
CPU

Job queue
Each rectangle represents a function requesting an

amount of computation resources proportional to its area.PCIe
tail head

Computation node

Custom lightweight processing
element (PE)

Inter-PE connection, e.g. crossbar

Computation node Computation node

Computation node Computation node Computation node

On-chip interconnection network
(wired links, wireless links)

Multicore system-on-chip hardware accelerator

Network switch

MasterController
Allocates

computation nodes
to each functionPCIe

(to send
data back
to CPU)

Figure 1. Use-case model of applications requiring high computation throughput

Network-on-Chip with Long-Range Wireless Links
for High-Throughput Scientific Computation

Turbo Majumder, Partha Pratim Pande, Ananth Kalyanaraman
School of Electrical Engineering and Computer Science, Washington State University, Pullman, USA

Email: {tmajumde, pande, ananth}@eecs.wsu.edu

Abstract—Several emerging application domains in
scientific computing demand high computation
throughputs to achieve terascale or higher performance.
Dedicated centers hosting scientific computing tools on a
few high-end servers could rely on hardware accelerator
co-processors that contain multiple lightweight custom
cores interconnected through an on-chip network. While
network-on-chip (NoC) driven platforms have been
studied in the context of accelerating individual
applications, this work studies the efficacy of NoC-based
platforms to enhance overall computation throughput in
the presence of several concurrently executing jobs. Use of
long-range links has been shown to reduce network
diameter and we use this property in conjunction with
different resource allocation strategies to deliver high
throughput. Our experiments using a computational
biology application suite as a demonstration study show
that the use of long-range wireless shortcuts coupled with
the appropriate resource allocation strategy delivers
computation throughput over 1011 operations per second,
consuming ~0.5 nJ per operation.

Keywords-Network-on-chip; long-range links; multicore;
computation throughput

I. INTRODUCTION
High-performance scientific computing tools in

emerging application domains such as biocomputing
demand computation throughputs to scale to terascale and
beyond. Given the diversity of tools and the need to cater
to a wide user-base, it has become common practice,
even within academic settings, to have a dedicated center
which hosts a whole range of scientific computing tools
on a few high-end data servers. The servers can be
expected to service requests from a variety of
applications, each with differing resource requirements,
and simultaneously support them while delivering high
throughput. This server could either be based on a cluster
of general purpose microprocessors or make use of a co-
processor consisting of a many-core chip where the cores
are designed to accelerate targeted operations and are
interconnected with an on-chip network. A similar setup
is also becoming common practice, albeit on a larger
scale, in cloud solution providers (e.g., [1]).

Various studies have shown the efficacy of Network-
on-Chip (NoC) driven platforms to accelerate specific

2013 IEEE 27th International Symposium on Parallel & Distributed Processing Workshops and PhD Forum

978-0-7695-4979-8/13 $26.00 © 2013 IEEE

DOI 10.1109/IPDPSW.2013.72

781

Logarithmic
Converter

Logarithmic
Converter

Logarithmic
Converter

Logarithmic
Converter

Logarithmic
Converter

Logarithmic
Converter

Logarithmic
Converter

Logarithmic
Converter

+ + + +

lg a1 lg a2 lg a3 lg a4lg b1 lg b2 lg b3 lg b4

a1 b1 a2 b2 a3 b3 a4 b4

Antilogarithmic
Converter

Antilogarithmic
Converter

Antilogarithmic
Converter

Antilogarithmic
Converter

lg(a1*b1) lg(a2*b2) lg(a3*b3) lg(a4*b4)

+ +

+

a1*b1 a2*b2 a3*b3 a4*b4

a1*b1+a2*b2 a3*b3+a4*b4

a1*b1+a2*b2+a3*b3+a4*b4
pipeline register
(one clock cycle
from reg to reg)

Inputs for
antilogarithm

operation

Outputs of
logarithm
operation

Stage 2
Comb. Table

Lookup
(Mantissa)

Stage 1
Leading One Detector

(Characteristic)

Stage 3
Adder

Stage 4: Comb. Table Lookup
(Fraction)

Stage 5
Shift and normalization

Stage 6
Adder

CRITICAL
PATH
1 ns

Outputs of
antilogarithm

operation

Inputs for sum-of-four-products

Output: Sum-of-four-products

Inputs for
logarithm
operation

Figure 2. Datapath architecture of each computation core of a processing element (PE)

target applications (e.g., [2]). Although NoC-based
platforms have been studied in the context of application
throughput, these studies [10][11][12] focus mostly on
the network layer, routing and arbitration to improve
message throughput. Our focus, in this paper, is on
enhancing system-level computation throughput of
scientific applications consisting of multiple concurrent
jobs with varying footprints. We propose NoC-based
platforms to achieve our objective through designing
custom processing cores for efficient arithmetic
computation, novel task-allocations schemes, and use of
on-chip long-range wireless links.

The proposed platforms assume the following use-
case model (see Fig. 1): A CPU runs the parent process
and communicates via an interface (e.g. PCIe) to a
multicore system-on-chip that acts as a hardware
accelerator for specific computation-heavy kernels. There
is a queue of jobs offloaded by the CPU to the hardware
accelerator and an allocation unit (MasterController)
assigns the requested computational resources from the
hardware accelerator to the job at the head of the queue.
Once some computation resources are assigned to a job,
they stay busy till the execution of that particular job

concludes, and the result is sent back to the CPU through
a similar interface (e.g. PCIe). Each computational
resource is a lightweight custom core embedded in a
NoC.

The choice of the on-chip network architecture is an
important consideration in the design of a NoC-driven
platform targeted at enhancing computation throughput.
Introduction of long-range links in regular architectures
like mesh reduces the overall network diameter and
improves inter-core communication latency [3]. It has
been shown that the use of on-chip wireless links to
implement these shortcuts leads to significant savings in
latency and energy, even considering the overhead of
wireless transceivers [4]. Our contribution here is the
design of a NoC-based platform with long-range on-chip
wireless shortcuts to enhance the computation throughput
of scientific applications with the above-mentioned use-
case model.

II. RELATED WORK
The proposed use-case model is relevant for a variety

of scientific applications, for example, the use of servers
that host application programs to implement standard

782

functions in phylogenetic inference [5], gene sequence
alignment [6], climate modeling and weather prediction
[7], etc. For instance, a typical genome assembly
algorithm farms out billions of pairwise sequence
alignment computations, each of which is an independent
task that aligns strings of small lengths (e.g., 100-500
base pairs) and can use a small number of cores (e.g., 8-
16) [8]. As another example, consider the problem of
computing phylogenetic inference using maximum
likelihood (ML) [9], where one typically needs to carry
out billions of independent tree evaluations, each of
which internally performs a small number of floating
point calculations using a few cores. There is a
considerable body of work in partitioning NoCs for
different applications, e.g. [10]. Similarly, there has been
work on routing strategies in NoCs that minimize
message-level contention between applications, e.g. [11],
[12].

NoCs have been shown to perform better by insertion
of long range wired links following principles of small-
world graphs [3]. Despite significant performance gains,
the above scheme implements the long-range links with
conventional wires. It has been already shown that
beyond a certain length, wireless links are more energy
efficient than conventional metal wires. Hence, the
performance improvement by using long-range wireless
links will be more than that using wired links. Designs of
small-world based hierarchical wireless NoC
architectures introduced and elaborated in [4]
demonstrate this. Our approach leverages the benefits of
using long-range wireless shortcuts on a NoC to achieve
high-throughput computation for applications belonging
to the use-case model considered in this work.

III. DESIGN OF NOC WITH LONG-RANGE LINKS
We present the design of a multicore system-on-chip,

where the cores consist of lightweight custom-designed
processing elements (PEs), and the on-chip network is a
folded torus (network choice explained later). We insert
long-range shortcuts using on-chip wireless links on top
of the folded torus, and explore different strategies to
allocate the computational resources of the system to the
application. The details of the system design, wireless
shortcut placement, resource allocation and routing are
described in this section.

A. Processing Element (PE)
Scientific applications need to carry out a wide range

of operations (e.g., log, exp, multiplication, integer
comparison, trigonometric functions, etc.). For the sake
of design and evaluation in this paper and without loss of
generality, we built a PE that performs only a subset of

these calculations (using phylogenetic inference as a
demonstration study). The system design methodology
remains the same if the PE design is modified to
implement other functions. We designed a homogeneous
multicore system, where a PE computes vector products
on floating point numbers and elementary functions like
logarithms and exponentials. A PE is one computation
node and communicates with other PEs (computation
nodes) through the respective network switches and the
on-chip network. The number of such nodes represents
the system size, N, of the multicore system.

We use Fixed-Point Hybrid Number System (FXP-
HNS) [13], an efficient and accurate number system to
represent floating point numbers. We use 64-bits for
number representation; as such our core datapath is 64-bit
wide. The architecture of the datapath of a computation
core within each PE is shown in Fig. 2. The datapath
consists of six pipeline stages, with the functions of each
stage indicated in the figure. We consider logarithm and
exponential as basic operations that the PE is designed to
accelerate, while vector product is a compound operation
involving the basic operations. Logarithm and
exponential operations are based on piecewise-linear
table-based approximations described in [13], and
implemented with logic circuits. In addition, each PE has
2 MB memory in the form of register banks to store
inputs and computation outputs. We used Verilog HDL
to design the PE along with a wrapper for instruction
decoding, data fetching and data write-back. We
synthesized the design with 65 nm standard cell libraries
from CMP [14]. We determined the clock frequency of 1
GHz based on the critical path (Stage 2) shown in Fig. 2.

B. Network Architecture
Our target is the class of applications that spawn a

stream of independent jobs (constituent functions) that
individually require variable amounts of computation
resources. Communication is necessitated only among
nodes catering to a single job during its execution. The
location of these nodes on the network can be arbitrary,
although preserving locality of allocation becomes
important in the interest of keeping the communication
overhead low. Given this setup, distributed network
architectures such as a Folded Torus are well suited to
cater to such traffic patterns. From the VLSI
implementation perspective, a torus is a scalable network
architecture whose regularity provides for easier timing
closure and reduces dependence on interconnect
scalability [15]. All inter-node links in the folded torus
are one-hop links with respect to the 1 GHz clock used.
As mentioned above, this clock frequency requirement
arises from the critical path constraint of the PE. Since

783

H(1) H(2) H(3) H(4)

(a)

0 1 2 3 4 5 6 7

8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

Allocated
contiguous

nodes

Non-contiguous nodes are
separated by the average

distance between quadrants
(diameter)

4
5 Wireless links

along
diameters

Hilbert
curve

Non-contiguous
nodes forming a

partition

(b)

Figure 3. (a) 2-D Hilbert curves with k = 1 (2x2), 2 (4x4), 3 (8x8) and 4 (16x16). For every value of k, there are four Hilbert curves, each rotated by 90 degrees
with respect to the next. (b) Each quadrant of a Hilbert curve embedded on the folded torus NoC is shown in a different color. Dynamically allocated partitions
can consist of contiguous nodes and non-contiguous nodes. In the latter case, the wireless links act as shortcuts. On an average, the nodes in a non-contiguous
partition are separated by a diameter, which justifies wireless link placement along diameters.

our datapath is 64-bit wide, and messages exchanged
between nodes contain 64-bit FXP-HNS numbers along
with control and routing information, we split each inter-
node message into three 64-bit flits – header, body and
tail. As a result, each inter-node link needs a minimum
bandwidth of 64 Gbps.

C. Long-Range On-Chip Wireless Links
From the perspective of the application, we try to

minimize the average distances among nodes catering to
one job. However, as we explain further in Section III-D,
the nodes allocated to a job could turn out to be
physically separated on the network, leading to a large
communication overhead. From the network architecture
point of view, bridging these gaps is possible through the
use of long-range point-to-point shortcuts.

Introduction of shortcuts on regular architectures have
been shown to provide significant improvements in
latency and network throughput for different kinds of

applications [3]. Long wired shortcuts however cannot
guarantee one-hop transmission and consume significant
amounts of energy. Use of on-chip wireless shortcuts
overcomes these drawbacks [4].

1) Physical Layer
Suitable on-chip antennas are necessary to establish

the wireless links. It has been shown that wireless NoCs
designed using carbon nanotube (CNT) antennas can
outperform conventional wireline counterparts
significantly [4]. Antenna characteristics of CNTs in the
THz frequency range have been investigated both
theoretically and experimentally [16]. Such nanotube
antennas are good candidates for establishing on-chip
wireless communication links and are henceforth
considered in this work. Using CNT antennas, different
frequency channels can be assigned to pairs of
communicating source and destination nodes, thus
creating a form of frequency division multiplexing. This
provides dedicated and non-overlapping channels to a

784

source-destination pair. This is possible by using CNTs
of different lengths, which are multiples of the
wavelengths corresponding to the respective carrier
frequencies. It is possible to create 24 non-overlapping
wireless channels, each capable of sustaining a data rate
of 10 Gbps using CNT antennas, details of which are
discussed in [4]. A more detailed description of the
physical layer is beyond the scope of this work.

The number of wireless links in our system is
determined by the bandwidth each link needs to support.
As mentioned earlier, each wireless (inter-node) link
needs to sustain a bandwidth of 64 Gbps. Based on the
capacity of the wireless channels (10 Gbps), we need 7
channels per link (providing up to 70 Gbps bandwidth).
Consequently, the maximum number of single-hop
wireless links that we can allow is int(24/7) = 3. Note
that we could increase the number of wireless links with
the same bandwidth if a future technology supports more
than 24 non-overlapping channels.

2) Link Placement
The traffic pattern generated by an application

determines the most appropriate locations for placement
of wireless links. As mentioned earlier, it is not possible
to statically predict the traffic pattern. The sets of
communicating nodes (executing a job) change with
time. Observation of traffic patterns across numerous
application maps has shown that among nodes that are
not co-located (inter-node hop-count > 2), the probability
of pairwise interaction is highest when they are separated
by the maximum hop-count along a dimension, or
diameter. Analytically, this observation can be explained
by the fact that the most efficient of the node allocation
methods described later in Section III-D divides the
network into four quadrants and the need for long-range
links arises when allocated nodes are non-contiguous and
lie in neighboring quadrants, the mean distance between
which is equal to the diameter, as shown in Fig. 3 (b).

Note that we are constrained by only 3 wireless links
due to current technology limitations as explained earlier.
Again, each application map (in general) would require a
different set of specific geometric locations of shortcuts
that would bridge large hop-counts. However, we cannot
reassign wireless shortcuts for every instance of the
application map (each of which takes ~10-7 s to finish
execution, as determined experimentally) as this would
lead to an unacceptably large overhead. Hence, we need
to determine an optimal placement of these links along
torus diameters so that most sets of communicating nodes
across all application maps can gainfully access the
wireless shortcuts. To this end, we “cover” the entire
network by placing them along diameters of the folded

torus with similar angular separation, as shown in Fig. 3
(b).

D. Dynamic Node Allocation
A network node is busy during the execution of a job

by the PE; it is available otherwise. The computation
nodes (PEs) continually send their busy/available status
to the allocation unit, MasterController (see Fig. 1).
When a job requests computation resources,
MasterController allocates the requisite number of
available computation nodes from the system. The nodes
thus allocated form a partition during the course of
function execution and communicate with one another. A
desired feature of a partition is that its constituent nodes
are co-located so as to minimize the average number of
hops spent in message transfers. To this end, an effective
allocation strategy would be the one that ensures co-
locality without incurring a large allocation time
overhead. Simple approaches like breadth-first search do
not fit these criteria. We present the following allocation
methods, which can be classified into wireless-agnostic
and wireless-aware methods. In the former, the location
of wireless links is not taken into account during
allocation, but the links are used during job execution. In
the latter case, the location of wireless links is taken into
account during allocation. Additional care is taken to
ensure that at most one wireless link is allocated to any
given partition.

We also make use of the locality-preserving, space-
filling 2-D Hilbert curve [17] for allocation. A Hilbert
curve is a recursively constructed space-filling curve
where each iteration of the curve contains four copies of
the previous iteration rotated so as to align the entry and
exit points. Considering discrete iterations of the Hilbert
curve, where H(k) represents the kth iteration, H(k+1) is
built using four copies of H(k). 2-D Hilbert curves for k =
1, 2, 3 and 4 are shown in Fig. 3 (a). The partitions
allocated following the 2-D Hilbert curve are denoted A-
type if all nodes belonging to that partition are contiguous
along wired links on the folded torus; else the partition is
B-type.

1) Parallel Best-Fit Allocation Using Multiple
Hilbert Curves

This allocation strategy preferentially looks for a
partition with contiguous nodes to maximize co-locality,
and parallelizes the search in order to increase the
probability of a quick hit. The algorithm is as follows:

1. First, we use four Hilbert curves on a square
folded torus. These four curves are given by three
successive right-angle rotations of a single Hilbert
curve.

785

2. We further divide each of the four Hilbert curves
into four segments, one from each quadrant –
thereby resulting in a total of 16 segments (see
Fig. 3 (b)). MasterController now has 16 heads,
each of which is responsible for scanning a
segment. All 16 heads act in parallel, to cover
different parts of the network simultaneously.

3. Each head now preferentially looks for an A-type
partition in its segment. The first head to find such
a partition returns it to the requesting job and
interrupts all the other scanning heads.

4. In case no A-type partition is found after each
head has finished scanning its segment,
MasterController carries out a serial scan along a
Hilbert curve and allocates available nodes as
they are encountered.

This method of allocation is wireless-agnostic because
we do not make use of the information regarding the
location of wireless shortcuts. We refer to the systems
using this method as simply “2D_parallel” if they do not
use wireless shortcuts, and “2D_parallel + wireless” if
wireless shortcuts are utilized only dynamically during
message transfers (i.e., not during allocation) if that
reduces the overall distance traversed.

2) Wireless-First Allocation Using Hilbert Curve
This is a wireless-aware allocation method in which

MasterController preferentially looks for available node
pairs directly connected by a wireless shortcut. If such a
pair is available, they are allocated to the requesting job.
MasterController then serially scans for the remaining
nodes following a Hilbert curve starting from a terminal
node of the wireless shortcut. Since only nodes belonging
to the same partition communicate with one another, this
method ensures that wireless shortcuts are fully utilized.
In case no wireless shortcut is available at the time of
allocation, nodes are allocated based on a serial scan
along the Hilbert curve. We refer to the systems using
this allocation method as “wireless + Hilbert”.

3) Wireless-First, Column-Major Allocation
This is another wireless-aware allocation method,

which looks for available wireless shortcuts to be
allocated first. The remaining nodes are allocated
following the direction of wireless shortcuts such that the
nodes in the partition are aligned with the shortcut, so as
to maximize the traffic the shortcut carries. As shown in
Fig. 3 (b), the wireless shortcuts are placed along the y-
axis diameters (columns) of the folded torus. Hence, the
node allocation also follows a column-major ordering.
The major benefit of this method is that a wireless
shortcut can potentially carry traffic from partitions that
do not directly include it but are closely aligned with it.

Systems using this allocation method are referred to as
“wireless + column-major”.

4) Randomized Allocation
We also explore the simple randomized allocation

approach, where MasterController maintains a list of
available nodes in a random order, and allocates the
requested number of nodes from the head of the list. This
method of allocation is neither wireless-aware nor does it
attempt to achieve any co-locality among the allocated
nodes. The only advantage of this allocation method is
the simplicity of MasterController logic and fewer cycles
spent in allocation.

E. On-Chip Routing
As mentioned earlier, we adopt wormhole routing to

exchange three-flit messages among nodes of a partition.
Network switches are based on the designs presented in
[18]. Each switch consists of four bidirectional ports (E,
W, N, S) to neighboring switches and one local port
to/from the computational node. Each port has a buffer
depth of two flits and each physical channel is split into 4
virtual channels. We use deadlock-free e-cube routing in
torus [19].

For routing in the presence of wireless shortcuts, we
need information about the wireless links closest to a
source-destination pair, and the bandwidth provided by
such links. This information is known beforehand in the
form of an N-sized routing table available to each router.
Based on this knowledge, the router chooses a path via a
wireless shortcut if that entails fewer hops to transfer a
message between a source-destination pair. The message
follows deadlock-free south-last routing [3] when
involving wireless shortcuts, and e-cube routing when
following wired-only paths between a source and a
destination.

IV. EXPERIMENTAL RESULTS
A. Experimental Setup

The computation core has a datapath width of 64 bits
and provides a number representation accuracy of ~10-15.
Our design could potentially accommodate multiple cores
per PE. For the purpose of experiments, we implemented
each PE with four computation cores. Each core of the
PE has 0.5 MB of register-bank memory associated with
it. We synthesized Verilog RTLs for the PEs, the network
switches and MasterController with 65 nm standard cell
libraries from CMP [14]. We used a clock period of 1 ns
constrained by the critical path occurring in the core
datapath as mentioned in Section III-A. We verified that
our design meets all timing constraints, and evaluated
power consumption. We laid out the wired NoC

786

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pr
ob

ab
ili

ty
 o

f i
nt

er
-n

od
e

in
te

ra
ct

io
n

Inter-node hop count on folded torus (N = 256)

wireless+Hilbert (y-axis diameter links)
wireless+Hilbert (x-axis diameter links)
2D_parallel+wireless
RandomizedAllocationNoWireless
RandomizedAllocation3Wireless
RandomizedAllocation6Wireless
RandomizedAllocation10Wireless
RandomizedAllocation24Wireless

Figure 4. Impact of different node allocation methods and presence of wireless links. For 2D_parallel+wireless and wireless+Hilbert, the average inter-node
hop count is mostly below 4, whereas for a randomized allocation method, the average hop-count remains higher even with 24 wireless shortcuts.

interconnects and determined their physical parameters
(power dissipation, delay) using the extracted parasitics
(resistances and capacitances). We verified that all wired
links could be traversed within one clock cycle. Each
wireless link consists of seven channels of 10 Gbps each,
providing a total link bandwidth of 70 Gbps. For the
wireless links, we considered an energy dissipation of
0.33 pJ/bit as mentioned in [4] to include the energy
consumed in the transceiver circuitry and the antennas,
and used these to evaluate the total energy consumption
of our system.

We experimented with the allocation methods
mentioned in Section III-D. We used system sizes of
N=64 and N=256 in our experiments. We model the
NoC-based multicore platform as a co-processor
connected using a PCIe interface. We modeled a PCI
Express 2.0 interface using Synopsys ™ Designware ™
IP PCI Express 2.0 PHY implemented on 65 nm process
and operating at 5.0 Gbps. We use a 32-lane PCIe 2.0 for
our simulation.

We selected a Maximum Likelihood-based
phylogenetic reconstruction software called RAxML
version 7.0.4 [20], [21] for the purpose of this
experimental study. A detailed profiling of RAxML runs
using the GNU gprof utility reveals that a small set of
functions consume a predominant portion (>85%) of the

runtime. These functions are denoted by f6, f3 and f2
respectively based on the computation resources (number
of computation nodes) they need for execution. Based on
the composition of jobs executing on our system, we bin
the system job loads into two categories – one in which f6
jobs are dominant and the other in which f3 and f2 jobs
occupy up to half of all the nodes. The total number of
jobs concurrently executing on the system is clearly
higher in the latter case. Since each f6 individually
requires the largest number of computation nodes (six),
the probability that one will be allocated a contiguous
partition on the network is relatively low. Therefore, the
above test plan represents the conservative end of the
spectrum for performance evaluation.

B. Traffic Pattern Analysis
Traffic generated as a result of inter-node

communication varies with resource (node) allocation
schemes, and usage of shortcuts. We analyzed the
distribution of probability of interaction of any pair of
nodes and their hop-count separation. Note that hop-
count depends on whether the NoC uses wireless
shortcuts or uses only wireline communication. As
expected, a randomized node allocation method is the
least expensive in terms of number of clock cycles used
by MasterController. Using this method, we
experimentally found that an average of 85.56 cycles are

787

(a) (b)

Figure 5. Computation throughput across different network architectures, system sizes and job loads.

spent in allocating 256 nodes to different tasks (each task
uses more than one node). On the other hand, allocation
methods that preserve co-locality of nodes pertaining to a
task – 2D_parallel+wireless and wireless+Hilbert – use
an average of 141.54 and 170 allocation cycles
respectively. Fig. 4 shows the variation of average
probability of interaction between two nodes vs. the hop-
count separating them. We plot this for each of the
allocation methods described in Section III-D. For
wireless+Hilbert, we have two different placements of
wireless links – along the x-axis and the y-axis diameters.
The additional time spent in allocation using
wireless+Hilbert and 2D_parallel+wireless is justified,
as shown in Fig. 4, because inter-node interaction
probability peaks at shorter hop-counts of 1-2 in
2D_parallel+wireless and wireless+Hilbert, whereas
randomized allocation peaks are at larger hop-counts
between 6 and 8. With addition of 3, 6, 10 or 24 wireless
shortcuts, the peak shifts to the left but much less than
desired. Consequently, we do not use the randomized
allocation method in further experimentation, and use
specialized allocation methods that preserve co-locality,
as described in Section III-D.

C. Computation Throughput
To measure the computation throughput of our

system, we only use each basic operation (log/exp)
performed by a core (see Section III-A) as the unit
(leaving out addition because it is much simpler), and the
number of operations per second as the metric.
Computation throughput is not only affected by the mix
of jobs running on the system at any point of time, but
also by allocation time overhead, usage of wireless
shortcuts, and network architecture. Fig. 5 shows the
computation throughput for the two different job loads

mentioned earlier across different network architectures
and system sizes. 2D_parallel + wireless consistently
provides the best computation throughput across job
loads and system sizes. It is interesting to note that the
best performing architecture has a wireless-agnostic
allocation method. While wireless-aware allocation
methods guarantee that a larger proportion of flits use the
wireless shortcuts (see Fig. 6), this also leads to
congestion over these links. Since we use a static routing
technique that is based only on the comparison of
distances traversed in alternative paths (using shortcuts
vs. not using shortcuts), with a wireless-aware allocation
strategy, we end up attempting to route more flits through
the wireless shortcuts than their bandwidth can sustain
without incurring a latency penalty. In a wireless-
agnostic allocation method such as 2D_parallel +
wireless, we try to maximize the number of A-type
partitions during allocation, leaving to the wireless
shortcuts the job of carrying traffic from B-type
partitions.

Referring to Fig. 5, we also note that the cases
containing a higher proportion of f2 and f3 jobs have a 5-
10% higher computation throughput than the f6 dominant
loading scenario. Note that a larger system size (Fig.
5(b)) provides proportional gain in computation
throughput because the problem size can be appropriately
scaled up. The lowest parallelization efficiency is
obtained for wireless + column-major and this is
attributed to the high allocation-time overheads for larger
system sizes, proving that this allocation method is less
scalable with system size.

D. Proportion of Flits Using Wireless Shortcuts
Fig. 6 shows the percentage of total flits that used the

788

(a) (b)

Figure 6. Proportion of flits using wireless shortcuts and energy consumption across network architectures and system sizes

wireless shortcuts. Note that the number of shortcuts
(three) is much lower than the number of nodes (64, 256)
in the system. As expected, 2D_parallel + wireless,
being a wireless-agnostic allocation method, leads to the
lowest proportion of flits using wireless shortcuts. On the
other hand, wireless + column-major allocation leads to
the highest proportion of flits using wireless shortcuts
across system sizes. This is because it is a wireless-aware
allocation method, in which the partitions that do not get
direct access to wireless shortcuts are aligned with the
shortcuts, providing them with access to the shortcuts
during routing, as explained earlier in Section III-D-3.

E. Energy Consumption
In order to determine which architecture is the most

energy-efficient, we evaluated the energy spent per
operation. This consists of the computation energy
component spent within the computation nodes, and the
network energy component spent in the network
switches, wireless transceivers and wired links. Fig. 6
shows a comparison of the energy spent per operation
across different network architectures and system sizes.
2D_parallel + wireless is the most energy-efficient in
terms of overall energy consumption per operation. A
closer look reveals that for N=64, the network energy
component is indeed lower for the wireless-aware
methods, wireless + Hilbert and wireless + column-
major, due to a larger proportion of their flits using
wireless shortcuts, each of which consumes less energy
than a wired link. However, as mentioned earlier, these
suffer from larger communication latencies, thereby
making computation nodes wait for longer. Since the
contribution of the computation energy component is
greater, the overall energy per operation turns out to be

higher. The network energy advantage is lost as system
size increases (e.g. N=256) because the proportion of flits
using wireless shortcuts becomes low across all
architectures, and the saving in energy due to flits using
wireless shortcuts is more than offset by the additional
energy consumption in the wired links.

V. CONCLUSION
This paper demonstrates a novel use of on-chip

networks and on-chip wireless shortcuts in multicore
systems to achieve computation throughput of over 1011
log/exp operations per second for a class of scientific
applications involving concurrently-executing jobs of
similar nature but variable computational footprint, while
consuming ~0.5 nJ for each such operation. We
demonstrate our performance on a widely-used
biocomputing application, and explore different methods
of allocating these jobs to the computational nodes to
achieve high computation throughput in a single
multicore chip.

ACKNOWLEDGMENT
This work was supported by NSF grant IIS-

0916463.

REFERENCES
[1] Amazon Elastic Compute Cloud (aws.amazon.com/ec2/) Last

accessed 12 Dec. 2012.
[2] S. V. Tota et al, “A Case Study for NoC-Based Homogeneous

MPSoC Architectures,” IEEE Trans. VLSI Sys., vol.17, no.3,
pp.384-388, March 2009

[3] U. Y. Ogras and R. Marculescu, ““It’s a Small World After All”:
NoC Performance Optimization Via Long-Range Link
Insertion,” IEEE Trans. VLSI Sys., vol. 14, no. 7, pp. 693-706,
July 2006.

789

[4] A. Ganguly et al., “Scalable Hybrid Wireless Network-on-Chip
Architectures for Multi-Core Systems,” IEEE Trans. Comput.,
vol. 60, no. 10, pp. 1485-1502, Oct. 2011.

[5] The CIPRES Science Gateway
(www.phylo.org/sub_sections/portal/) Last accessed 12 Dec.
2012.

[6] National Center for Biotenchonology Information
(www.ncbi.nlm.nih.gov/guide/all/#tools_) Last accessed 12 Dec.
2012.

[7] Earth System Modeling Framework
(www.earthsystemmodeling.org/) Last accessed 12 Dec. 2012.

[8] A. Kalyanaraman, “Algorithms for genome assembly” in
Encyclopedia of Parallel Computing, ed. D. Padua , Springer
Science+Business Media LLC, DOI 10.1007/978-0-387-09766-
4, In Press, 2011.

[9] T. Majumder, P. Pande and A. Kalyanaraman, “Accelerating
Maximum Likelihood Based Phylogenetic Kernels Using
Network-on-Chip,” in Proc. 23rd Intl. Sym. Comp. Arch. High
Perf. Comp. (SBAC-PAD), 26-29 Oct. 2011, pp. 17-24.

[10] F. Trivino et al., “Exploring NoC Virtualization Alternatives in
CMPs,” in Proc. 20th Euromicro Intl. Conf. Comp. & Process.
(HW/SW), 2012, pp. 473-482.

[11] A. Bakhoda, J. Kim and T. M. Aamodt, “Throughput-effective
on-chip networks for manycore accelerators,” in Proc. 43rd Ann.
IEEE/ACM Intl. Sym. MicroArch. (MICRO), 2010, pp. 421-432.

[12] C.-L. Chou and R. Marculescu, “Contention-aware application
mapping for network-on-chip communication architectures,” in
Proc. IEEE Intl. Conf. Comput. Des. (ICCD), 2008, pp. 164-
169.

[13] B.-G. Nam, H. Kim, and H.-J. Yoo, “Power and area-efficient
unified computation of vector and elementary functions for
handheld 3-D graphics systems,” IEEE Trans. Comput., vol. 57,
no. 4, pp. 490–504, Apr. 2008.

[14] Circuits Multi-Projects, 46, Avenue Félix Viallet, 38031
GRENOBLE FRANCE (cmp.imag.fr) Last accessed 12 Dec.
2012.

[15] R. Marculescu, U. Y. Ogras, L.-S. Peh, N. E. Jerger, and Y.
Hoskote, “Outstanding research problems in NoC design:
System, microarchitecture, and circuit perspectives,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 28, no. 1,
pp. 3–21, Jan. 2009.

[16] K. Kempa, et al., “Carbon Nanotubes as Optical Antennae,”
Advanced Materials, vol. 19, 2007, pp. 421-426.

[17] D. Hilbert, "Über die stetige Abbildung einer Linie auf ein
Flächenstück", Mathematische Annalen, vol. 38,no. 3, pp. 459-
460, 1891.

[18] P. P. Pande, et al., “Performance evaluation and design trade-
offs for network-on-chip interconnect architectures,” IEEE
Trans. Comput., vol. 54, no. 8, pp. 1025–1040, Aug. 2005.

[19] W. J. Dally, C. L. Seitz, “Deadlock-Free Message Routing in
Multiprocessor Interconnection Networks,” IEEE Trans.
Comput., vol.C-36, no.5, pp.547-553, May 1987.

[20] A. Stamatakis, “RAxML-VI-HPC: Maximum likelihood-based
phylogenetic analyses with thousands of taxa and mixed
models,” Bioinformatics, vol. 22, no. 21, pp. 2688-2690, Nov.
2006.

[21] The Exelixis Lab, Heidelberg Institute for Theoretical Studies,
Heidelberg, Germany (sco.h-its.org/exelixis/software.html) Last
accessed 12 Dec. 2012.

790

