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Abstract 
Traveling Salesman Problem (TSP) is a classical NP-

complete problem in graph theory. It aims at finding a 
least-cost Hamiltonian cycle that traverses all vertices of 
an input edge-weighted graph. One application of TSP is in 
breakpoint median-based Maximum Parsimony 
phylogenetic tree reconstruction, wherein a bounded edge-
weight model is used. Exponential algorithms that apply 
efficient heuristics, such as branch-and-bound, to 
dynamically prune the search space are used. We adopted 
this approach in an NoC-based implementation for solving 
TSP targeted towards phylogenetics taking advantage of 
the fine-grained parallelism and efficient communication 
network. The largest fraction of the solution time for TSP is 
accounted for by a particular lower bound calculation 
operation that uses the graph’s adjacency matrix. In this 
paper, we present the design and implementation of the 
processing elements with a highly optimized lower bound 
computation kernel and evaluate its performance. 
Additionally, we explore two major NoC architectures – 
mesh and quad-tree – and show that the latter is more 
suitable for this application domain.      

1. Introduction 
Traveling Salesman Problem [1] is a widely studied NP-

complete problem for which several heuristics have been 
explored [2-7,9] and the branch-and-bound based methods 
[8,9] continue to be the most popular among accurate 
solvers, owing to their effectiveness in reducing the 
exponential search space. The heuristic, which itself is 
computationally intensive is an ideal candidate for 
parallelization. An array of processing elements (PEs) 
working in parallel on distinct parts of the solution would 
naturally enhance performance. However, these PEs cannot 
work completely in isolation and need to communicate 
amongst themselves. This communication needs to be 

efficient and synchronized with the computation operation 
of the PEs. To achieve this in an on-chip scenario, a 
platform possessing inherent fine-grained, large-scale 
parallelism and an efficient communication fabric needs to 
be chosen. A Network-on-Chip (NoC) provides the best fit 
to this requirement. On one hand, an NoC scales very well 
with increasing number of PEs; on the other, it offers the 
user the freedom to choose the communication architecture 
that is most apt for a target application. 

The principal motivating application for this paper is the 
breakpoint median problem that has a direct application in 
Maximum Parsimony-based phylogenetic reconstruction. It 
relies on breakpoint distance, which is a measure of how 
different two genomes are by their gene ordering. The 
pioneering work done on this in [10,11] reduces the 
problem to one of solving numerous instances of TSP on 
graphs with bounded integer edge weights. However, even 
this restricted version of the TSP problem has been shown 
to be NP-Hard [12]. A TSP solution of a graph with DIM 
vertices consists of a series of lower bound calculations, 
which could be implemented as a matrix reduction 
operation on the associated adjacency matrix. This 
operation has a time complexity of O(DIM2), which 
severely limits the scalability of the computational kernel 
with increasing input graph size. We have designed an 
application-specific PE that achieves an O(DIM) matrix 
reduction, which in turn renders the entire computation to 
have a linear time complexity with graph size. Additionally, 
we explore two major NoC architectures – mesh, shown in 
Fig. 1(a) and a 4-way hierarchical star or quad-tree, shown 
in Fig. 1(b) – and demonstrate the superiority of the latter 
for our application. This is based on a comparison of 
network latency and power consumption across the two 
frameworks. 

2. Related Work 
      Broadly speaking, TSP algorithms can be classified into 
two groups – (a) approximation algorithms that could take 
polynomial time [2-5] and (b) accurate algorithms that run 
in exponential time [8,9]. Techniques used in 
approximation methods include the Kernighan-Lin 
heuristics, simulated annealing and genetic algorithms [2-
6]. Among accurate methods, dynamic programming [8] is 
strictly exponential in practice whereas in branch-and-
bound [8,9], one can expect significant pruning of search 
space. Coarse-level parallelization of TSP has been 
explored using genetic algorithms [6] and branch-and-
bound [7,11]. 
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Figure 3. PE architecture for one edge reduction 

Figure 2. Flow diagram explaining branch-and-bound algorithm 
for solving the breakpoint median problem 

On hardware acceleration targeted towards phylogenetics 
applications, substantial work has been carried out based on 
platforms like FPGA, Graphics Processing Unit (GPU), 
Cell Broadband Engine (CBE) and general-purpose multi-
cores (traditional Intel/AMD dual-core, quad-core 
platforms). A hybrid hardware/software implementation 
proposed in [13] using Genetic Algorithm for Maximum 
Likelihood (GAML) approach reports a speedup of 30 over 
software. The phylogenetic likelihood function (PLF) has 
been accelerated around 8 times through the use of FPGA 
boards with built-in DSP slices in [14]. A whole genome 
phylogenetic reconstruction based on a parallelized version 
of the breakpoint median algorithm has been shown in [15]. 
Using a combination of software and FPGA, total execution 
has been reduced by a factor of 417 over single-thread 

software implementation. In [16], a comparative evaluation 
of a program for Bayesian inference of phylogenetic trees is 
presented. While CBE and GPU are shown to have 
appreciable reduction in computation time, they introduce 
significant communication time penalty. The general 
purpose multi-cores have overall better performance. 
Currently, there are no custom multi-core NoC 
architectures targeting TSP or phylogenetics. Here, we 
present the design of a custom NoC for TSP computations 
typical in phylogenetic applications and evaluate its 
performance. 

3. Algorithm 
 In what follows, we present the core computation steps 

of the TSP algorithm [8] used in our implementation. A 
graph is constructed out of DIM vertices, corresponding to 
the DIM reference genes, and with edges having a bounded 
weight – an integer cost between 0 and 3, or an edge with 
cost � (representing nonexistent edges) [10].  

Given an input graph G with DIM vertices, a conceptual 
computation tree is navigated in the depth first search order 
(DFS), one edge at a time as shown in Fig. 2. The tree has 
one unique path for each of the (DIM-1)! potential TSP 
tours. Every tree-edge (u,v) corresponds to a graph edge 
(i,j), and every path from the root to a leaf node encodes a 
completed TSP tour with cost equal to the sum of the edge 
weights along its path. An optimal TSP tour is a least-cost 
Hamiltonian cycle. 

Initially, a variable called best_cost is initialized to �; 
this variable is dynamically updated to keep track of the 
least cost over all TSP tours examined so far at any stage of 
the algorithm. At every step, the algorithm evaluates the 
next eligible tree-edge in the DFS order as follows.  

At any given step, let the newly included tree-edge be 
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Figure 4. Efficient reduce (�) block for linear-time matrix reduction 

from node u to node v, and the newly included edge be (i,j) 
with cost cij. Let c*(v) denote the cost of the least cost TSP 
tour passing through node v.  If v is a leaf, then c*(v) is set 
equal to the net cost of the path from the root node to v. 
Subsequently, if c*(v)<best_cost then best_cost is updated 
to c*(v). If v is an internal node in the search tree, a lower 
bound for c*(v) is computed using a matrix reduction 
operation. If the lower bound computed (lbc(v)) is observed 
to be greater than or equal to best_cost, further exploration 
of the subtree under v is unnecessary and so it is pruned 
with the computation returning to node u; otherwise, the 
DFS is continued under v’s subtree. 

We use the method shown in [8] for lower bound 
computation at each tree-edge. A DIM × DIM matrix called 
the reduction matrix (R) is maintained throughout 
execution. Initially, the matrix at the root node is set equal 
to the cost matrix defined by E. At any step of the DFS, 
lbc(v) is calculated as follows:  
1) All entries in row i and column j of R is set to �; 
2) R[j,1] is also set to �; 
3) All rows and columns that contain at least one non-
infinity value are reduced as follows:  (a) Given row i, let 
mini = min{R[i,j]} for all 1�j�DIM;  (b) Then for all 
1�j�DIM, R[i,j] = R[i,j]-mini; (c) Similarly, given column 
j, let minj = min{R[i,j]} for all 1�i�DIM; (d) Then for all 
1�i�DIM, R[i,j] = R[i,j]-minj  As this is done, all 
subtracted values (i.e., the minimum values) are 
accumulated into another variable adjCost.  
4) Subsequently, lbc(v) = lbc(u)+R[i,j]+adjCost. 

4. NoC Design 
We seek to utilize NoC’s inherent parallel architecture, 

customizability of the core and its efficient communication 
network to solve TSP. We designed and implemented the 
principal components of the NoC, namely the PEs and the 
communication network. We explored two different 
network architectures – the mesh and the quad-tree. In the 
following sub-sections, we describe in detail the design of 
the PE, switch and the overall network architecture. 

4.1. PE Design 
The principal role of the PE is to handle the computation 

along an edge as per the algorithm described in the previous 
section. Computational complexity being a major concern, 
our attempt has been to reduce the number of clock cycles 
required for this operation to make it scalable with 
increasing input graph size, DIM. The PE architecture has 
an integer datapath because the principal purported 
application, namely breakpoint median computation 
consists entirely of integer operations. The PE consists of a 
reduce block and peripheral control logic.We use the short-
form lg k to denote log2k. The datapath consists of the 
following fields (DIM: number of vertices, MW: maximum 
edge weight). 

a. x – the parent node (u) uses lg DIM bits 
b. y  –  the child node (v) uses lg DIM bits  
c. LBC – the lower bound cost (lbc(u)) estimate at an 

edge; this requires lg DIM + lg MW + 1 bits 
d. EPC – the exact path cost (lbc(u)+R[i,j]) 

determined so far; takes lg DIM + lg MW + 1 bits 
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e. TSP – the TSP adjacency matrix (R), flattened. Its 
representation takes DIM2*lg MW bits. 

f. VLST – the current list of vertices traversed; 
DIM*lg DIM + 1 bits are required to store this 
field. 

g. CC – the candidate children at every stage; takes 
DIM bits 

As is evident, the space complexity of the hardware is 
O(DIM2). A block diagram of the PE is shown in Fig. 3. 
We use valid weights 0 to 3 and 4 to denote �. A different 
range of weights just changes the number of bits for MW. 
Subsequent references in parentheses (e.g. �, �, etc.) in this 
sub-section refer to this figure. 

4.1.1. Reduction block. This block (�) carries out the 
matrix reduction operation described in Section 3. As is 
evident from the algorithm, the run-time of the operation 
should be a function of the matrix size, i.e., O(DIM2).  The 
matrix is reduced using the new values of x and y in stage2 
(see Peripheral control logic below) and the adjacency cost 
adjCost is obtained. This operation consumes the maximum 
fraction of the total time required for an edge computation. 
Hence, a significant amount of time is saved by suitably 
optimizing its design and implementation. Our 
implementation achieves O(DIM) cycle time. This has the 
effect of drastically reducing the total time as well as 
providing better time-scalability with increasing input 
graph size. Fig. 4 shows the architecture of reduce block. 
The flattened TSP matrix is initially reorganized into rows 
and columns in matrix. There are DIM rows and DIM 
columns with each entry taking up lg MW bits. The register 
bank minval of width DIM*(lg MW) is initialized with a bit 
pattern representing infinity.  A counter is used as a state 
machine controller. There is a DIM-sized bank of 
comparators that compare one element from every row or 
column in every cycle. Minimum value calculation for all 
rows and the same for all columns take DIM cycles each. 
Additional cycles are required for subtraction of the 
minimum values and for calculation of the final adjCost. 
This step takes 2*(DIM+2) cycles to complete under the 
current implementation. 

4.1.2. Peripheral control logic. The peripheral control 
logic is used for vertex selection, cost comparison, data 
management and bookkeeping. The register bank for the 
first stage is stage1, which has the same width as the 
datapath. The input control multiplexer initially switches to 
select the current vertex data. The CC field is computed (�) 
from VLST in DIM cycles in the worst case. 
    In the second stage, the candidate child is found by 
scanning (�) CC of stage1. Again, this requires DIM clock 
cycles in the worst case. Using this candidate child, VLST is 
updated (B) for the child node in the graph. If it is not a leaf 

node (A), the candidate child becomes the next child node, 
while the current node (y of stage1) becomes the parent 
node x of stage2. During the same stage, the data pertaining 
to the best case obtained so far is fetched into stage1. The 
input multiplexer now selects the lowest cost data (global 
best cost) available to the PE at this time. At this stage, TSP 
of stage1 gets the original TSP matrix. 
    The current value of the exact cost of the path found so 
far, EPC is updated by adding to it the edge cost from x to y 
in the original adjacency matrix. The sum of adjCost 
(obtained from reduce operation) and EPC yields the lower 
bound cost, LBC, which is compared with the best cost 
found so far. If LBC is larger, the tree is pruned (E), the 
current child is aborted and the path through another child 
is explored. The data on stage2 is reloaded back to stage1 
with the old value of x and a new calculation for the 
candidate child. If LBC is smaller and we have not reached 
a leaf node, normal operation continues (DFS) with the new 
set of data. If we have hit a leaf node with an LBC lower 
than the best cost globally found so far, this value (new 
global best cost data) is sent to the switch to be 
communicated with other PEs in the network. 

4.1.3 Memory. There are two logical divisions in memory 
– global and local. However, all memory is physically 
distributed across all PEs. The global memory in a PE 
stores the TSP matrix that represents the subtree assigned to 
that PE. The local memory is implemented as a stack. 
During DFS, the new vertex data (path cost, vertex list) is 
pushed into the stack (Fig. 3). The stack is full only when 
the leaf node is reached. If there is pruning (before the leaf 
node is reached), the stack is popped. Every PE has a DIM-
sized local memory stack.  
      In order to introduce load-balancing to compensate for 
the variable effects of pruning, we reduce the solution space 
down to the third level of the tree by a single master thread. 
Subsequently, a list of all subtrees rooted at this level is 
maintained in memory. Once each thread completes one 
subtree reduction, it picks up the next available subtree and 
removes it from the list. This is achieved by maintaining a 
global array of flags and a mutually exclusive semaphore. 

4.2 Network Design 
    We explored two different kinds of network architecture 
– a mesh, shown in Fig. 1(a) and a quad-tree, shown in Fig. 
1(b). The number of inter-switch links in a mesh increases 
faster than that in a quad-tree with increase in system size. 
The expected volume of inter-PE communication in our 
application is relatively low. Hence, by using an 
architecture with fewer links, there are potential savings in 
area and power without incurring a risk of network 
congestion. 
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Figure 6. Timing diagram showing typical scenarios encountered at 

a mesh switch 

 
(a)                                                 (b) 

 
Figure 5. Switch architecture (a) mesh (b) quad-tree 

Table 1. Worst-case write latency in clock cycles 
    

N Mesh Quad-tree 
4 6 6 
8 9 10 

16 12 10 
64 14 12 

256 30 14 
1024 62 16 

    The diameter of a mesh architecture increases as O(�N) 
where N is the number of nodes (PEs). The same for a 
quad-tree increases as O(log4N). Since the mode of 
communication for our application involves broadcast, the 
worst-case hop count is a linear function of the diameter. It 
should be remembered that all links are not of the same 
length in a quad-tree, where links higher up the tree are 
longer. Table 1 shows an estimate of the number of clock 
cycles required per write in the worst case in 65 nm CMOS 
technology with a clock period of 400 ps. The advantages 
of a quad-tree become distinctly apparent for N>16. 

However, power savings provide a much greater advantage 
that is apparent for even smaller network sizes, the reason 
being that the number of links and switches is drastically 
reduced. We present results on this account in Section 5. 

4.3. Switch Design 
    Different switches are designed for each of the two 
network architectures explored. The switch and the PEs run 
on the same system clock. Since we have a pipelined 
(switch-to-switch) communication technique, a globally 
synchronous NoC does not pose a problem with scalability.  

4.3.1. Mesh. A typical switch that is used on a mesh is 
shown in Fig. 5 (a). Input buffers InN, InE, InS, InW 
receive data from four neighboring switches and input 
buffer InLoc receives data from the associated PE. There is 
a dedicated buffer (BufOut) that provides data to the 

network as well as to the associated PE. 
    Each set of input/output data consists of the fields (a) 
Path Cost, (b) Vertex List and (c) Transmission control bits. 
At every cycle, one of four transmission decisions are taken 
by the Decision Making Unit (DMU) and the data is written 
into an internal buffer (local). The same is transmitted out 
in the next cycle through BufOut. The transmission control 
bits are as follows. 

• NOTX: No valid transmission 
• NORETX: No retransmission 
• DOTX: New best cost from local PE; transmit 
• TRWL: New best cost from other PE; transmit and 

update local PE 
Fig. 6 shows a timing diagram for a typical situation. It is to 
be noted that a switch receives data from each of its 
neighboring switches in every cycle but the transmission 
control bits determine whether the data is valid for 
consideration or not. The data is considered if the control 
bits are DOTX or TRWL but not if they are NOTX or 
NORETX. 

4.3.2 Quad-tree. There are different levels of switches for 
this network architecture. The leaf level switches (refer Fig. 
1(b)) are denoted L1, the next higher level L2 and so on. 
An L1 switch consists of five buffered input/output ports 
(BufIn/BufOut), four catering to the four leaf PEs and the 
fifth to the parent switch.  For an L2 switch and upwards, 
four children ports cater to lower level switches and the 
parent port caters to the higher level switch. The top level 
switch has only four downlinks but no uplink. Each set of 
input/output data consists of the fields (a) Path Cost, (b) 
Vertex List and (c) Update control bit (UCB). The switch 
architecture is shown in Fig. 5(b). 

UCB is a flag to indicate whether the status of the data 
is valid (UPDT) or invalid (NOUP). The receiving parent or 
child switch infers “no transmission” if UCB is set to 
NOUP. In every cycle, the switch takes a decision based on 
the following algorithm.  

Let C1, C2, C3 and C4 be the four (children) downlinks 
and P be the (parent) uplink and let us define the set L = 
{C1, C2, C3, C4, P}. Let us suppose the best (lowest) cost, 
PCi for a decision cycle comes from Li ∈ , i.e. 

LjijPCPC ji ∈≠∀< , . Then, we have 

LkPCkBufOut i ∈∀←][  

NOUPiUCB ←][  
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Table 2. Time variation with input graph size 
Components 
of total time 

Time in microseconds
DIM=8 DIM=16 DIM=32 DIM=64 

Total time per 
reduction 
(IEedge)  1.60E-02 2.88E-02 5.44E-02 1.06E-01 
Time per write 
(W)  4.00E-03 4.00E-03 4.00E-03 4.00E-03 
TreeSelect  
(TS) 
(aggregate) 1.68E-02 8.40E-02 3.72E-01 1.56 

 

LjijUPDTjUCB ∈≠∀← ,][  

4.4. Communication Protocol 
     In the mesh architecture, every switch communicates 
with its immediate neighbor and gets data in every cycle 
from at most four neighboring switches. Based on the 
decision mechanism described in the previous sub-section, 
the switch places data on BufOut with appropriate control 
bits. The neighboring switches get this value in their input 
buffers in the next cycle. Hence, at every cycle, data is sent 
in all four directions.  

For the quad-tree, every switch communicates with its 
four children and one parent in every clock cycle. It 
receives data from its parent and/or one or more of its 
children and takes a decision on the lowest cost available to 
it thus far. Once found, this data is placed on four output 
buffers, except the direction it came from along with 
appropriate UCB. For the best-cost data to propagate to the 
entire network, it has to go through a maximum of H hops 
where H is given by 

� �NH 4log*2=   (1) 
     Note that H/2 is the height of the tree. One important 
fact to keep in mind is that each hop does not consume the 
same number of clock cycles as the wire length varies at 
different levels. 
     The need for inter-PE communication arises when a 
particular PE checks against the global best cost obtained 
so far and finds out that its local best-cost is lower than the 
global best-cost. At this stage, the PE should broadcast its 
newly obtained value to the whole network. One way to 
implement this is to use flooding. However, this could lead 
to an unnecessary network congestion thereby affecting 
scalability. Therefore, we devised an improved alternative 
strategy where a PE conditionally broadcasts valid data 
only if 

a. Its local best-cost is worse than the global best-cost 
but it has not yet participated in the broadcast of 
this global cost, or 

b. Its local best-cost is better than the global best-cost 
(currently available to the rest of the network) and 
it has not been previously transmitted. 

The above scheme ensures elimination of redundant 
communication, thus reducing communication overhead 
and power consumption without compromising on the 
correctness of the answer.  

5. Experimental Results 
5.1. Experimental Setup 

We present an evaluation of our NoC in terms of timing 
and power consumption. As software baselines for timing 
performance, we used serial and multi-threaded versions of 
the algorithm. The software was run on a 2.0 GHz Intel 
Core 2 Duo T6400 CPU with 4GB RAM. The PEs and 
switches of the NoC were implemented by synthesizing 

Verilog RTL using Synopsys Design Compiler and 65nm 
libraries [17]. We were able to sustain a 2.5GHz clock for 
synthesizing the PEs and switches (see critical path in Fig. 
4). Timing and power numbers were obtained from the 
same tool. The characteristics of the inter-switch wires 
were determined using Cadence Spectre. The delay and 
energy dissipation of the inter-switch wires depend on their 
capacitance, which was calculated by taking into account 
each wire’s specific layout. 

For comparative evaluation, we implemented two 
different versions of the PE – one having the O(DIM) 
reduce block and the other with an O(DIM2) reduce block. 
Most of the NoC performance analysis results are reported 
on the quad-tree architecture. This is based on our 
observation that the quad-tree architecture offers less write 
latency with higher system size as shown in Table 1. 
Additionally, quad-tree has a better power consumption 
profile than mesh, as we show in sub-section 5.5. For 
timing performance and power consumption, we vary the 
system size of the NoC (1-32) keeping the input graph size 
DIM constant and then vary DIM (8-64) keeping the system 
size constant. We used synthetic data sets with input graphs 
having random integer edge weights from 0 to 3, the 
number of vertices in each graph being denoted by DIM.  

5.2. Variation of runtime with system size 
Fig. 7 shows the total execution time for NoCs of 

varying system size. Fig. 8 shows the overall1 speedup over 
the software implementation as the baseline case. To obtain 
a conservative estimate we report speedups over 8-thread 
CPU runs2. We observed almost uniform speedup with 
increasing system size (N). The best overall speedup of 
over 774 is obtained for N=32. The speedup fluctuation 
across different inputs is due to the varying effect of 
pruning, which is input-dependent as expected.  
    Fig. 9 captures the effect of optimizing the architecture 
of the reduce block. We compare the speedup obtained on 
our O(DIM) implementation with that on O(DIM2) 
implementation. Note that there is an almost constant ratio 
of 8 between the two speedups. This is because this metric 
is based on the overall runtime, including computation and 
                                                           
1The overall speedup takes into account all operations required for 
computing all edges of the tree, including time spent in inter-PE 
communication. The speedup for matrix reduction only is much higher. 
2Using our single-thread serial implementation, we estimate our speedups 
to be 10 times the numbers presented here. 

94 ASAP 2010



 
Figure 7. Variation of total time with NoC system size 

 
Figure 8. Variation of speedup with NoC system size over 8-threaded 

software 

 
Figure 9. Ratio of overall speedups obtained between two 

implementations of reduce block for DIM=16. Note that there is an 
almost constant ratio of 8 between the speedups. 

 
Figure 10. Total NoC power variation with input graph size, DIM

 
Figure 11. Total NoC power variation with system size, N  

 
Figure 12. Interconnect-only power variation with system size, N

communication. Approximately 50% of the computation 
time is spent in matrix reduction, which on its own is 16X 
faster. 

5.3 Analysis of runtime and speedup 
    A breakup of the total execution time, TE will aid better 
appreciation of the observed trends in our experimental 
results. 
 TE = maxp{TRp+TWp+TS}  (2) 
where TRp is the total computation time for PE p, p = 1…N, 
TWp is the total time spent in writes by PE p and TS is the 
total time spent in selecting a subtree (see 4.1.3). If we 
denote the number of edge reductions carried out by PE p 
as NRp and the total time required for each such operation 
as IEedge, we have the following relation. 

TRp =  NRp*IEedge   (3) 
Note that about 50% of IEedge is the time spent in matrix 

reduction (4.1.1) and the remaining is spent for other 
peripheral operations (4.1.2) and accessing logically local 
memory (4.1.3). IEedge is the same for all PEs. The 
communication time is TWp and is dependent on the write 
latency, W and the write count, NWp as below. 

TWp = NWp*W   (4) 

5.4. Variation of runtime with input graph size 
     Table 2 shows the variation of parallel run-time as a 

function of input graph size, DIM keeping N fixed at 16. As 
can be observed, IEedge shows a linear dependence on input 
size. This is expected because all components of IEedge are 
linear with DIM with the optimized reduce block. Increase 
in NRp is the primary factor that leads to increase in overall 
execution time for larger input graph sizes. Note that W is 
constant as it depends on the height of the tree, H, which is 
a constant for fixed N. The increase in TS has a negligible 
contribution and the total time is strongly dominated by the 
computation time TRp. 
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5.5. Power Consumption 
One PE has a gate count of ~50K and a switch has 

~1400 gates after synthesis.  Fig. 10 depicts the variation in 
power consumption with increasing input graph size and 
system size constant at N=16. In Fig. 11, input graph size is 
constant at DIM=16 and system size varies. The PE and 
switch power numbers have been reported on 65nm 
standard cell libraries from CMP [12]. The interconnect 
power has been reported using Cadence Spectre. In each 
figure, we have compared the power consumption using 
mesh and that using quad-tree. Note that for fixed system 
size, N = 16, there is marginal power saving. This is 
because most of the power consumption occurs in the 
computation (PE) part and the benefit of using a quad-tree 
over a mesh is not readily apparent. In both cases for fixed 
N, the PE power consumption varies as O(DIM2) and the 
network (switch and interconnect) power consumption 
varies as O(lg DIM), though the mesh has a larger constant 
for the network power component. 
     We observe larger savings in power when system size is 
varied with DIM kept fixed. Although, the total power 
consumption of the quad-tree NoC is 5% lower than the 
mesh, a closer look in Fig. 12 reveals the savings in 
interconnect-only power. Here we observe close to 30% 
savings in power consumption in the quad-tree. The 
interconnect power consumption difference between mesh 
and quad-tree does not follow a monotonic pattern. It 
narrows down when N is a power of 4 and increases in 
between. This is because the quad-tree is a complete tree 
and has the maximum number of links for a tree of that 
height when N is a power of 4. 

6. Conclusion and Future Work 
In this paper we have undertaken the design, 

implementation and performance evaluation of an NoC-
based multi-core architecture for solving TSP targeted to 
breakpoint median problem in phylogeny. We show that the 
proposed NoC architecture reduces total execution time by 
a factor of 774 compared to a multi-threaded version of the 
corresponding software implementation. On the 
architecture front, we show that a quad-tree is better suited 
to this kind of application. To the best of our knowledge, 
this is the first NoC-based approach to tackle this problem.  

We believe that our current implementation provides 
appreciable performance enhancement over comparable 
hardware accelerators and can serve as a basis for more 
NoC-based platforms with applications to life sciences. It 
also provides a paradigm for accelerating similar vector or 
matrix-based applications like image processing. 
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