

(a) (b)

Figure 1. (a) Mesh NoC architecture (b) Quad-tree NoC

architecture

An Optimized NoC Architecture for Accelerating TSP Kernels in Breakpoint
Median Problem

Turbo Majumder, Souradip Sarkar, Partha Pande and Ananth Kalyanaraman
 School of Electrical Engineering and Computer Science, Washington State University, USA

{tmajumde, ssarkar, pande, ananth}@eecs.wsu.edu

Abstract
Traveling Salesman Problem (TSP) is a classical NP-

complete problem in graph theory. It aims at finding a
least-cost Hamiltonian cycle that traverses all vertices of
an input edge-weighted graph. One application of TSP is in
breakpoint median-based Maximum Parsimony
phylogenetic tree reconstruction, wherein a bounded edge-
weight model is used. Exponential algorithms that apply
efficient heuristics, such as branch-and-bound, to
dynamically prune the search space are used. We adopted
this approach in an NoC-based implementation for solving
TSP targeted towards phylogenetics taking advantage of
the fine-grained parallelism and efficient communication
network. The largest fraction of the solution time for TSP is
accounted for by a particular lower bound calculation
operation that uses the graph’s adjacency matrix. In this
paper, we present the design and implementation of the
processing elements with a highly optimized lower bound
computation kernel and evaluate its performance.
Additionally, we explore two major NoC architectures –
mesh and quad-tree – and show that the latter is more
suitable for this application domain.

1. Introduction
Traveling Salesman Problem [1] is a widely studied NP-

complete problem for which several heuristics have been
explored [2-7,9] and the branch-and-bound based methods
[8,9] continue to be the most popular among accurate
solvers, owing to their effectiveness in reducing the
exponential search space. The heuristic, which itself is
computationally intensive is an ideal candidate for
parallelization. An array of processing elements (PEs)
working in parallel on distinct parts of the solution would
naturally enhance performance. However, these PEs cannot
work completely in isolation and need to communicate
amongst themselves. This communication needs to be

efficient and synchronized with the computation operation
of the PEs. To achieve this in an on-chip scenario, a
platform possessing inherent fine-grained, large-scale
parallelism and an efficient communication fabric needs to
be chosen. A Network-on-Chip (NoC) provides the best fit
to this requirement. On one hand, an NoC scales very well
with increasing number of PEs; on the other, it offers the
user the freedom to choose the communication architecture
that is most apt for a target application.

The principal motivating application for this paper is the
breakpoint median problem that has a direct application in
Maximum Parsimony-based phylogenetic reconstruction. It
relies on breakpoint distance, which is a measure of how
different two genomes are by their gene ordering. The
pioneering work done on this in [10,11] reduces the
problem to one of solving numerous instances of TSP on
graphs with bounded integer edge weights. However, even
this restricted version of the TSP problem has been shown
to be NP-Hard [12]. A TSP solution of a graph with DIM
vertices consists of a series of lower bound calculations,
which could be implemented as a matrix reduction
operation on the associated adjacency matrix. This
operation has a time complexity of O(DIM2), which
severely limits the scalability of the computational kernel
with increasing input graph size. We have designed an
application-specific PE that achieves an O(DIM) matrix
reduction, which in turn renders the entire computation to
have a linear time complexity with graph size. Additionally,
we explore two major NoC architectures – mesh, shown in
Fig. 1(a) and a 4-way hierarchical star or quad-tree, shown
in Fig. 1(b) – and demonstrate the superiority of the latter
for our application. This is based on a comparison of
network latency and power consumption across the two
frameworks.

2. Related Work
 Broadly speaking, TSP algorithms can be classified into
two groups – (a) approximation algorithms that could take
polynomial time [2-5] and (b) accurate algorithms that run
in exponential time [8,9]. Techniques used in
approximation methods include the Kernighan-Lin
heuristics, simulated annealing and genetic algorithms [2-
6]. Among accurate methods, dynamic programming [8] is
strictly exponential in practice whereas in branch-and-
bound [8,9], one can expect significant pruning of search
space. Coarse-level parallelization of TSP has been
explored using genetic algorithms [6] and branch-and-
bound [7,11].

978-1-4244-6967-3/10/$26.00 c© 2010 IEEE 89 ASAP 2010

Figure 3. PE architecture for one edge reduction

Figure 2. Flow diagram explaining branch-and-bound algorithm
for solving the breakpoint median problem

On hardware acceleration targeted towards phylogenetics
applications, substantial work has been carried out based on
platforms like FPGA, Graphics Processing Unit (GPU),
Cell Broadband Engine (CBE) and general-purpose multi-
cores (traditional Intel/AMD dual-core, quad-core
platforms). A hybrid hardware/software implementation
proposed in [13] using Genetic Algorithm for Maximum
Likelihood (GAML) approach reports a speedup of 30 over
software. The phylogenetic likelihood function (PLF) has
been accelerated around 8 times through the use of FPGA
boards with built-in DSP slices in [14]. A whole genome
phylogenetic reconstruction based on a parallelized version
of the breakpoint median algorithm has been shown in [15].
Using a combination of software and FPGA, total execution
has been reduced by a factor of 417 over single-thread

software implementation. In [16], a comparative evaluation
of a program for Bayesian inference of phylogenetic trees is
presented. While CBE and GPU are shown to have
appreciable reduction in computation time, they introduce
significant communication time penalty. The general
purpose multi-cores have overall better performance.
Currently, there are no custom multi-core NoC
architectures targeting TSP or phylogenetics. Here, we
present the design of a custom NoC for TSP computations
typical in phylogenetic applications and evaluate its
performance.

3. Algorithm
 In what follows, we present the core computation steps

of the TSP algorithm [8] used in our implementation. A
graph is constructed out of DIM vertices, corresponding to
the DIM reference genes, and with edges having a bounded
weight – an integer cost between 0 and 3, or an edge with
cost � (representing nonexistent edges) [10].

Given an input graph G with DIM vertices, a conceptual
computation tree is navigated in the depth first search order
(DFS), one edge at a time as shown in Fig. 2. The tree has
one unique path for each of the (DIM-1)! potential TSP
tours. Every tree-edge (u,v) corresponds to a graph edge
(i,j), and every path from the root to a leaf node encodes a
completed TSP tour with cost equal to the sum of the edge
weights along its path. An optimal TSP tour is a least-cost
Hamiltonian cycle.

Initially, a variable called best_cost is initialized to �;
this variable is dynamically updated to keep track of the
least cost over all TSP tours examined so far at any stage of
the algorithm. At every step, the algorithm evaluates the
next eligible tree-edge in the DFS order as follows.

At any given step, let the newly included tree-edge be

90 ASAP 2010

C
ontrol logic

+

Counter
(2*DIM+4)

S/P Decoder

clk

reset

row

col

TSP_matrix

(-)

LGMW

DIM

DIM

minval

adjCost

ReductionDone

matrix

DIM*DIM*LGMW

(DIM)*(DIM)*(LGMW)
LGMW

LGMW

LGMW

LGMW

LGMW

LGMW

LGMW

LGMW = log2MW

MSB

Critical Path
(In2Reg)
(400ps)

Critical Path
(Reg2Out)

(400ps)

Other non-critical
timing paths
(Reg2Reg)

Figure 4. Efficient reduce (�) block for linear-time matrix reduction

from node u to node v, and the newly included edge be (i,j)
with cost cij. Let c*(v) denote the cost of the least cost TSP
tour passing through node v. If v is a leaf, then c*(v) is set
equal to the net cost of the path from the root node to v.
Subsequently, if c*(v)<best_cost then best_cost is updated
to c*(v). If v is an internal node in the search tree, a lower
bound for c*(v) is computed using a matrix reduction
operation. If the lower bound computed (lbc(v)) is observed
to be greater than or equal to best_cost, further exploration
of the subtree under v is unnecessary and so it is pruned
with the computation returning to node u; otherwise, the
DFS is continued under v’s subtree.

We use the method shown in [8] for lower bound
computation at each tree-edge. A DIM × DIM matrix called
the reduction matrix (R) is maintained throughout
execution. Initially, the matrix at the root node is set equal
to the cost matrix defined by E. At any step of the DFS,
lbc(v) is calculated as follows:
1) All entries in row i and column j of R is set to �;
2) R[j,1] is also set to �;
3) All rows and columns that contain at least one non-
infinity value are reduced as follows: (a) Given row i, let
mini = min{R[i,j]} for all 1�j�DIM; (b) Then for all
1�j�DIM, R[i,j] = R[i,j]-mini; (c) Similarly, given column
j, let minj = min{R[i,j]} for all 1�i�DIM; (d) Then for all
1�i�DIM, R[i,j] = R[i,j]-minj As this is done, all
subtracted values (i.e., the minimum values) are
accumulated into another variable adjCost.
4) Subsequently, lbc(v) = lbc(u)+R[i,j]+adjCost.

4. NoC Design
We seek to utilize NoC’s inherent parallel architecture,

customizability of the core and its efficient communication
network to solve TSP. We designed and implemented the
principal components of the NoC, namely the PEs and the
communication network. We explored two different
network architectures – the mesh and the quad-tree. In the
following sub-sections, we describe in detail the design of
the PE, switch and the overall network architecture.

4.1. PE Design
The principal role of the PE is to handle the computation

along an edge as per the algorithm described in the previous
section. Computational complexity being a major concern,
our attempt has been to reduce the number of clock cycles
required for this operation to make it scalable with
increasing input graph size, DIM. The PE architecture has
an integer datapath because the principal purported
application, namely breakpoint median computation
consists entirely of integer operations. The PE consists of a
reduce block and peripheral control logic.We use the short-
form lg k to denote log2k. The datapath consists of the
following fields (DIM: number of vertices, MW: maximum
edge weight).

a. x – the parent node (u) uses lg DIM bits
b. y – the child node (v) uses lg DIM bits
c. LBC – the lower bound cost (lbc(u)) estimate at an

edge; this requires lg DIM + lg MW + 1 bits
d. EPC – the exact path cost (lbc(u)+R[i,j])

determined so far; takes lg DIM + lg MW + 1 bits

91 ASAP 2010

e. TSP – the TSP adjacency matrix (R), flattened. Its
representation takes DIM2*lg MW bits.

f. VLST – the current list of vertices traversed;
DIM*lg DIM + 1 bits are required to store this
field.

g. CC – the candidate children at every stage; takes
DIM bits

As is evident, the space complexity of the hardware is
O(DIM2). A block diagram of the PE is shown in Fig. 3.
We use valid weights 0 to 3 and 4 to denote �. A different
range of weights just changes the number of bits for MW.
Subsequent references in parentheses (e.g. �, �, etc.) in this
sub-section refer to this figure.

4.1.1. Reduction block. This block (�) carries out the
matrix reduction operation described in Section 3. As is
evident from the algorithm, the run-time of the operation
should be a function of the matrix size, i.e., O(DIM2). The
matrix is reduced using the new values of x and y in stage2
(see Peripheral control logic below) and the adjacency cost
adjCost is obtained. This operation consumes the maximum
fraction of the total time required for an edge computation.
Hence, a significant amount of time is saved by suitably
optimizing its design and implementation. Our
implementation achieves O(DIM) cycle time. This has the
effect of drastically reducing the total time as well as
providing better time-scalability with increasing input
graph size. Fig. 4 shows the architecture of reduce block.
The flattened TSP matrix is initially reorganized into rows
and columns in matrix. There are DIM rows and DIM
columns with each entry taking up lg MW bits. The register
bank minval of width DIM*(lg MW) is initialized with a bit
pattern representing infinity. A counter is used as a state
machine controller. There is a DIM-sized bank of
comparators that compare one element from every row or
column in every cycle. Minimum value calculation for all
rows and the same for all columns take DIM cycles each.
Additional cycles are required for subtraction of the
minimum values and for calculation of the final adjCost.
This step takes 2*(DIM+2) cycles to complete under the
current implementation.

4.1.2. Peripheral control logic. The peripheral control
logic is used for vertex selection, cost comparison, data
management and bookkeeping. The register bank for the
first stage is stage1, which has the same width as the
datapath. The input control multiplexer initially switches to
select the current vertex data. The CC field is computed (�)
from VLST in DIM cycles in the worst case.
 In the second stage, the candidate child is found by
scanning (�) CC of stage1. Again, this requires DIM clock
cycles in the worst case. Using this candidate child, VLST is
updated (B) for the child node in the graph. If it is not a leaf

node (A), the candidate child becomes the next child node,
while the current node (y of stage1) becomes the parent
node x of stage2. During the same stage, the data pertaining
to the best case obtained so far is fetched into stage1. The
input multiplexer now selects the lowest cost data (global
best cost) available to the PE at this time. At this stage, TSP
of stage1 gets the original TSP matrix.
 The current value of the exact cost of the path found so
far, EPC is updated by adding to it the edge cost from x to y
in the original adjacency matrix. The sum of adjCost
(obtained from reduce operation) and EPC yields the lower
bound cost, LBC, which is compared with the best cost
found so far. If LBC is larger, the tree is pruned (E), the
current child is aborted and the path through another child
is explored. The data on stage2 is reloaded back to stage1
with the old value of x and a new calculation for the
candidate child. If LBC is smaller and we have not reached
a leaf node, normal operation continues (DFS) with the new
set of data. If we have hit a leaf node with an LBC lower
than the best cost globally found so far, this value (new
global best cost data) is sent to the switch to be
communicated with other PEs in the network.

4.1.3 Memory. There are two logical divisions in memory
– global and local. However, all memory is physically
distributed across all PEs. The global memory in a PE
stores the TSP matrix that represents the subtree assigned to
that PE. The local memory is implemented as a stack.
During DFS, the new vertex data (path cost, vertex list) is
pushed into the stack (Fig. 3). The stack is full only when
the leaf node is reached. If there is pruning (before the leaf
node is reached), the stack is popped. Every PE has a DIM-
sized local memory stack.
 In order to introduce load-balancing to compensate for
the variable effects of pruning, we reduce the solution space
down to the third level of the tree by a single master thread.
Subsequently, a list of all subtrees rooted at this level is
maintained in memory. Once each thread completes one
subtree reduction, it picks up the next available subtree and
removes it from the list. This is achieved by maintaining a
global array of flags and a mutually exclusive semaphore.

4.2 Network Design
 We explored two different kinds of network architecture
– a mesh, shown in Fig. 1(a) and a quad-tree, shown in Fig.
1(b). The number of inter-switch links in a mesh increases
faster than that in a quad-tree with increase in system size.
The expected volume of inter-PE communication in our
application is relatively low. Hence, by using an
architecture with fewer links, there are potential savings in
area and power without incurring a risk of network
congestion.

92 ASAP 2010

Figure 6. Timing diagram showing typical scenarios encountered at

a mesh switch

(a) (b)

Figure 5. Switch architecture (a) mesh (b) quad-tree

Table 1. Worst-case write latency in clock cycles

N Mesh Quad-tree
4 6 6
8 9 10

16 12 10
64 14 12

256 30 14
1024 62 16

 The diameter of a mesh architecture increases as O(�N)
where N is the number of nodes (PEs). The same for a
quad-tree increases as O(log4N). Since the mode of
communication for our application involves broadcast, the
worst-case hop count is a linear function of the diameter. It
should be remembered that all links are not of the same
length in a quad-tree, where links higher up the tree are
longer. Table 1 shows an estimate of the number of clock
cycles required per write in the worst case in 65 nm CMOS
technology with a clock period of 400 ps. The advantages
of a quad-tree become distinctly apparent for N>16.

However, power savings provide a much greater advantage
that is apparent for even smaller network sizes, the reason
being that the number of links and switches is drastically
reduced. We present results on this account in Section 5.

4.3. Switch Design
 Different switches are designed for each of the two
network architectures explored. The switch and the PEs run
on the same system clock. Since we have a pipelined
(switch-to-switch) communication technique, a globally
synchronous NoC does not pose a problem with scalability.

4.3.1. Mesh. A typical switch that is used on a mesh is
shown in Fig. 5 (a). Input buffers InN, InE, InS, InW
receive data from four neighboring switches and input
buffer InLoc receives data from the associated PE. There is
a dedicated buffer (BufOut) that provides data to the

network as well as to the associated PE.
 Each set of input/output data consists of the fields (a)
Path Cost, (b) Vertex List and (c) Transmission control bits.
At every cycle, one of four transmission decisions are taken
by the Decision Making Unit (DMU) and the data is written
into an internal buffer (local). The same is transmitted out
in the next cycle through BufOut. The transmission control
bits are as follows.

• NOTX: No valid transmission
• NORETX: No retransmission
• DOTX: New best cost from local PE; transmit
• TRWL: New best cost from other PE; transmit and

update local PE
Fig. 6 shows a timing diagram for a typical situation. It is to
be noted that a switch receives data from each of its
neighboring switches in every cycle but the transmission
control bits determine whether the data is valid for
consideration or not. The data is considered if the control
bits are DOTX or TRWL but not if they are NOTX or
NORETX.

4.3.2 Quad-tree. There are different levels of switches for
this network architecture. The leaf level switches (refer Fig.
1(b)) are denoted L1, the next higher level L2 and so on.
An L1 switch consists of five buffered input/output ports
(BufIn/BufOut), four catering to the four leaf PEs and the
fifth to the parent switch. For an L2 switch and upwards,
four children ports cater to lower level switches and the
parent port caters to the higher level switch. The top level
switch has only four downlinks but no uplink. Each set of
input/output data consists of the fields (a) Path Cost, (b)
Vertex List and (c) Update control bit (UCB). The switch
architecture is shown in Fig. 5(b).

UCB is a flag to indicate whether the status of the data
is valid (UPDT) or invalid (NOUP). The receiving parent or
child switch infers “no transmission” if UCB is set to
NOUP. In every cycle, the switch takes a decision based on
the following algorithm.

Let C1, C2, C3 and C4 be the four (children) downlinks
and P be the (parent) uplink and let us define the set L =
{C1, C2, C3, C4, P}. Let us suppose the best (lowest) cost,
PCi for a decision cycle comes from Li ∈ , i.e.

LjijPCPC ji ∈≠∀< , . Then, we have

LkPCkBufOut i ∈∀←][

NOUPiUCB ←][

93 ASAP 2010

Table 2. Time variation with input graph size
Components
of total time

Time in microseconds
DIM=8 DIM=16 DIM=32 DIM=64

Total time per
reduction
(IEedge) 1.60E-02 2.88E-02 5.44E-02 1.06E-01
Time per write
(W) 4.00E-03 4.00E-03 4.00E-03 4.00E-03
TreeSelect
(TS)
(aggregate) 1.68E-02 8.40E-02 3.72E-01 1.56

LjijUPDTjUCB ∈≠∀← ,][

4.4. Communication Protocol
 In the mesh architecture, every switch communicates
with its immediate neighbor and gets data in every cycle
from at most four neighboring switches. Based on the
decision mechanism described in the previous sub-section,
the switch places data on BufOut with appropriate control
bits. The neighboring switches get this value in their input
buffers in the next cycle. Hence, at every cycle, data is sent
in all four directions.

For the quad-tree, every switch communicates with its
four children and one parent in every clock cycle. It
receives data from its parent and/or one or more of its
children and takes a decision on the lowest cost available to
it thus far. Once found, this data is placed on four output
buffers, except the direction it came from along with
appropriate UCB. For the best-cost data to propagate to the
entire network, it has to go through a maximum of H hops
where H is given by

� �NH 4log*2= (1)
 Note that H/2 is the height of the tree. One important
fact to keep in mind is that each hop does not consume the
same number of clock cycles as the wire length varies at
different levels.
 The need for inter-PE communication arises when a
particular PE checks against the global best cost obtained
so far and finds out that its local best-cost is lower than the
global best-cost. At this stage, the PE should broadcast its
newly obtained value to the whole network. One way to
implement this is to use flooding. However, this could lead
to an unnecessary network congestion thereby affecting
scalability. Therefore, we devised an improved alternative
strategy where a PE conditionally broadcasts valid data
only if

a. Its local best-cost is worse than the global best-cost
but it has not yet participated in the broadcast of
this global cost, or

b. Its local best-cost is better than the global best-cost
(currently available to the rest of the network) and
it has not been previously transmitted.

The above scheme ensures elimination of redundant
communication, thus reducing communication overhead
and power consumption without compromising on the
correctness of the answer.

5. Experimental Results
5.1. Experimental Setup

We present an evaluation of our NoC in terms of timing
and power consumption. As software baselines for timing
performance, we used serial and multi-threaded versions of
the algorithm. The software was run on a 2.0 GHz Intel
Core 2 Duo T6400 CPU with 4GB RAM. The PEs and
switches of the NoC were implemented by synthesizing

Verilog RTL using Synopsys Design Compiler and 65nm
libraries [17]. We were able to sustain a 2.5GHz clock for
synthesizing the PEs and switches (see critical path in Fig.
4). Timing and power numbers were obtained from the
same tool. The characteristics of the inter-switch wires
were determined using Cadence Spectre. The delay and
energy dissipation of the inter-switch wires depend on their
capacitance, which was calculated by taking into account
each wire’s specific layout.

For comparative evaluation, we implemented two
different versions of the PE – one having the O(DIM)
reduce block and the other with an O(DIM2) reduce block.
Most of the NoC performance analysis results are reported
on the quad-tree architecture. This is based on our
observation that the quad-tree architecture offers less write
latency with higher system size as shown in Table 1.
Additionally, quad-tree has a better power consumption
profile than mesh, as we show in sub-section 5.5. For
timing performance and power consumption, we vary the
system size of the NoC (1-32) keeping the input graph size
DIM constant and then vary DIM (8-64) keeping the system
size constant. We used synthetic data sets with input graphs
having random integer edge weights from 0 to 3, the
number of vertices in each graph being denoted by DIM.

5.2. Variation of runtime with system size
Fig. 7 shows the total execution time for NoCs of

varying system size. Fig. 8 shows the overall1 speedup over
the software implementation as the baseline case. To obtain
a conservative estimate we report speedups over 8-thread
CPU runs2. We observed almost uniform speedup with
increasing system size (N). The best overall speedup of
over 774 is obtained for N=32. The speedup fluctuation
across different inputs is due to the varying effect of
pruning, which is input-dependent as expected.
 Fig. 9 captures the effect of optimizing the architecture
of the reduce block. We compare the speedup obtained on
our O(DIM) implementation with that on O(DIM2)
implementation. Note that there is an almost constant ratio
of 8 between the two speedups. This is because this metric
is based on the overall runtime, including computation and

1The overall speedup takes into account all operations required for
computing all edges of the tree, including time spent in inter-PE
communication. The speedup for matrix reduction only is much higher.
2Using our single-thread serial implementation, we estimate our speedups
to be 10 times the numbers presented here.

94 ASAP 2010

Figure 7. Variation of total time with NoC system size

Figure 8. Variation of speedup with NoC system size over 8-threaded

software

Figure 9. Ratio of overall speedups obtained between two

implementations of reduce block for DIM=16. Note that there is an
almost constant ratio of 8 between the speedups.

Figure 10. Total NoC power variation with input graph size, DIM

Figure 11. Total NoC power variation with system size, N

Figure 12. Interconnect-only power variation with system size, N

communication. Approximately 50% of the computation
time is spent in matrix reduction, which on its own is 16X
faster.

5.3 Analysis of runtime and speedup
 A breakup of the total execution time, TE will aid better
appreciation of the observed trends in our experimental
results.
 TE = maxp{TRp+TWp+TS} (2)
where TRp is the total computation time for PE p, p = 1…N,
TWp is the total time spent in writes by PE p and TS is the
total time spent in selecting a subtree (see 4.1.3). If we
denote the number of edge reductions carried out by PE p
as NRp and the total time required for each such operation
as IEedge, we have the following relation.

TRp = NRp*IEedge (3)
Note that about 50% of IEedge is the time spent in matrix

reduction (4.1.1) and the remaining is spent for other
peripheral operations (4.1.2) and accessing logically local
memory (4.1.3). IEedge is the same for all PEs. The
communication time is TWp and is dependent on the write
latency, W and the write count, NWp as below.

TWp = NWp*W (4)

5.4. Variation of runtime with input graph size
 Table 2 shows the variation of parallel run-time as a

function of input graph size, DIM keeping N fixed at 16. As
can be observed, IEedge shows a linear dependence on input
size. This is expected because all components of IEedge are
linear with DIM with the optimized reduce block. Increase
in NRp is the primary factor that leads to increase in overall
execution time for larger input graph sizes. Note that W is
constant as it depends on the height of the tree, H, which is
a constant for fixed N. The increase in TS has a negligible
contribution and the total time is strongly dominated by the
computation time TRp.

95 ASAP 2010

5.5. Power Consumption
One PE has a gate count of ~50K and a switch has

~1400 gates after synthesis. Fig. 10 depicts the variation in
power consumption with increasing input graph size and
system size constant at N=16. In Fig. 11, input graph size is
constant at DIM=16 and system size varies. The PE and
switch power numbers have been reported on 65nm
standard cell libraries from CMP [12]. The interconnect
power has been reported using Cadence Spectre. In each
figure, we have compared the power consumption using
mesh and that using quad-tree. Note that for fixed system
size, N = 16, there is marginal power saving. This is
because most of the power consumption occurs in the
computation (PE) part and the benefit of using a quad-tree
over a mesh is not readily apparent. In both cases for fixed
N, the PE power consumption varies as O(DIM2) and the
network (switch and interconnect) power consumption
varies as O(lg DIM), though the mesh has a larger constant
for the network power component.
 We observe larger savings in power when system size is
varied with DIM kept fixed. Although, the total power
consumption of the quad-tree NoC is 5% lower than the
mesh, a closer look in Fig. 12 reveals the savings in
interconnect-only power. Here we observe close to 30%
savings in power consumption in the quad-tree. The
interconnect power consumption difference between mesh
and quad-tree does not follow a monotonic pattern. It
narrows down when N is a power of 4 and increases in
between. This is because the quad-tree is a complete tree
and has the maximum number of links for a tree of that
height when N is a power of 4.

6. Conclusion and Future Work
In this paper we have undertaken the design,

implementation and performance evaluation of an NoC-
based multi-core architecture for solving TSP targeted to
breakpoint median problem in phylogeny. We show that the
proposed NoC architecture reduces total execution time by
a factor of 774 compared to a multi-threaded version of the
corresponding software implementation. On the
architecture front, we show that a quad-tree is better suited
to this kind of application. To the best of our knowledge,
this is the first NoC-based approach to tackle this problem.

We believe that our current implementation provides
appreciable performance enhancement over comparable
hardware accelerators and can serve as a basis for more
NoC-based platforms with applications to life sciences. It
also provides a paradigm for accelerating similar vector or
matrix-based applications like image processing.

7. Acknowledgement
This work is partially supported by NSF grant (IIS-

0916463).

8. References
[1] E.L. Lawler, J. Lenstra, A.R. Kan and D. Shmoys. The

traveling salesman problem. John Wiley, 1985.
[2] J. Bentley. Fast algorithms for geometric traveling salesman

problems. ORSA J. Computing, 4:387-411, 1992.
[3] B. Golden, L. Bodin, T. Doyle, W. Stewart. Approximate

traveling salesman algorithms, Operations Research, 28:694-
711, 1980.

[4] G. Reinelt. The traveling salesman problem: computational
solutions for TSP applications. In LNCS 840, pp. 172-186,
Springer-Verlag, Berlin, 1994.

[5] S. Lin and B. Kernighan. An effective heuristic algorithm for
the traveling salesman problem. Operations Research,
21:498-516, 1973.

[6] P. Jog, J. Y. Suh, and D. Van Gucht. Parallel Genetic
Algorithms Applied to the Traveling Salesman Problem,
SIAM J. Optim. Volume 1, Issue 4, pp. 515-529 1991.

[7] D. L. Miller, J. F. Pekny. Results from a parallel branch and
bound algorithm for the asymmetric traveling salesman
problem, Operations Research Letters Volume 8, Issue 3,
June 1989, Pages 129-135.

[8] E. Horowitz and S. Sahni, “Branch-and-bound” in
Fundamentals of computer algorithms, Potomac, MD:
Computer Science Press, 1984, pp. 370-421.

[9] M. Bellmore and G. Nemhauser, “The Traveling Salesman
Problem: A Survey,” Operations Research, vol. 16, 1968,
pp. 538-558

[10] M. Blanchette, G. Bourque, and D. Sankoff, “Breakpoint
phylogenies,” Genome Informatics Workshop, Tokyo:
University Academy Press, 1997, pp. 25-34.

[11] D. A. Bader and M. Yan, “High-Performance Phylogeny
Reconstruction” in Handbook of Computational Molecular
Biology, Edited by S. Aluru, Chapman & Hall/CRC
Computer and Information Science Series, 2005.

[12] I. Pe'er and R. Shamir, “The median problems for
breakpoints are NP-complete,” Elec. Colloq. on Comput.
Complexity, 1998, p. 71.

[13] T. S. T. Mak and K. P. Lam, “High Speed GAML-based
Phylogenetic Tree Reconstruction Using HW/SW Codesign,”
Proc. Computational Systems Bioinformatics, 2003, pp. 470.

[14] N. Alachiotis et. al., “Exploring FPGAs for Accelerating the
Phylogenetic Likelihood Function,” Proc. IEEE Intl. Sym. on
Parallel and Distributed Processing 2009, pp 1-8.

[15] J. Bakos and P. Elenis, “A Special-Purpose Architecture for
Solving the Breakpoint Median Problem,” IEEE Transactions
on Very Large Scale Integration Systems, vol. 16, 2008, pp.
1666-1676.

[16] F. Patas et. al., “Fine-grain Parallelism using Multi-core,
Cell/BE, and GPU Systems: Accelerating the Phylogenetic
Likelihood Function,” Int. Conf. Parallel Processing, 2009,
pp. 9-17.

[17] Circuits Multi-Projects (http://cmp.imag.fr/). Last date
accessed: 20 Feb 2010.

96 ASAP 2010

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

