The chart
shows that balanced coloring matches skewed coloring in
its impact on community detection both in terms of conver-
gence rate (i.e., number of iterations taken to complete) and
in terms of output quality (final modularity), while offering
the added advantage of improved thread utilization within
every iteration, since the color classes are balanced.

3 ALGORITHMS FOR BALANCED DISTANCE-1
COLORING

In this section, we present multiple heuristics to compute a
balanced distance-1 coloring of an input graph, as summa-
rized in Table 1.

We explore two categories of approaches. Approaches in
the first category aim at obtaining a balanced coloring in a
single attempt. We refer to these as “ab initio” approaches.
Those in the second category follow a two-step procedure,
where an initial coloring obtained using a balance-oblivious
procedure, is subsequently balanced in the second step. We
refer to these approaches as “guided” (to signify that they
are guided by an initial coloring).

3.1 Abinitio Balancing Strategies

Within the ab initio category, we consider two well-known
variants of the Greedy scheme outlined in Algorithm 1 that
differ in how the choice of color to be assigned to a vertex in
each step is done. Both variants seek to achieve balanced
coloring by virtue of the color choice strategy:

o Greedy-LU: A vertex is assigned the least used color
among all currently available permissible colors. If
no permissible color exists, then a new color is cre-
ated and assigned to the vertex.

e  Greedy-Random: A vertex is assigned a color picked at
random from the set of permissible colors. The

particular Greedy-Random variant we consider
assumes the existence of a reasonable bound B on
the number of colors needed. One such easy-to-com-
pute bound is B = A + 1. Then, a vertex v is assigned
a randomly chosen color from the set of permissible
colors P(v) €{1,2,...,B}.
Manne and Boman analyze balanced greedy coloring
using the strategies LU and Random in the context of sparse
random graphs [23].

3.2 Guided Balancing Strategies

In the guided category, we study different approaches for
obtaining a balanced coloring given an initial coloring. We
note here that all of the proposed guided approaches can
be applied to an initial coloring produced by an arbitrary
coloring method. However, a subset of these approaches is
designed to exploit certain properties of an initial coloring
produced by the Greedy coloring scheme that uses the FF
color choice strategy (henceforth abbreviated as Greedy-FF).

Given an input graph G = (V, E), let the number of colors
used by the initial coloring step be C. In all our guided strat-
egies, we make use of the quantity y = |V|/C to guide our
methods. Note that in a strictly balanced setting, the size of
each color class would be roughly y. Consequently, we refer
to a color class of size greater than y as an over-full bin, and a
color class of size less than y as an under-full bin. (We use
the terms bin and color class interchangeably throughout the
paper.)

Broadly, we classify our guided strategies into two types.
In the first type, a subset of vertices from each over-full
bin is moved to under-full bins so that a better balance is
attained. Since this is achieved without increasing the num-
ber of color classes, we refer to this type of methods Shuf-
fling-based. In the second type, instead of enforcing that the
number of color classes remains unchanged, all vertices are
colored afresh, this time with a balance constraint imposed.
We call this strategy Recoloring.

The Shuffling methods in turn comprise two specializa-
tions: unscheduled and scheduled moves. The motivation for
this distinction comes from parallel performance needs that
will be explained in Section 4.



1244

The Recoloring method takes advantage of an interesting
property of the Greedy-FF scheme. Suppose a coloring of a
graph G = (V, E) is obtained using Greedy-FF in some ver-
tex order. Let the number of colors used be C'. Now suppose
the vertices of G are ordered such that vertices in the same
color class are listed consecutively. Then re-applying
Greedy-FF using this new ordering will produce a new col-
oring of G using C or fewer colors. Culberson [24] applied
this idea iteratively in his method called Iterated Greedy
(IG) to successively reduce the number of colors and draw
the number as close to the optimal as possible. There is a
degree of freedom in how the color classes themselves could
be ordered for IG to be successful. One of the better strate-
gies is to list the color classes in reverse order—i.e., begin-
ning from the vertices of the highest color index.

We build on this property to devise our Recoloring
method for balancing. A key extension in our case is that we
maintain the sizes of bins during the new coloring and use
those to impose balance. In particular, in each step of the re-
coloring, a vertex is assigned the smallest permissible color
k such that the size of the bin & is less than y.

4 PARALLEL ALGORITHMS

We parallelized all of the guided balanced coloring algo-
rithms presented in Section 3 for the shared memory model.
For each heuristic we developed two OpenMP-based imple-
mentations—one for conventional multicores and another
for the Tilera manycore platform. To obtain the initial color-
ing we used a parallel implementation available for Greedy-
FF from a previous effort [25]. In this section, we describe
the parallel algorithms underlying the implementations of
the balancing schemes.

To parallelize our shuffling-based approaches, we con-
sidered two ways of moving a vertex from an over-full bin
to an under-full bin. The first type of move is “unscheduled”.
Here, the choice of the target bin for a given vertex is
decided dynamically (using either the FF or LU strategy)
based on the state of the color bins—encompassing both
size and composition. This approach strives to achieve a
good balance, if possible; as a trade-off, however, it entails
the cost needed to keep each dynamic state up-to-date.
More specifically, concurrent updates to the sizes of the
same bin need to be synchronized.

To mitigate the cost of updates, we explored an alterna-
tive that we call “scheduled” moves, where the target bin for
a vertex in an over-full bin is statically determined using a
heuristic, and the check to verify if such a move is permi-
ssible is deferred until the move is actually attempted.
If a move attempt creates a “conflict”, which is possible if
a neighboring vertex is already in the same target bin, no
further attempt is made and the vertex remains in its original
bin. The advantage of this approach is the expected
improvement in parallel performance, as no atomic opera-
tion or lock is needed to update bin sizes. However, this
approach could potentially leave bins unbalanced.

4.1 Parallelization using Unscheduled Moves

For obtaining guided balanced coloring using unscheduled
moves, we considered two parallelization schemes. In the
vertex-centric schemes, the loop-parallelization is around a
set of vertices, and vertices from different color classes are

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO.5, MAY 2017

allowed to be processed concurrently. In the color-centric
schemes, vertices processed concurrently must belong to
the same color class. In both schemes, only vertices in over-
full bins are considered for color reassignment. Further-
more, once an over-full bin ¢ reaches balance (i.e., size
reaches y) at any point in the execution, then vertices from
that bin are no longer considered for color reassignment.
Hence, these schemes represent partial recoloring methods
that proceed until either a balance is achieved or a balance
is no longer possible (i.e., there exist no more permissible
moves from any of the remaining over-full bins).

Vertex-Centric Parallelization Scheme. Processing vertices
from possibly different color classes exposes maximum con-
currency. However, it could also cause conflicts. To handle
such conflicts in parallel we adopt the Speculation-and-Itera-
tion framework described in [25]. The basic idea in this
framework is to maximize concurrency by temporarily tol-
erating inconsistencies. Consider a simple loop-paralleliza-
tion over the set of vertices in the Greedy scheme (using FF
or LU) outlined in Algorithm 1. Such a parallelization will
not preclude the possibility of a pair of adjacent vertices
from receiving the same color. In our adoption of the specu-
lation-and-iteration framework, once vertices are moved to
their target color classes, the idea is to detect conflicts (in
parallel) in a separate phase in the same round and resolve
them in a subsequent round. The algorithm proceeds itera-
tively in this fashion until all conflicts are resolved.

A template for the vertex-centric parallelization scheme
is presented in Algorithm 2. This algorithm corresponds to
the Vertex-centric First Fit (VFF) balancing method. It should
be easy to see that the same algorithm can be easily adapted
to the Vertex-centric Least Used (VLU) balancing method
with a change to the target bin (k) selection criterion.

Algorithm 2. Vertex-Centric Parallel Scheme for Balanced
Coloring (using FF)

VertexParallelGuidedBalancing(G = (V, E))
Obtain an initial coloring of G
Let U be the set of vertices from over-full bins
while U # 0 do
for v € U do in parallel
Let & be the smallest index of an under-full bin that is
permissible >FF
if k exists then
Let j < color|v]
colorv] — k
Update size of bins k£ and j
R0
for v € U do in parallel
for w € adj(v) do
if (color[w] = color[v] and v > w) then
R — RU{v}
Update size of bin color[v]
U—R

>synch. step

>check for conflicts

>>synch. step

Note that the maximum number of conflicts per a vertex
v in the above algorithm can be upper-bounded by
min{d(v), b}, where d(v) is the number of vertices adjacent
to v and b is the number of under-full bins. This upper-
bound is rather weak. In practice, we observed that the
closely related quantity—the actual number of iterations
needed to clear all conflicts—is typically a small constant.



LU ET AL.: ALGORITHMS FOR BALANCED GRAPH COLORINGS WITH APPLICATIONS IN PARALLEL COMPUTING

Color-Centric Parallelization Scheme. In the color-centric
scheme for parallelization, we allow only vertices from the
same color class to be processed concurrently. This is
achieved by processing one over-full bin at a time and per-
forming the moves departing from that over-full bin in par-
allel until a balance is achieved or no more move is possible.
This scheme, therefore, avoids conflicts, and the balancing
procedure requires no more than a single pass of the over-
full bins. However, the trade-off is in parallel performance
of the balancing procedure, which requires as many parallel
steps as there are number of over-full bins in the initial col-
oring. Depending on the strategy used to pick an under-full
bin (FF or LU), we refer to this Color-centric parallelization
scheme as either CFF or CLU. A template for the color-cen-
tric scheme is shown in Algorithm 3.

Algorithm 3. Color-Centric Parallel Balanced Coloring

ColorParallelGuidedBalancing(G = (V, E))
Obtain an initial coloring of G
Let Q be the set of over-full bins
for each j € @ do
Let V() denote the set of vertices with color j
for v € V(j) do in parallel
Let k be the smallest index of an under-full bin that
is permissible to v >FF
if k exists then
color[v] « k
Update size of bin k, j

>synch. step

Initial Coloring. We note here a special property emerging
from the use of Greedy-FF for generating the initial coloring.
Any initial coloring produced by Greedy-FF satisfies the fol-
lowing property: Assume a linear ordering of colors from
1,...,C. If a vertex v is assigned color j, where j > 1, then
it implies that v contains at least one neighbor in each of the
previous colors 1,...,5 — 1 (otherwise, v would have been
assigned a smaller color). Therefore, if we follow the
Greedy-FF initial coloring by another FF-based strategy dur-
ing the subsequent balancing step (e.g., VFF or CFF), then the
closest permissible bin, say k, we identify through that pro-
cedure would also correspond to a color that has a high inci-
dence of edges on the source over-full color bin. Given that
k represents a permissible bin despite its high incidence
makes it intuitively an attractive target for this vertex. On
the other hand, an LU-based strategy (VLU or CLU) oper-
ates oblivious to the ordering of the initial colors, and is
therefore better suited for scenarios where the initial color-
ing was generated by schemes other than Greedy-FF.

It is for these reasons that we use the Greedy-FF strategy
for computing an initial coloring in VFF and CFF, while for
VLU and CLU the use of any initial coloring scheme is
reasonable.

4.2 Parallelization using Scheduled Moves

To parallelize guided balancing using scheduled moves we
take advantage of both the incidence property (observed
above) and another size-related property of the Greedy-FF
initial coloring: owing to its First Fit strategy, Greedy-FF is
expected to assign more vertices to smaller-indexed color
classes. In other words, color classes are expected to be in
non-increasing order of their sizes as one proceeds from

1245

color 1 through color C. This expectation agrees with the
size distributions depicted in Fig. 1.

Our parallel algorithm with scheduled moves is outlined
in Algorithm 4. Intuitively, we identify an arbitrary subset
of surplus vertices from the sequence of over-full bins and
mark each of them for assignment to a corresponding
under-full color." At this point, no explicit checks are made
to identify conflicts. In the next step, all vertices from the
over-full bins that were scheduled for recoloring are proc-
essed in parallel to check if any of them conflicts with the
assigned target bin. A move is completed only if it generates
no contflicts.

Algorithm 4. Parallel Shuffling using Scheduled Moves

ScheduledBalancing(G = (V; E))
Obtain an initial coloring of G using Greedy-FF
Let C be the number of colors used, and let y = |V|/C
Let Qo be an ordered set of over-full bins in increasing order
of color index
Let Qu be an ordered set of under-full bins in decreasing
order of color index
Let L (initially ()) maintain a list of moves from over-full to
under-full bins
foreach j € Qo do
Let V(j) denote {u € V| color[u] = j}
Select V'(j) C V(j) such that |[V' ()| = |V ()] — v
foreach k € Qu AND V'(j) # ( do
Let V/(j) C V'(j) denote vertices that can be moved
to k such that |V/(7)| + [V(k)| < y
L~ LUV())
V(i) — VG \ V()
for V/(j) € L do
for v € V/(j) do in parallel
if (k is a permissible color for v) then
color[v] — k

This simple approach requires no synchronization on the
bin sizes. However it could leave the bins imbalanced. To
improve the chance of obtaining a better balance, we fill the
under-full bins (set Q7 in Algorithm 4) in the decreasing order
of color index (we refer to this approach as Scheduled Reverse,
or more simply, Sched-Rev). Attempting to fill the under-full
bins in decreasing order increases the likelihood of color co-
assignment of vertices—i.e., two vertices being moved from
the same source over-full bin are likely to co-locate in the
same target under-full bin, thus minimizing the chance of
conflicts. This is a consequence of the aforementioned size-
related property of the Greedy-FF initial coloring.

4.3 Parallel Recoloring

The parallelization we use for the balancing based on Recol-
oring is outlined in Algorithm 5. This is similar to the ver-
tex-centric parallel scheme given in Algorithm 2 with the
main difference being that we recolor all the vertices from
scratch and that balance is imposed as the recoloring pro-
ceeds. In particular, the recoloring approach colors vertices
roughly in the order of vertices as they appear from the

1. This step is performed serially in our current implementation
since it was very quick for most inputs; however, if required, this step
can also be parallelized using parallel prefix (details omitted).



1246

(a) Matrix A

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO.5, MAY 2017

(c) Induced graph G,2[V,]

Fig. 2. lllustration of equivalence among structurally orthogonal partition of a matrix A (a), partial distance-2 coloring of the vertices in V4 in bipartite
graph G;, = (W1, Vs, E) of A (b), and distance-1 coloring of the subgraph of the square graph induced by V5, that is G[V4] (c).

largest color to the smallest color of the initial coloring. The
rationale for this ordering, as mentioned in Section 3.2, is
that the re-coloring procedure would have an opportunity
to use fewer colors, since now the vertices that were
“difficult” to color initially are processed earlier. In the pro-
cess of recoloring, we also strive for the size of each color
class to be as close as possible to the average size of a color
class y obtained from the initial coloring.

Algorithm 5. Parallel Recoloring for Balance

ParallelRecoloring(G = (V; E))
Obtain an initial coloring of G using Greedy-FF
Let C be the number of colors used, and let y = |V|/C
Let V(j) denote {u € V| color[u] = j}
Construct an ordered set W = {V(C),V(C - 1),...,V(1)}
Initialize bin[i] = 0,fori =1,...,C
U—W
while U # () do
for v € U do in parallel
color[v] < smallest permissible color k such that
binlk] <y
Increment bin[k] by 1
R—10
for v € U do in parallel
for w € adj(v) do
if (color[w] = color[v] and v > w) then
R — RU{v}

> perform a fresh coloring

>>synch. step

U—R

4.4 Complexity
With careful choice of data structures, the sequential
Greedy scheme (Algorithm 1) that underlies all of our paral-
lel algorithms, can be implemented such that its runtime is
upper-bounded by O(|V]-A), where A is the maximum
degree in the graph. In each of the templates outlined in
Algorithms 2 through 5, the total “additional” work
incurred due to parallelization is no more than the work
involved in Algorithm 1. Furthermore, the number of
rounds required by the iterative variants (Algorithms 2 and
5), as argued earlier, is typically a small constant in practice.
Therefore, the net total work in any of our schemes can be
upper-bounded by O(|V] - A).

The above complexity represents a worst-case, where for
instance, multiple vertices with relatively high degrees tend
to occupy the overfull bins in the initial coloring. But such

cases also require a relatively high number of such vertices
in the input, which is less likely to be observed in real world
networks with power-law like degree distributions.

5 PARTIAL DISTANCE-2 COLORING

5.1 Preliminaries

As mentioned in Section 1, besides distance-1 coloring, we
considered in the current work a balanced version of
another coloring problem, partial distance-2 coloring, that is
defined on a bipartite graph G, = (Vi, V3, E). The coloring
“rule” here is to assign colors to vertices in one of the vertex
sets, say V3, such that any pair of vertices v;, v; from V5 that
share a common neighbor v, in V; (that is, (v.,v;) € E and
(v, v;) € E) get different colors.” The objective of the stan-
dard version of the problem, as in distance-1 coloring, is to
use as few colors as possible. The balanced variant seeks to,
in addition, balance the color classes.

The partial distance-2 coloring problem is an important
model in computations involving nonsymmetric matrices.
For example, a partitioning of the columns of a nonsymmet-
ric matrix A into groups of structurally orthogonal columns—
a group in which no two columns share nonzero entries in
the same row position—can be modeled by a partial dis-
tance-2 coloring of the column vertices V» of the bipartite
graph G(A) = (V4,V3, E) representing the sparsity struc-
ture of the matrix A [26]. Such a model is useful, for exam-
ple, in an efficient computation of a Jacobian matrix A using
automatic differentiation. Fig. 2 shows a small example that
illustrates how a structurally orthogonal column partition
of a matrix is modeled as as a partial distance-2 coloring of
the bipartite graph.

Fig. 2c illustrates yet another equivalence. In general, a
partial distance-2 coloring on the vertex set V5 of a bipartite
graph G), = (4, V4, E) is equivalent to a distance-1 coloring
of a certain derived graph—the subgraph of the square graph
of Gj induced by the vertex set V5, which we denote by
Gy*[Va]. For a general graph G = (V, E), the square graph
G? = (V, F) is a graph defined on the same vertex set V and
where the edge set F' consists of pairs of vertices that are
distance less than or equal to two edges from each other. In

2. This variant is called “partial” since only one of the two vertex
sets in the bipartite graph is colored. It is called “distance-2” since, in
the vertex set to be colored, any two vertices that are two edges away
from each other are required to get different colors. The naming was
first used in [26].



LU ET AL.: ALGORITHMS FOR BALANCED GRAPH COLORINGS WITH APPLICATIONS IN PARALLEL COMPUTING

other words, F = EU E', where E’ corresponds to pairs of
vertices that are at distance exactly two edges from each
other in G. If the graph under consideration is a bipartite
graph G, = (V4, V5, E), then the square graph G = (W,
V4, F'), which no longer is bipartite, is such that the edge set
can be viewed as having three parts: I'=FEU L UL,
where E; corresponds to the “new” edges that run among
vertices in V; (those that are at distance 2 in GG;) and FE5 cor-
responds to the edges that run among vertices in V5 (those
that are at distance 2 in G}). The subgraph of G;* induced
by the vertex set V5 could then be written as G. = (14, Es).
In network science literature, the graph G. is also sometimes
referred to as a “projection” on to the vertex set V5, and in
the numerical optimization community G. is also known as
the “column intersection graph” of the associated non sym-
metric matrix.

The discussion in the paragraph above focused on the
case where the vertex set in the bipartite graph to be colored
is V5. Entirely analogous discussion and definitions apply if
the vertex set to be colored were V] instead.

Now if partial distance-2 coloring on the vertex set V5 of
the bipartite graph G, = (V3,V4, E) is equivalent to dis-
tance-1 coloring of the intersection graph G, = Gy [Va), why
don’t we then simply construct G. and solve the distance-1
coloring problem on it using algorithms developed for dis-
tance-1 coloring, instead of developing algorithms tailored
for partial distance-2 coloring? As has been argued in [26],
there are several reasons for this. First, the partial distance-2
coloring formulation offers greater flexibility. In particular,
the intersection graph necessarily looses structural informa-
tion contained in the original bipartite graph. For example,
considering the context of an underlying nonsymmetric
matrix, given two column vertices in V5 joined by an edge in
G, one cannot determine the row at which the two columns
share nonzero entries. Second, for some structures, the
intersection graph G),?[V4] could turn out to be substantially
denser (have more edges) than the original graph G, and
hence require more memory. Note that by construction,
each vertex u € Vi of G(Vi, Vs, E) would correspond to a
k-clique in G% [V3], where k is the degree of w. Third, the par-
tial distance-2 coloring formulation avoids the need for
building a different data structure than the one used to rep-
resent the input graph.

5.2 Algorithms
The greedy scheme for distance-1 coloring outlined in
Algorithm 1 can be easily modified to obtain a solution
for the partial distance-2 coloring problem. The needed
modifications are: (i) the input is a bipartite graph
Gy, = (W1, Vs, E), (ii) the for-loop iterates over v € V5, and
(iii) the neighbors of a vertex v are those vertices x that
are connected to v by a path v, w,z of length two edges.
The algorithm modified in this manner is outlined in
Algorithm 6. Let §(15) denote the average degree of a
vertex in V3, and A(V;) denote the maximum degree of a
vertex in V;. Consequently, the runtime complexity of
the algorithm is as follows [26]: O(|V2|8(V2)A(V;)), which
is same as O(|E|A(1})).

We note here that it is possible to develop a faster
greedy algorithm by exploiting the bipartite structure of

1247

the graph and by relaxing the constraint on the maxi-
mum number of colors used. One such approach is to
linearly scan the vertices in V; and assign different colors
to all its neighbors in V, while using colors in a greedy
first-fit fashion. Such an approach, while improving the
runtime (O(|E|)), could potentially use more colors rela-
tive to Algorithm 6. Furthermore, parallelization of such
an approach may necessitate multiple iterations to
resolve potential conflicts introduced during the parallel
coloring procedure. For these reasons, we use Algo-
rithm 6 as the basis for the balanced variants developed
and results presented in this paper.

Algorithm 6. Greedy Partial Distance-2 Coloring

GreedyPD2C(G, = (Vi, V5, E))
for each v € V5 in some order do
for each w adjacent to v do
for each z adjacent w do
Mark the color of x as forbidden to v
Assign v a color not marked as forbidden

The parallelization strategies discussed in Section 4
focused on distance-1 coloring. The corresponding algo-
rithms for partial distance-2 coloring follow the same meth-
odology, with the modifications outlined earlier in this
paragraph. We therefore omit detailed presentation of algo-
rithms for partial distance-2 coloring.

5.3 Another Example of an Application

Parallel implementation of the coordinate descent algorithm is
another example of an application in which partial dis-
tance-2 coloring is useful. Let us review the coordinate
descent algorithm briefly to show how partial distance-2
coloring is relevant there. In the coordinate descent algo-
rithm, the rows of matrix A correspond to samples and the
columns correspond to features. The corresponding dimen-
sions are often denoted by n (samples) and k (features). For-
mulated in a generic fashion, the coordinate descent (CD)
algorithm consists of four steps that are performed itera-
tively until convergence is reached:

Step (1)  Select a set of coordinates J

Step (2)  Propose increment 6, j € J

Step (3)  Accept some subset .J' C J of the proposals
Step (4)  Update weight w; for all j € J'.

The approach taken in the Select step determines the
type of the CD Algorithm. For example in cyclic or sto-
chastic CD the selection targets a singleton, whereas in
greedy CD one selects a set—and in the extreme case
(fully greedy), the entire set of features is selected.
Clearly, greedy is better suited for parallel CD. In a par-
allel formulation of CD, the Propose and Update steps
need to be performed concurrently. In order to perform
the Update step with maximal exploitation of parallel-
ism, one needs to identify groups of structurally orthog-
onal columns (features), since then matrix entries in all
the columns in a group can be updated safely concur-
rently. This identification in turn is what is modeled
using partial distance-2 coloring (on the column-vertices)
of the bipartite graph representing the sparsity structure
of the matrix A.



1248 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO.5, MAY 2017
- TABLE2 _ page) using the hashed policy. Previous experience with
Input Statistics for the Graphs used in basic coloring and community detection on Tilera [20] has
Our Distance-1 Coloring Study shown this configuration to be the most performant one for
Input Num, Num, Degree stats all 1r.1pu.t data ser. The OpenMP threads created by the
) application are pinned to contiguous sets of cores on the
graph vertices (n) edges (m) max. ave: manycore mesh architecture in order to avoid costly thread
random2 100,000 9,994,356 263 199.89  migration and subsequent cache misses.
CNR 325,557 2,738,970 18,236 16.28
coPapersDBLP 540,486 15,245,729 3,299 56.41
rggl1-22 4194304 27,306,228 23 1302 7 EXPERIMENTAL RESULTS
Channel 4,802,000 42,681,372 18 17.77 7.1 Experimental Setup
MG2 11,005,829 674,142,381 5,466 122.50 .
NLPKKT200 16,240,000 215,992,816 27 26.60 Test Platforms. We used two platforms for testing: the many-
uk-2002 18,520,486 261,787,258 194,955 28.27 core Tilera TileGX36 presented in Section 6, and an x86
Europe-osm 50,912,018 54,054,660 13 2.12 AMD Interlagos platform.

6 IMPLEMENTATION ON THE TILERA PLATFORM

We have ported our parallel balanced coloring algorithms to
the Tilera manycore platform. The Tilera TileGX36 system
implements a manycore processor based on a two-dimen-
sional mesh topology. Each core (called a “tile” in Tilera’s
terminology), consists of a three-way VLIW processing unit,
a private 32 KB, two-way set associative L1 data cache, a
private 32 KB, direct-mapped instruction cache and a 256
KB, eight-way set associative unified L2 cache. The cache
line granularity is 64 bytes across all three caches. Each tile
is connected via multiple links to several networks-on-chip
(NOCs) in a 2D mesh configuration. (These NOCs include
one for coherence traffic, a user-programmable message
passing NOC, and a dedicated I/O NOC.)

Tilera’s caching policies are the salient features that we
exploit to optimize this application. For each individual
memory page, the system can set the home tile of its data in
the cache subsystem. There are two principal modes for set-
ting the home tile of a memory page: homed (a particular tile
is the home for the whole page) and hashed (individual
cache lines on the page are distributed in a round-robin
manner to the L2 caches of all tile).

For the balanced coloring algorithms and the community
detection application we use a heap manager with a backing
store of homed huge pages (16 MB/page) for all thread pri-
vate data. The global shared data structures (Compressed
Sparse Row Representation of the graph, arrays of colors
and bin sizes) are allocated on default-sized pages (64 KB/

The TileGX36 platform is equipped with 32 GB of DDR3
memory separated into two 16 GB banks, with the cores
running at 1.2 GHz. The TileGX36 runs a custom version of
Linux adapted for Tilera’s hardware. The compiler and run-
time environment are adapted from GCC 4.8.2 and retar-
geted for the TileGX's 64-bit VLIW cores. The community
detection code has been parallelized using OpenMP and
Tilera-specific extensions for memory management, syn-
chronization and atomic operations.

The AMD multi-core platform consists of a dual-socket
Interlagos processor with 64 GB of memory. Each socket
has 16 cores running at 2.1 GHz. Each pair of cores is
grouped into a module sharing a single floating-point func-
tional units and separate integer functional units. Each core
contains 16 KB of L1 cache, while each module shares 2 MB
of L2 cache. Four modules share 8 MB of L3 cache. Each
socket contains eight modules on our system.

Test Inputs. The test inputs used in the different experi-
ments on distance-1 coloring are summarized in Table 2.
These inputs were all downloaded from the University of
Florida sparse matrix collection [27], with the following
exceptions: MG2 is a custom-built biological network
obtained from protein sequences of a metagenomics data
set [28]; rggll —22 represents a random geometric
graph [29] that was generated using the generator described
in [30]; and random?2 was generated using a simple random
function that applies a probability of edge between any pair
of vertices. These inputs were chosen to encompass a vari-
ety in graph sizes and color class properties such as the
number of colors and color size distribution (Table 3).

TABLE 3
Quality of Balance Obtained by the Different Heuristics on Different Inputs

Guided schemes Ab initio schemes

Input Init. coloring

graph Greedy-FF VFF CLU  Sched-Rev Recoloring Greedy-LU Greedy-Random
random?2 37.17% (52) 0.08%  0.09% 26.21% 22.74%  (57) 9.10% (82)  21.04%  (73)
CNR 587.73% (85) 0.03%  0.04% 16.44% 13.81%  (88)  12.03%  (211) 24.29%  (209)
coPapersDBLP  342.41% (336) 0.69%  0.15% 12.01% 10.17%  (340)  0.11%  (337) 23.15%  (338)
rggl1-22 129.03% (15) 0.00%  0.00% 14.69% 26.66%  (15) 4.29% (17)  38.93%  (16)
Channel 128.99% (12) 0.00%  7.16% 7.55% 35.75%  (14) 4.84% (16)  20.05%  (17)
MG2 1,272.31% (2,143) 038%  0.21% 9.57% 2534% (2335) 18.09% (2169) 94.37%  (2172)
NLPKKT200 99.88% 4) 0.00% 17.65% 7.95% 72.13% 6) 0.00% (23) 1.64% (23)
uk-2002 1,885.15%  (943)  0.08%  0.01% 4.88% 3.53%  (945)  2.94%  (1010) 28.34% (1018)
Europe-osm 126.87% (5) 0.00%  0.00% 6.70% 39.90% 6) 0.00% 7) 12.07% (6)

Entries in each cell show the Relative Standard Deviation (in percent) of color class sizes obtained by a given heuristic (the lower the values, the better the bal-
ance). The guided schemes VFF and CLU produce the same number of colors as the initial coloring scheme (Greedy-FF). The number of colors produced by
Greedy-FF, Recoloring and the two ab initio schemes is provided in parenthesis (next to their respective RSD values).



LU ET AL.: ALGORITHMS FOR BALANCED GRAPH COLORINGS WITH APPLICATIONS IN PARALLEL COMPUTING

1.04858e+006
524288

262144 § o —e—a—a- !
131072 \ |
—_ 65536 1
w
@ 32768 |
o
= 16384 !
2 8192
e
o 4096
x 2048
o 1024
D 513 Greedl(;llgg
256 CLU —e—
Sched-Rev —5—
128 | Greedy-LU 1
g4 Greedy-Random —a
ecoloring
32 . .
0 2 4 [ 8 10 12 14 16
Color bin index
(a) Channel
4.1943e+006 (f 1
2.09715e+006
w  1.04858e+006
@
o
= 524288
@
=
5 262144
* 131072 | 1
3 )
65536 | Greedy-FF —— 1
“w VEr o
32768 | CLU ——
Sched-Rev —a—
16384 Recolaring

8192 |
o 1 2 3 4 5
Color bin index

(c) NLPKKT200

1249

W
@
<
=
@
=
—
o
i+
=
g l
Greedy-FF —
= s VFF S
CLU —m—
4 Sched-Rev —5
Greedy-LU
2Greedy-Random —a—
ecoloring
1 . ;
o 10 20 30 40 50 60 70 80
Color bin index
(b) random2
131072
65536
32768 [
16384
. 8192
[ 4096
o 2048
E 1024 |
Z 512
L 256
3 128
g 64 |
193] az .Greed‘(;’::'l; i
18 ciy
& Sched-Rev —a i
4 | Recoloring 5
2 G
1 . H L

o 10 20 3o 40 50 60 70 a0

Color bin index
(d) CNR

Fig. 3. Distance-1 coloring: Distribution of color class sizes produced by the different balanced coloring schemes (horizontal axis corresponds to col-
ors (bins) and vertical axis to sizes of color classes). Recall that smaller color class sizes correspond to reduced parallelism in the end-application,
while higher number of colors corresponds to increased number of parallel steps within the application. For Channel and random2, color class sizes
from all balancing schemes are shown. For NLPKKT200 and CNR, color class sizes only from the balancing schemes that produce same or compa-

rable number of colors to the Greedy-FF scheme are shown.

All results pertaining to distance-1 coloring are presented
in Section 7.2 through Section 7.4 The test inputs and results
on partial distance-2 coloring are presented in Section 7.5. The
extensions to balanced coloring are presented in Section 7.6.

7.2 Balance Quality Assessment

In this section, we compare the quality of balance in the
color class sizes produced by the different balancing
schemes proposed in the paper. (Please refer to Table 1 for
an overview of all the schemes.) To measure balance, we
use the Relative Standard Deviation of the color class sizes
(expressed in percent), which is the ratio of the standard
deviation to the mean color size. The closer this value is to
zero the better is the balance. For the schemes {Recoloring,
Greedy-LU and Greedy-Random} we also compared the
number of colors they produce to the number of colors pro-
duced by the Greedy-FF scheme (initial coloring).

Table 3 shows the results of our quality assessment. First,
we observe the very large skews in the color sizes produced
by the Greedy-FF scheme (which was the primary motiva-
tion behind this work). With respect to balancing, we
observe that schemes VFF and CLU generally outperform
all other schemes in either category (guided or ab initio). We
note here that if the initial coloring was generated by a
scheme other than Greedy-FF, then CLU is expected to out-
perform VFF. The Sched-Rev scheme was also effective in
reducing the skew although the degree of balance achieved
was lower than VFF and CLU—as can be expected due to

its scheduled strategy. One way to improve the perfor-
mance of the scheduled strategy is to iterate the procedure a
constant number of times; however the tradeoff is that it
would increase run-time. In fact, we evaluate this tradeoff
in the context of partial distance-2 coloring (see Section 7.5).

Among the schemes that do not guarantee the same num-
ber of colors as Greedy-FF (viz. Recoloring, Greedy-LU and
Greedy-Random), we observed consistently that all those
three schemes produced more colors than the Greedy-FF
scheme. However, the number of colors produced by Recolor-
ing was generally close to the number of colors produced by
Greedy-FF and other guided schemes (VFF, CLU), and the
balancing obtained was comparable to the Sched-Rev scheme.
On the other hand, Greedy-LU and Greedy-Random pro-
duced significantly higher number of colors making them less
desirable from the end-application perspective.

As described in Section 4.3, the main advantage of the
Recoloring scheme is that it processes the vertices with larger
color indices earlier. Since these vertices have higher degree
and consequently harder to color, there is potential benefit in
processing them earlier in the Recoloring scheme. However,
the balancing constraint imposed during the recoloring pro-
cess coupled with parallel execution which disturbs the
intended order of vertex processing explains the less-than-
optimal performance displayed by this scheme.

Fig. 3 illustrates the effect of the different balancing
schemes—it shows the sizes of all the color classes pro-
duced by the different balancing schemes.



1250

1.04858e+006
524288
262144
131072
65536
32768
16384
8182
4096
2048
1024
512
256 |Greedy-
128
64

32

Size (# ot vertices)

& 8 10 12 14
Color bin index

(a) Channel

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO.5, MAY 2017

131072 ||
E5536
32768
16384 |

8192
4096
2048
1024

512

Size (# of vertices)

o 10 20 30 40 S50 60 70 80 o0
Color bin index

(b) CNR

Fig. 4. Recoloring: The figure illustrates the impact of different bounds on bin sizes for the recoloring scheme (Algorithm 5). The default recoloring
scheme which uses r = 0.0 (identifed in the chart by the “0.0” label) fixes the average size for each bin based on the numbers from the initial (unbal-
anced) coloring scheme. The average size is then varied from 10, 20, and 30 percent (identified by labels “0.1”, “0.2” and “0.3” respectively), which
results in a smaller number of colors used and possibly a higher imbalance in bin sizes than the default recoloring scheme. The percentages inside
paranthesis against each t setting indicates the imbalance, measured by the Relative Standard Deviation of the resulting color class sizes.

Looking Further into the Recoloring Scheme. For the Recolor-
ing scheme, by allowing some of the color classes to slightly
exceed the average color class size (y), it is possible to
achieve a reduction in the number of colors used compared
to the baseline version of Recoloring (Algorithm 5). How-
ever, the balancing quality may not necessarily be main-
tained. We empirically investigated this tradeoff between
the number of colors and balancing quality. In particular,
we modified Algorithm 5 such that the line binfk] <y is
replaced by bin[k] <y - (1+ 7), where 7 is a small fraction
indicating how much offset from y is “tolerated”. Fig. 4
shows results for four values of t (0, 0.1, 0.2 and 0.3) on two
test inputs. The results suggest that the nonzero values for ¢
help reduce the number of colors used. However, as
expected, the balancing quality degrades with increase in 7.

7.3 Performance Evaluation

The balancing schemes were also compared against one
another for their parallel performance. We tested both our
Tilera and x86 implementations on a range of inputs and
thread counts. Tables 4 and 5 show the run-times taken by
the VFF balancing scheme. (We select VFF because it was
one of the schemes that produced the best balancing results
(as was discussed in Section 7.2).) The corresponding
speedup charts are shown in Fig. 5.

The results show that the scaling in Tilera manycore is
significantly superior to the scaling results in x86. For
instance, a top speedup of 13x was observed on 16 Tilera
cores. The improved scalability delivered by the Tilera

TABLE 4
Parallel Run-Time (in Seconds) of the VFF Scheme on Different
Number of Cores of the Tilera Platform

Input Number of threads

graph 1 2 4 8 16 32 36
Channel 7.55 4.57 337 259 223 206 213
uk-2002 16322 84.68 4559 26.32 16.87 12.11 11.66
MG2 460.22 254.66 154.16 85.97 54.56 34.95 33.29

Times shown are only for the balancing procedure (i.e., initial coloring time is
not included).

manycore platform can be largely attributed to a scalable
on-chip network interconnect, which reduces the costs of
synchronization and latency for irregular memory accesses.
On the other hand, we found synchronization overhead to
be a significant factor impacting the parallel performance
on the x86 architecture. We confirmed this by comparing
the run-times between the VFF (that uses atomic operations
to update bin sizes) and Sched-Rev (that does not). On the
x86 architecture, we consistently observed Sched-Rev to be
8x or more faster than VFF on all inputs tested (data not
shown). The corresponding performance gain on the Tilera
platform was a more modest 2x (Table 6).

The speedup trends observed on both architectures also
show the impact of the number of initial colors on parallel
performance. As shown in Figs. 5a and 5b, the speedups
obtained on MG2 (2 K colors) and uk-2002 (943 colors) are
superior than on other inputs. Intuitively, fewer colors
imply a higher probability for concurrent bin size updates.

From the parallel runtimes shown in Tables 4 and 5, it can
be observed that, on a per-core basis, the Tilera platform is gen-
erally slower than the x86 system. The main reason is the rela-
tively modest frequency and instruction level parallelism
(ILP) of the Tilera cores (3 packed operations per VLIW
instruction, statically scheduled by the compiler), in compari-
son to double the frequency on the x86 system and wider
superscalar instruction scheduling. However, at full system
scale, the runtimes on the Tilera platform begin to become
comparable to the runtimes on the x86 platform. This

TABLE 5
Parallel Run-Times (in Seconds) of the VFF Scheme on
Different Number of Cores of the AMD x86 Platform

Input Number of threads

graph 1 2 4 8 16 32
CNR 0.15 0.17 0.15 0.15 0.15 0.14
Channel 0.79 1.79 1.77 2.27 1.59 1.70
uk-2002 3560 2330 14.03 10.31 9.49 8.74
Europe 11.78 1598 20,55 19.90 18.97 16.96
MG2 70.67 4414 24.00 14.84 10.76  10.69

Times shown are only for the balancing procedure (i.e., initial coloring time is
not included).



LU ET AL.: ALGORITHMS FOR BALANCED GRAPH COLORINGS WITH APPLICATIONS IN PARALLEL COMPUTING

o
=
=]
@
@
o
w
—
1 UK2002 —g—
Channel s MG2 —u—
uk-2002 o 0.2 Europe — o
MG2 —a— Channel —e—
1 2 4 8 16 32 1 2

Number of threads

(a) Speedup on Tilera

Number of threads

(b) Speedup on x86

1251

1

08 |

06 |

04 |

Modularity

02

serial —a—
wi coloring (skewed) —s—

wi coloring (balanced) — s

8 16 32 0 1 2 3 4 §

Iteration number

(¢) Community detection

Fig. 5. (a, b) Speedup obtained by our Tilera manycore and x86 multi-core implementations of the VFF balancing scheme. Speedups are relative to
one thread executions on both systems. (c) Application study: Evolution of modularity values within the first phase of a parallel community detection
implementation (Grappolo) on uk-2002, performed with the use of VFF balanced coloring. The chart also shows the corresponding modularity curves
for the runs made without balanced coloring and the best performing serial implementation [21].

observation, coupled with the observation that the Tilera plat-
form exhibited a better scalability than x86, (compare Figs. 5a
versus 5b), indicates that the Tilera platform, on larger system
sizes, has the potential to make up for the difference with
respect to x86 and even surpass its absolute performance.

In Table 6, we compare the run-times of three of the most
competitive balancing schemes {VFF, Sched-Rev and Recol-
oring} on the Tilera manycore platform. As expected the
Sched-Rev scheme outperforms the other two schemes.
More specifically, we observed Sched-Rev to be ~ 2x faster
than VFF.> Considering the fact that Sched-Rev also per-
formed appreciably well in terms of balance quality (Section
7.2), we conclude that it provides a reasonable trade-off
between quality and performance among the different bal-
ancing schemes presented in this paper.

Table 7 compares the runtime performance between a
guided scheme (VFF) and an ab initio scheme (Greedy-LU).
As was shown earlier in Table 3, the VFF and Greedy-LU
schemes represent one of the top balancing schemes in their
respective categories (guided and ab initio). Since the guided
schemes require an initial coloring, we include that runtime
as well in the Table 7. The results confirm the runtime
advantage expected for ab initio schemes as they compute a
balanced coloring directly, without requiring an initial col-
oring. However, in most cases, the total runtime for guided
schemes (initial coloring + VFF balancing) is comparable to
the ab initio runtimes, while in general delivering a better
balancing quality (Table 3).

7.4 Impact on the Community Detection Application
To evaluate the effectiveness of the proposed balanced col-
oring schemes in a real world application, we studied the
parallel community detection code, Grappolo, described in
Section 2.3. Since VFF was one of the leading schemes for
balance quality, we used VFF as our default balancing
scheme on the Tilera platform. We ran Grappolo in two
modes: i) using the original skewed coloring, and ii) using
the balanced coloring produced by VFF.

Table 8 shows the results of our evaluation in the context
of community detection using Grappolo. In this table, we

3. This performance improvement was even more pronounced in
x86 architecture as noted earlier.

compare both end-to-end performance (run-time) and out-
put quality (modularity). We note here that the our current
implementation of Grappolo is configured to use coloring
only during the first phase of its algorithm. However, the
algorithm itself is multi-phase and configuring to use color-
ing in subsequent phases is one of our planned future exten-
sions. However, for this paper, we used coloring only for
the first phase, and therefore, the benefits of balanced color-
ing observed in Table 8 are understated.

From the table, we can observe the following: The over-
head introduced in balancing is compensated by the run-
time gains achieved in the community detection. This is
true for three of the five inputs tested—for instance, in the
case of MG2, balancing yields a total end-to-end run-time
savings of 44.11 percent. Note that this is for a single execu-
tion of the community detection code. In practice, a user
may run multiple instances of community detection under
different parametric settings (while the coloring is a one-
time preprocessing task). The CNR input is the smallest in
the number of vertices and edges that we processed and the
gains from parallelism (with or without balancing) is insig-
nificant. As for Europe-osm, the first phase only consumed
6 percent of the total run-time and therefore the benefits of
balanced coloring are not directly evident from Table 8.

The results in Table 8 also demonstrate the ability of the VFF
balanced scheme to preserve quality of output (in terms of
modularity). In fact, we observed that introducing balancing
has a positive impact on the progression of modularlity in the
first phase, as illustrated in Fig. 5c—which is a consequence of
the revised ordering of vertices due to balanced coloring.

7.5 Results on Partial Distance-2 Coloring
Our work on partial distance-2 coloring is partly motivated
by its application in the parallelization of the stochastic

TABLE 6
Parallel Run-Times (in Seconds) of the Three Balancing
Schemes {VFF, Sched-Rev and Recoloring} on 16 Tilera Cores

Input graph VFF Sched-Rev Recoloring
Channel 2.23 2.19 3.28
uk-2002 16.87 8.71 36.97
MG2 54.56 27.70 185.19




1252

TABLE 7
Runtime (in Seconds) Comparison for the Guided VFF Scheme
versus Ab initio (Greedy-LU) Balancing Scheme

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO.5, MAY 2017

TABLE 9
Statistics on Structure of the Bipartite Real-World
Graphs G = (4, V4, E) Used in Our Study

Input graph Guided Ab initio
Init. coloring VFF (Greedy-LU)
CNR 0.15 0.14 0.19
Channel 1.29 1.70 3.21
uk-2002 5.74 8.74 10.1
Europe 8.69 16.96 21.85
MG2 27.75 10.69 36.88

All runs were performed on 32 threads of the AMD x86 platform.

coordinate descent (SCD) algorithms [31]. We therefore
selected for our experiments two test instances (KDD-A and
KDD-B) related to SCD and representing data from the
KDD Cup 2010 Challenge on educational data mining [32].
Further, we selected two additional instances (LPCRE-B
and LPCRE-D) from the Florida Sparse Matrix Collec-
tion [27] that arise from linear programming problems. We
consider the bipartite graphs representation of the sparsity
structures of these matrices (instances), G = (V1, Vs, E),
where the set V; corresponds to the rows and the set V; cor-
responds to the columns, and the edge set E corresponds to
the nonzero entries. In partial distance-2 coloring, we color
only the vertex set V5 (please refer Section 5 for definition
and other details of partial distance-2 coloring).

As additional test cases from another application
domain, we experimented on two bipartite graph inputs
obtained from the biology domain—viz. gene-drug interac-
tions [33] and host-pathogen network [34]. Balanced color-
ing can be used as a way to determine efficient partial
orderings of vertices for parallel processing of such net-
works in co-clustering applications [35]. The testsets used in
our experiments are summarized in Table 9.

Table 10 shows the parallel runtimes for two balancing
schemes—VFF and Sched-Rev—on the AMD platform. We
note that these are bipartite graph implementations of those
schemes. For Sched-Rev we provide results from running
the algorithm for one round and for three rounds (simply
iterated three times). We observed relatively better perfor-
mance from three rounds than two rounds. The distribu-
tions of color class sizes while using the different schemes
are provided in Fig. 6. We observe that the quality of output
from Sched-Rev with three rounds is comparable to VFF,
but the execution time is relatively high. Sched-Rev (with
one round) provides faster execution times with comparable

Input Vil Vs [E|] A1)  A(W)
KDD-A 8.4 x 10° 2.0x 107 3.0x 10° 85 6.7 x 10*
KDD-B 1.9 x 107 29 x 107 5.6 x 10° 75 3.0 x 10°
LPCRE-B 9.6 x 10° 7.7 x 10" 2.6 x 10° 844 14
LPCRE-D 8.0 x 10° 7.3 x 10" 2.4 x 10° 808 13
Gene-Drug 3.0 x 10° 1.4 x 10" 29 x 10* 283 144
Host-Pathogen 8.9 x 103 6.3 x 10° 2.2 x 10 166 1,631

Recall that A corresponds to maximum degree.

quality. The corresponding distributions of color class sizes
from the unbalanced coloring scheme (Greedy-FF) are also
provided in Fig. 6 (in red). Overall, the results demonstrate
the general effectiveness of our balancing schemes for par-
tial distance-2 balanced coloring as well.

7.6 Extensions to Balanced Coloring
In this section, we present two extensions to balanced color-
ing, motivated by two different practical considerations.

7.6.1  Weighted Balancing

Color class sizes (the number of vertices having the same
color) form the basis for the balancing schemes presented
thus far. This assumes that the work associated with each
vertex is uniform in the end application. However, in some
applications, the workload may vary from vertex to vertex.
For such scenarios, a weighted treatment of vertices may be
more appropriate. Following a similar approach as in [15],
we implemented and evaluated a weighted extension for
balancing, by setting the weight of a vertex to its degree. We
implemented by modifying the VFF balancing scheme as
follows. Let w(u) denote the weight of vertex u. Then, the
target size for each color C'is given by

_ Zuecw(u)
Yo T e

7.6.2 Lower Bound-Based Coloring

One purpose of balancing is to ensure a uniform distribution
of parallel workload across color classes in the end applica-
tion. An alternative, more pragmatic strategy would be to not
aim for a balancing across all color classes, but rather focus on
ensuring that the smaller color classes are filled to a threshold
size, sufficient to utilize the threads efficiently. Such a scheme

TABLE 8
Evaluation of the Balancing Heuristics on a Parallel Community Detection application, Grappolo

Input w/o balanced coloring w/ balanced coloring
graph Run-time Modularity Run-time Modularity
Init. coloring  Community detection Init. coloring VFF balancing Community detection

CNR 0.15 3.98 0.9124 0.15 0.15 4.16 0.9119
Channel 1.87 38.85 0.9348 1.87 2.13 20.94 0.9328
MG2 37.31 954.81 0.9984 37.31 33.29 483.80 0.9984
uk-2002 7.83 406.81 0.9895 7.83 11.66 254.27 0.9894
Europe-osm 17.95 358.26 0.9988 17.95 20.98 369.19 0.9988

All timing results are in seconds and were obtained on 36 threads of the Tilera manycore platform.



LU ET AL.: ALGORITHMS FOR BALANCED GRAPH COLORINGS WITH APPLICATIONS IN PARALLEL COMPUTING

Size (# ot vertices) Size (# ot vertices)

Size (# ot vertices)

2.09715e+006
1.04858e+006
524288
262144
131072
65536
32768
16384
8192
4096
2048
1024
512
256
128
64
32
16 i
—_—
8 Sched-Rev(1-round) —g—
; 'Sched-Rev(3-rounds) —«
1 1 1 1 1 ' |
0 20 40 60 80 100 120 140 160
Color bin index
(a) KDD-A
m% <y T T T T T T T T
2048 |
1024 |
512 |
256
128
64
32
16
8
Greed(;FF —— 'S
4 | FF —e— -
Sched-Rev(1-round) —5—
2 [Sched-Rev(3-rounds) —«
1 I 1 ' 1 1 1 1 1
0 100 200 300 400 500 600 700 800
Color bin index
(c) LPCRE-B
1654 ; : : : :
256
64 |
16
4 Greed{(,-FF e
] -
Sched-Rev(1-round) —g—
Sched-Rev(3-rounds) s

50 100 150
Color bin index

(e) Gene-Drug

200

Size (# of vertices) Size (# ot vertices)

Size (# ot vertices)

4.1943e+006 T T T T T

2.09715e+006
1.04858e+006
524288
262144

131072 +

65536

32768
16384

8192
4096

2048 +
1024 +
512
256 |
128

64

32 r
16

8

4
2
1

+
——
" Sched-Rev(1-round) —g— K
‘Sched-Rev(3-rounds) —s—

Gmedbgg

0 20 40 S_O i &0
Color bin index

(b) KDD-B

L L L

100

1 L

] Sched—Rev(‘l—round} —a—
2 [Sched-Rev(3-rounds

—
—— -

GreechFF

200 400

0 100 300 0 500 600 700 800
Color bin index
(d) LPCRE-D
1024 d

258

o
s

o

! e
Sched-Rev(1 -round} —a—
Sched-Rev(3-rounds

Greed(/-ll::g

1 L
0 20

140

40 60 &0 100
Color bin index

120

(f) Host-Pathogen

1253

Fig. 6. Partial distance-2 coloring: The distributions of color class sizes produced by the different balanced coloring schemes (horizontal axis corre-

sponds to colors (bins) and vertical axis (in log , scale) to sizes of color classes).



1254 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO.5, MAY 2017
TABLE 10 TABLE 11
Parallel Run-Times (in Seconds) of Unbalanced and Run-Time Evaluation of Our Extensions (Weighted and LB-
Balanced {VFF, Sched-Rev} Partial Distance-2 based) in Comparison to the VFF Balancing Scheme and the
Schemes on the AMD Platform Greedy-FF (Initial Coloring) Scheme

Input Init. VEF Sched-Rev Input Steps Greedy-FF VFF Weighted LB-based
graph coloring balancing (1round) (3 rounds) (y, =1024)
KDD-A 213 130 117 305 CNR Balancing 0 0.15 0.15 0.07
KDD-B 606 354 154 424 Comm. Det. 1.30 1.18 1.42 1.25
LPCRE-B 0.08 0.1 0.12 0.29 MG2 Balancing 0 10.33 10.94 7.86
LPCRE-D 0.08 0.09 0.11 0.24 Comm. Det. 204.72 122.67 123.31 149.45
Gene-Drug 0.008 0.02 0.04 0.07 Balancing 0 9.42 9.75 3.59
Host-Pathogen  0.005 0.01 0.03 0.04 uk2002 comm. Det. 5091 4125 4405  51.08

Thirty-two cores were used for the KDD inputs, and 16 cores were used for the
remaining inputs (due to smaller size). All runs were performed to color verti-
ces in Vs.

could have an advantage in reducing the balancing cost—
because fewer vertex migrations are needed. This motivated
our second extension. We modified the VFF scheme to take as
input a lower bound (threshold) size (denoted by y,) for each
color class. During the process of balancing, we consider only
bins (colors) that have less than the threshold as potential can-
didates for receiving vertices (from larger bins). Therefore,
the resulting color size distribution is expected to be less bal-
anced compared to the other balancing schemes, whereas the
overhead for balancing is reduced. We denote this modified
scheme as “LB-based” coloring scheme.

7.6.3 Experimental Results

We compared the two extensions outlined above (weighted
and LB-based) against the “baseline” schemes of VFF bal-
ancing and the Greedy-FF (initial coloring). Fig. 7 and
Table 11 show the results of our comparative evaluation.
Fig. 7 shows the balancing quality produced by the exten-
sion schemes and the baseline schemes. As can be expected,
the weighted scheme does not exhibit a good balance based
on the number of vertices per color bin. However, if one
were to take into account the sum of the weights of the verti-
ces per bin, then the weighted scheme does indeed achieve a
balance. The LB-based scheme also shows an expected
behavior, where the color classes that contain less than y,
vertices in the initial coloring are the only classes to receive
new vertices into their bins (until the lower bound is met).

Size (# o vertices)

GreedwcFF —

L FF —se

2 Weighted 0
LowerBound —s—

o 10 20 30 40 50 &0 70 a0

Color bin index
(a) CNR

All executions were performed on 16 threads of our x86 platform.

This implies that the balancing quality achieved by the LB-
scheme is sub-optimal but the benefits are expected to lie in
its reduced balancing cost (which we evaluate next).

Table 11 shows the run-times for the balancing step and
the community detection step (application impact) corre-
sponding to the extension schemes and the baseline
schemes. In the case of weighted scheme, the balancing cost
is comparable to that of VFF balancing. As for the commu-
nity detection step, the benefits due to using vertex weights
during balancing are not readily realized. This is because
our parallel implementation of the community detection
step (Grappolo) currently uses a vertex-based paralleliza-
tion instead of an edge-based parallelization. The latter is
more conducive to the weighted scheme. As part of our
future study, we plan to implement and evaluate such an
edge-based scheme in Grappolo, to better exploit the bene-
fits of the weighted scheme.

In the case of LB-based scheme, we observe that the bal-
ancing cost is significantly smaller than the VFF balancing
cost. This confirms our expectation of reduced work during
the balancing procedure through the use of a lower bound
size. Note that this may cause sub-optimal balancing (as
shown in Fig. 7), which in turn may affect the end applica-
tion parallel performance. Table 11 shows a marginal
increase in the run-times for community detection as per
this expectation. In fact, as the lower bound value (y,) is fur-
ther reduced, the size distribution of the color classes would
tend closer to the skewed distribution of the initial coloring.

Size (# of vertices)

Color bin indes

(b) uk2002

Fig. 7. Balanced coloring extensions: Distribution of color class sizes produced by the two distance-1 balanced coloring extensions (Weighted, Low-
erBound) compared to VFF balancing (without weights or lower-bounds) and and initial coloring (Greedy-FF). Horizontal axis corresponds to colors
(bins) and vertical axis to sizes of color classes (measured in the number of vertices).



LU ET AL.: ALGORITHMS FOR BALANCED GRAPH COLORINGS WITH APPLICATIONS IN PARALLEL COMPUTING

8 CONCLUSIONS

In this paper, we provided a thorough treatment of the
problem of generating balanced graph colorings, with our
contributions spanning algorithm development, paralleliza-
tion, and application. We considered two different coloring
variants—distance-1 coloring (the standard coloring prob-
lem) and partial distance-2 coloring (defined on a bipartite
graph). We presented multiple balancing schemes, devel-
oped parallel implementations on conventional multi-cores
and an emerging manycore platform (Tilera), and evaluated
their effectiveness in achieving a balanced coloring and
how such results translate to gains in an application’s per-
formance. Coloring is used in a number of parallel comput-
ing applications to identify independent tasks, and we
expect the detailed study presented in this paper involving
a family of balancing heuristics and their implementations
on modern day multi-core and manycore architectures, to
serve as a valuable reference to application developers who
seek to improve parallel performance of their applications
using coloring.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for the insightful com-
ments, especially on partial distance-2 coloring. This
research was support in parts by U.S. Department of Energy
grants DE-SC-0006516, DE-AC05-76RL01830, and DE-SC-
0010205, the U.S. Department of Defense under the Auto-
tuning for Power, Energy & Resilience (ATPER) project,
and by National Science Foundation award IIS-1553528.

REFERENCES

[11 H. Lu, M. Halappanavar, D. Chavarria-Miranda, A. Gebremed-
hin, and A. Kalyanaraman, “Balanced coloring for parallel com-
puting applications,” in Proc. IEEE Int. Parallel Distrib. Process.
Symp., 2015, pp. 7-16.

[2] W. Meyer, “Equitable coloring,” Amer. Math. Monthly, vol. 80,
pp- 920-922, 1973.

[3] A. Hajnal and E. Szemerédi, Proof of a Conjecture of P. Erdos.
Amsterdam, The Netherlands: North-Holland, 1970, pp. 601-623.

[4] P. Erdos, A. Rényi, and V. Sés, Eds., Combinatorial Theory and Its
Application. Amsterdam, The Netherlands: North-Holland, 1970.

[5] B. Chen and K. Lih, “Equitable coloring of trees,” |. Combinatorial
Theory Series B, vol. 61, pp. 83-87, 1994.

[6] W. Wang and K. Zhang, “Equitable colorings of line graphs and
complete r-partite graphs,” Syst. Sci. Math. Sci., vol. 13, no. 2,
pp- 190-194, 2000.

[7]1 H. Yap and Y. Zhang, “Equitable colorings of planar graphs,” J.
Combinatorial Math. Combinatorial Comput., vol. 27, pp. 97-105,
1998.

[8] H. Furmanczyk, Equitable Coloring of Graphs. Providence, RI, USA:
Amer. Math. Soc., 2004, pp. 35-53.

[91 M. Kubale, Ed., Graph Colorings. Providence, RI, USA: Amer.
Math. Soc., 2004.

[10] H. Bodleander and F. Fomin, “Equitable colorings of bounded
treewidth graphs,” Theoretical Comput. Sci., vol. 349, no. 1, pp. 22—
30, 2005.

[11] B. Smith, P. Bjerstad, and W. Gropp, Domain Decomposition; Paral-
lel Multilevel Methods for Elliptic Partial Differential Equations. Cam-
biridge, U.K.: Cambridge Univ. Press, 1996.

[12] R. Melhem and V. Ramarao, “Multicolor reorderings of sparse
matrices resulting from irregular grids,” ACM Trans. Math. Softw.,
vol. 14, pp. 117-138, 1988.

[13] ]. Blazewick, K. Ecker, E. Pesch, G. Schmidt, and J. Weglarz, Sched-
uling Computer and Manufacturing Processes, 2nd ed. Berlin, Ger-
many: Springer, 2001.

[14] A. Tucker, “Perfect graphs and an application to optimizing
municipal services,” SIAM Rev., vol. 15, pp. 585-590, 1973.

1255

[15] J. Robert, K. Gjertsen, M. T. Jones, and P. Plassmann, “Parallel
heuristics for improved, balanced graph colorings,” J. Parallel Dis-
trib. Comput., vol. 37, pp. 171-186, 1996.

[16] M. T. Jones and P. Plassmann, “A parallel graph coloring heu-
ristic,” SIAM |. Sci. Comput., vol. 14, pp. 654-669, 1993.

[17] J. E. G. Coffman, M. Garey, and D. Johnson, Approximation Algo-
rithms for Bin Packing: A Survey. Boston, MA, USA: PWS Publish-
ing Company, 1997, pp. 46-86.

[18] C. Pommerell, M. Annaratone, and W. Fichtner, “A set of new
mapping and coloring heuristics for distributed-memory parallel
processors,” SIAM |. Sci. Statist. Comput., vol. 13, pp. 194-226,
1992.

[19] H. Lu, M. Halappanavar, and A. Kalyanaraman, “Parallel heuris-
tics for scalable community detection,” Parallel Comput., vol. 47,
pp. 19-37, 2015. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0167819115000472

[20] D. Chavarria-Miranda, M. Halappanavar, and A. Kalyanaraman,
“Scaling graph community detection on the Tilera Many-core
architecture,” in Proc. IEEE Int. Conf. High Performance Comput.,
Dec. 2014, Art. no. 11.

[21] V. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” J. Statist. Mech.: The-
ory Experiment, vol. 2008, 2008, Art. no. P10008.

[22] M. E. Newman, “Fast algorithm for detecting community struc-
ture in networks,” Phys. Rev. E, vol. 69, no. 6, pp. 66-133, 2004.

[23] F. Manne and E. Boman, “Balanced greedy colorings of sparse
random graphs,” in Proc. Norwegian Informat. Conf., 2005, pp. 113—
124.

[24] ]. Culberson and F. Luo, “Exploring the k-colorable landscape
with iterated greedy,” in Cliques Coloring and Satisfiability: Second
DIMACS Implementation Challenge, D. Johnson and M. Trick, Eds.
Providence, RI, USA: Amer. Math. Soc., 1996, pp. 245-284.

[25] U. Catalytirek, J. Feo, A. H. Gebremedhin, M. Halappanavar, and
A. Pothen, “Graph coloring algorithms for multi-core and mas-
sively multithreaded architectures,” Parallel Comput., vol. 38,
pp- 576-594, 2012.

[26] A. Gebremedhin, F. Manne, and A. Pothen, “What color is your
Jacobian? Graph coloring for computing derivatives,” SIAM Rev.,
vol. 47, no. 4, pp. 629-705, 2005.

[27] T. A. Davis and Y. Hu, “The university of Florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1-25, Dec.
2011.

[28] J. Daily, A. Kalyanaraman, S. Krishnamoorthy, and A. Vishnu, “A
work stealing based approach for enabling scalable optimal
sequence homology detection,” J. Parallel Distrib. Comput., vol. 79—
80, pp. 132-142, 2015. [Online]. Available: http://www.science-
direct.com/science/article/pii/S0743731514001518

[29] M. Penrose, Random Geometric Graphs. London, U.K.: Oxford Univ.
Press, 2003.

[30] M. Halappanavar, “Algorithms for vertex-weighted matching in
graphs,” Ph.D. dissertation, Dept. Comput. Sci., Old Dominion
Univ., Norfolk, VA, USA, 2009.

[31] C.Scherrer, A. Tewari, M. Halappanavar, and D. Haglin, “Feature
clustering for accelerating parallel coordinate descent,” in Proc.
Advances Neural Inf. Process. Syst., 2012, pp. 28-36.

[32] H.-F. Yu, et al., “Feature engineering and classifier ensemble for
KDD Cup 2010, ” in Proc. JMLR Workshop Conf. Proc., 2011, pp. 1-
16.

[33] M. Griffith, et al., “DGIdb: Mining the druggable genome,” Nature
Methods, vol. 10, no. 12, pp. 1209-1210, 2013.

[34] M. Wardeh, C. Risley, M. K. McIntyre, C. Setzkorn, and M. Baylis,
“Database of host-pathogen and related species interactions, and
their global distribution,” Sci. Data, vol. 2, 2015, Art. no. 150049.

[35] D. Hanisch, A. Zien, R. Zimmer, and T. Lengauer, “Co-clustering
of biological networks and gene expression data,” Bioinformatics,
vol. 18, no. suppl 1, pp. S145-5154, 2002.



1256

Hao Lu received the bachelor's degree in com-
puter science from Washington State University,
in 2011. Currently, he is working toward the PhD
degree in computer science at Washington State
University. His research interests include high-
performance computing, graph algorithms, and
computational biology. The focus of his disserta-
tion is on developing parallel heuristics on com-
munity detection in graphs, and heuristics for
coloring and balanced coloring. He is a member
of the ACM Computer Society.

Mahantesh Halappanavar received the PhD
degree in computer science from the Old Domin-
ion University, in 2009. He is a senior research
scientist and team lead in the Data Sciences
Group, Pacific Northwest National Laboratory.
His research focuses on developing efficient par-
allel graph algorithms and their applications to
several domains including the analysis of electric
power grids, information analytics, sparse linear
algebra, and cyber security. He explores the
interplay of algorithm design, architectural fea-
tures, and data characteristics targeting massively multithreaded archi-
tectures and emerging multicore and manycore platforms.

Daniel Chavarria-Miranda received the MS and
PhD degrees in computer science from Rice
University, in 2004. He is a senior scientist with
High-Performance Computing Group, Pacific
Northwest National Laboratory. His expertise is in
runtime systems, programming models, compilers,
and languages for high performance computing.
He has been a member of the ACM since 1997.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO.5, MAY 2017

Assefaw H. Gebremedhin received the BSc
degree in electrical engineering from Addis
Ababa University, Ethiopia, in 1992, and the MSc
and PhD degrees in computer science from the
University of Bergen, Norway, in 2003 and 1999,
respectively. He is currently an assistant profes-
sor in the School of Electrical Engineering and
Computer Science, Washington State University
&N (WSU), where he leads the Scalable Algorithms

/ for Data Science Lab. Prior to joining WSU, in fall
2014, he was a research assistant professor with
Department of Computer Science, Purdue University. His research
interests include high-performance computing, combinatorial scientific
computing, network science, data mining and machine learning, bioinfor-
matics, and health analytics. He received the National Science Founda-
tion CAREER Award in 2016.

Ajay Panyala received the BTech degree in com-
puter science from Jawaharlal Nehru Technologi-
cal University, Hyderabad, India, in 2007, and the
PhD degree in computer science from Louisiana
State University, in 2014. He is currently a post
doctoral research associate with Pacific North-
west National Laboratory. His research interest
include compiler optimizations for high perfor-
mance computing.

Ananth Kalyanaraman received the bachelor's
degree from the Visvesvaraya National Institute
of Technology, Nagpur, India, in 1998, and the
MS and PhD degrees from lowa State University,
Ames, in 2002 and 2006, respectively. Currently,
he is an associate professor in the School of
Electrical Engineering and Computer Science,
Washington State University, Pullman. His
research focuses on developing parallel algo-
rithms and software for data-intensive problems
originating in the areas of computational biology
and graph-theoretic applications. He received the DOE Early Career
Award, an Early Career Impact Award and two best paper awards. He
serves on editorial boards of the /EEE Transactions on Parallel and Dis-
tributed Systems and the Journal of Parallel and Distributed Computing.
He is a member of the AAAS, the ACM, the IEEE, the ISCB, and the
SIAM.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


