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Figure 1. Use-case model of applications requiring high computation throughput 
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Abstract—Several emerging application domains in 
scientific computing demand high computation 
throughputs to achieve terascale or higher performance. 
Dedicated centers hosting scientific computing tools on a 
few high-end servers could rely on hardware accelerator 
co-processors that contain multiple lightweight custom 
cores interconnected through an on-chip network. While 
network-on-chip (NoC) driven platforms have been 
studied in the context of accelerating individual 
applications, this work studies the efficacy of NoC-based 
platforms to enhance overall computation throughput in 
the presence of several concurrently executing jobs. Use of 
long-range links has been shown to reduce network 
diameter and we use this property in conjunction with 
different resource allocation strategies to deliver high 
throughput. Our experiments using a computational 
biology application suite as a demonstration study show 
that the use of long-range wireless shortcuts coupled with 
the appropriate resource allocation strategy delivers 
computation throughput over 1011 operations per second, 
consuming ~0.5 nJ per operation. 

Keywords-Network-on-chip; long-range links; multicore; 
computation throughput 

I.  INTRODUCTION 
High-performance scientific computing tools in 

emerging application domains such as biocomputing 
demand computation throughputs to scale to terascale and 
beyond. Given the diversity of tools and the need to cater 
to a wide user-base, it has become common practice, 
even within academic settings, to have a dedicated center 
which hosts a whole range of scientific computing tools 
on a few high-end data servers. The servers can be 
expected to service requests from a variety of 
applications, each with differing resource requirements, 
and simultaneously support them while delivering high 
throughput. This server could either be based on a cluster 
of general purpose microprocessors or make use of a co-
processor consisting of a many-core chip where the cores 
are designed to accelerate targeted operations and are 
interconnected with an on-chip network. A similar setup 
is also becoming common practice, albeit on a larger 
scale, in cloud solution providers (e.g., [1]).  

Various studies have shown the efficacy of Network-
on-Chip (NoC) driven platforms to accelerate specific 
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Figure 2. Datapath architecture of each computation core of a processing element (PE) 

target applications (e.g., [2]). Although NoC-based 
platforms have been studied in the context of application 
throughput, these studies [10][11][12] focus mostly on 
the network layer, routing and arbitration to improve 
message throughput. Our focus, in this paper, is on 
enhancing system-level computation throughput of 
scientific applications consisting of multiple concurrent 
jobs with varying footprints. We propose NoC-based 
platforms to achieve our objective through designing 
custom processing cores for efficient arithmetic 
computation, novel task-allocations schemes, and use of 
on-chip long-range wireless links.  

The proposed platforms assume the following use-
case model (see Fig. 1): A CPU runs the parent process 
and communicates via an interface (e.g. PCIe) to a 
multicore system-on-chip that acts as a hardware 
accelerator for specific computation-heavy kernels. There 
is a queue of jobs offloaded by the CPU to the hardware 
accelerator and an allocation unit (MasterController) 
assigns the requested computational resources from the 
hardware accelerator to the job at the head of the queue. 
Once some computation resources are assigned to a job, 
they stay busy till the execution of that particular job 

concludes, and the result is sent back to the CPU through 
a similar interface (e.g. PCIe). Each computational 
resource is a lightweight custom core embedded in a 
NoC. 

The choice of the on-chip network architecture is an 
important consideration in the design of a NoC-driven 
platform targeted at enhancing computation throughput. 
Introduction of long-range links in regular architectures 
like mesh reduces the overall network diameter and 
improves inter-core communication latency [3]. It has 
been shown that the use of on-chip wireless links to 
implement these shortcuts leads to significant savings in 
latency and energy, even considering the overhead of 
wireless transceivers [4]. Our contribution here is the 
design of a NoC-based platform with long-range on-chip 
wireless shortcuts to enhance the computation throughput 
of scientific applications with the above-mentioned use-
case model. 

II. RELATED WORK 
The proposed use-case model is relevant for a variety 

of scientific applications, for example, the use of servers 
that host application programs to implement standard 
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functions in phylogenetic inference [5], gene sequence 
alignment [6], climate modeling and weather prediction 
[7], etc. For instance, a typical genome assembly 
algorithm farms out billions of pairwise sequence 
alignment computations, each of which is an independent 
task that aligns strings of small lengths (e.g., 100-500 
base pairs) and can use a small number of cores (e.g., 8-
16) [8]. As another example, consider the problem of 
computing phylogenetic inference using maximum 
likelihood (ML) [9], where one typically needs to carry 
out billions of independent tree evaluations, each of 
which internally performs a small number of floating 
point calculations using a few cores. There is a 
considerable body of work in partitioning NoCs for 
different applications, e.g. [10]. Similarly, there has been 
work on routing strategies in NoCs that minimize 
message-level contention between applications, e.g. [11], 
[12].  

NoCs have been shown to perform better by insertion 
of long range wired links following principles of small-
world graphs [3]. Despite significant performance gains, 
the above scheme implements the long-range links with 
conventional wires. It has been already shown that 
beyond a certain length, wireless links are more energy 
efficient than conventional metal wires. Hence, the 
performance improvement by using long-range wireless 
links will be more than that using wired links. Designs of 
small-world based hierarchical wireless NoC 
architectures introduced and elaborated in [4] 
demonstrate this. Our approach leverages the benefits of 
using long-range wireless shortcuts on a NoC to achieve 
high-throughput computation for applications belonging 
to the use-case model considered in this work.  

III. DESIGN OF NOC WITH LONG-RANGE LINKS 
We present the design of a multicore system-on-chip, 

where the cores consist of lightweight custom-designed 
processing elements (PEs), and the on-chip network is a 
folded torus (network choice explained later). We insert 
long-range shortcuts using on-chip wireless links on top 
of the folded torus, and explore different strategies to 
allocate the computational resources of the system to the 
application. The details of the system design, wireless 
shortcut placement, resource allocation and routing are 
described in this section. 

A. Processing Element (PE) 
Scientific applications need to carry out a wide range 

of operations (e.g., log, exp, multiplication, integer 
comparison, trigonometric functions, etc.). For the sake 
of design and evaluation in this paper and without loss of 
generality, we built a PE that performs only a subset of 

these calculations (using phylogenetic inference as a 
demonstration study). The system design methodology 
remains the same if the PE design is modified to 
implement other functions. We designed a homogeneous 
multicore system, where a PE computes vector products 
on floating point numbers and elementary functions like 
logarithms and exponentials. A PE is one computation 
node and communicates with other PEs (computation 
nodes) through the respective network switches and the 
on-chip network. The number of such nodes represents 
the system size, N, of the multicore system. 

We use Fixed-Point Hybrid Number System (FXP-
HNS) [13], an efficient and accurate number system to 
represent floating point numbers. We use 64-bits for 
number representation; as such our core datapath is 64-bit 
wide. The architecture of the datapath of a computation 
core within each PE is shown in Fig. 2. The datapath 
consists of six pipeline stages, with the functions of each 
stage indicated in the figure. We consider logarithm and 
exponential as basic operations that the PE is designed to 
accelerate, while vector product is a compound operation 
involving the basic operations. Logarithm and 
exponential operations are based on piecewise-linear 
table-based approximations described in [13], and 
implemented with logic circuits. In addition, each PE has 
2 MB memory in the form of register banks to store 
inputs and computation outputs. We used Verilog HDL 
to design the PE along with a wrapper for instruction 
decoding, data fetching and data write-back. We 
synthesized the design with 65 nm standard cell libraries 
from CMP [14]. We determined the clock frequency of 1 
GHz based on the critical path (Stage 2) shown in Fig. 2. 

B. Network Architecture 
Our target is the class of applications that spawn a 

stream of independent jobs (constituent functions) that 
individually require variable amounts of computation 
resources. Communication is necessitated only among 
nodes catering to a single job during its execution. The 
location of these nodes on the network can be arbitrary, 
although preserving locality of allocation becomes 
important in the interest of keeping the communication 
overhead low. Given this setup, distributed network 
architectures such as a Folded Torus are well suited to 
cater to such traffic patterns. From the VLSI 
implementation perspective, a torus is a scalable network 
architecture whose regularity provides for easier timing 
closure and reduces dependence on interconnect 
scalability [15]. All inter-node links in the folded torus 
are one-hop links with respect to the 1 GHz clock used. 
As mentioned above, this clock frequency requirement 
arises from the critical path constraint of the PE. Since 
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Figure 3. (a) 2-D Hilbert curves with k = 1 (2x2), 2 (4x4), 3 (8x8) and 4 (16x16). For every value of k, there are four Hilbert curves, each rotated by 90 degrees 
with respect to the next. (b) Each quadrant of a Hilbert curve embedded on the folded torus NoC is shown in a different color. Dynamically allocated partitions 
can consist of contiguous nodes and non-contiguous nodes. In the latter case, the wireless links act as shortcuts. On an average, the nodes in a non-contiguous 
partition are separated by a diameter, which justifies wireless link placement along diameters. 

our datapath is 64-bit wide, and messages exchanged 
between nodes contain 64-bit FXP-HNS numbers along 
with control and routing information, we split each inter-
node message into three 64-bit flits – header, body and 
tail. As a result, each inter-node link needs a minimum 
bandwidth of 64 Gbps. 

C. Long-Range On-Chip Wireless Links 
From the perspective of the application, we try to 

minimize the average distances among nodes catering to 
one job. However, as we explain further in Section III-D, 
the nodes allocated to a job could turn out to be 
physically separated on the network, leading to a large 
communication overhead. From the network architecture 
point of view, bridging these gaps is possible through the 
use of long-range point-to-point shortcuts. 

Introduction of shortcuts on regular architectures have 
been shown to provide significant improvements in 
latency and network throughput for different kinds of 

applications [3]. Long wired shortcuts however cannot 
guarantee one-hop transmission and consume significant 
amounts of energy. Use of on-chip wireless shortcuts 
overcomes these drawbacks [4]. 

1) Physical Layer 
Suitable on-chip antennas are necessary to establish 

the wireless links. It has been shown that wireless NoCs 
designed using carbon nanotube (CNT) antennas can 
outperform conventional wireline counterparts 
significantly [4]. Antenna characteristics of CNTs in the 
THz frequency range have been investigated both 
theoretically and experimentally [16]. Such nanotube 
antennas are good candidates for establishing on-chip 
wireless communication links and are henceforth 
considered in this work. Using CNT antennas, different 
frequency channels can be assigned to pairs of 
communicating source and destination nodes, thus 
creating a form of frequency division multiplexing. This 
provides dedicated and non-overlapping channels to a 
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source-destination pair. This is possible by using CNTs 
of different lengths, which are multiples of the 
wavelengths corresponding to the respective carrier 
frequencies. It is possible to create 24 non-overlapping 
wireless channels, each capable of sustaining a data rate 
of 10 Gbps using CNT antennas, details of which are 
discussed in [4]. A more detailed description of the 
physical layer is beyond the scope of this work.  

The number of wireless links in our system is 
determined by the bandwidth each link needs to support. 
As mentioned earlier, each wireless (inter-node) link 
needs to sustain a bandwidth of 64 Gbps. Based on the 
capacity of the wireless channels (10 Gbps), we need 7 
channels per link (providing up to 70 Gbps bandwidth). 
Consequently, the maximum number of single-hop 
wireless links that we can allow is int(24/7) = 3. Note 
that we could increase the number of wireless links with 
the same bandwidth if a future technology supports more 
than 24 non-overlapping channels. 

2) Link Placement 
The traffic pattern generated by an application 

determines the most appropriate locations for placement 
of wireless links. As mentioned earlier, it is not possible 
to statically predict the traffic pattern. The sets of 
communicating nodes (executing a job) change with 
time. Observation of traffic patterns across numerous 
application maps has shown that among nodes that are 
not co-located (inter-node hop-count > 2), the probability 
of pairwise interaction is highest when they are separated 
by the maximum hop-count along a dimension, or 
diameter. Analytically, this observation can be explained 
by the fact that the most efficient of the node allocation 
methods described later in Section III-D divides the 
network into four quadrants and the need for long-range 
links arises when allocated nodes are non-contiguous and 
lie in neighboring quadrants, the mean distance between 
which is equal to the diameter, as shown in Fig. 3 (b).  

Note that we are constrained by only 3 wireless links 
due to current technology limitations as explained earlier. 
Again, each application map (in general) would require a 
different set of specific geometric locations of shortcuts 
that would bridge large hop-counts. However, we cannot 
reassign wireless shortcuts for every instance of the 
application map (each of which takes ~10-7 s to finish 
execution, as determined experimentally) as this would 
lead to an unacceptably large overhead. Hence, we need 
to determine an optimal placement of these links along 
torus diameters so that most sets of communicating nodes 
across all application maps can gainfully access the 
wireless shortcuts. To this end, we “cover” the entire 
network by placing them along diameters of the folded 

torus with similar angular separation, as shown in Fig. 3 
(b).  

D. Dynamic Node Allocation 
A network node is busy during the execution of a job 

by the PE; it is available otherwise. The computation 
nodes (PEs) continually send their busy/available status 
to the allocation unit, MasterController (see Fig. 1). 
When a job requests computation resources, 
MasterController allocates the requisite number of 
available computation nodes from the system. The nodes 
thus allocated form a partition during the course of 
function execution and communicate with one another. A 
desired feature of a partition is that its constituent nodes 
are co-located so as to minimize the average number of 
hops spent in message transfers. To this end, an effective 
allocation strategy would be the one that ensures co-
locality without incurring a large allocation time 
overhead. Simple approaches like breadth-first search do 
not fit these criteria. We present the following allocation 
methods, which can be classified into wireless-agnostic 
and wireless-aware methods. In the former, the location 
of wireless links is not taken into account during 
allocation, but the links are used during job execution. In 
the latter case, the location of wireless links is taken into 
account during allocation. Additional care is taken to 
ensure that at most one wireless link is allocated to any 
given partition. 

We also make use of the locality-preserving, space-
filling 2-D Hilbert curve [17] for allocation. A Hilbert 
curve is a recursively constructed space-filling curve 
where each iteration of the curve contains four copies of 
the previous iteration rotated so as to align the entry and 
exit points. Considering discrete iterations of the Hilbert 
curve, where H(k) represents the kth iteration, H(k+1) is 
built using four copies of H(k). 2-D Hilbert curves for k = 
1, 2, 3 and 4 are shown in Fig. 3 (a).  The partitions 
allocated following the 2-D Hilbert curve are denoted A-
type if all nodes belonging to that partition are contiguous 
along wired links on the folded torus; else the partition is 
B-type. 

1) Parallel Best-Fit Allocation Using Multiple 
Hilbert Curves 

This allocation strategy preferentially looks for a 
partition with contiguous nodes to maximize co-locality, 
and parallelizes the search in order to increase the 
probability of a quick hit. The algorithm is as follows: 

1. First, we use four Hilbert curves on a square 
folded torus. These four curves are given by three 
successive right-angle rotations of a single Hilbert 
curve.  
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2. We further divide each of the four Hilbert curves 
into four segments, one from each quadrant – 
thereby resulting in a total of 16 segments (see 
Fig. 3 (b)). MasterController now has 16 heads, 
each of which is responsible for scanning a 
segment. All 16 heads act in parallel, to cover 
different parts of the network simultaneously. 

3. Each head now preferentially looks for an A-type 
partition in its segment. The first head to find such 
a partition returns it to the requesting job and 
interrupts all the other scanning heads. 

4. In case no A-type partition is found after each 
head has finished scanning its segment, 
MasterController carries out a serial scan along a 
Hilbert curve and allocates available nodes as 
they are encountered. 

This method of allocation is wireless-agnostic because 
we do not make use of the information regarding the 
location of wireless shortcuts. We refer to the systems 
using this method as simply “2D_parallel” if they do not 
use wireless shortcuts, and “2D_parallel + wireless” if 
wireless shortcuts are utilized only dynamically during 
message transfers (i.e., not during allocation) if that 
reduces the overall distance traversed. 

2) Wireless-First Allocation Using Hilbert Curve 
This is a wireless-aware allocation method in which 

MasterController preferentially looks for available node 
pairs directly connected by a wireless shortcut. If such a 
pair is available, they are allocated to the requesting job. 
MasterController then serially scans for the remaining 
nodes following a Hilbert curve starting from a terminal 
node of the wireless shortcut. Since only nodes belonging 
to the same partition communicate with one another, this 
method ensures that wireless shortcuts are fully utilized. 
In case no wireless shortcut is available at the time of 
allocation, nodes are allocated based on a serial scan 
along the Hilbert curve. We refer to the systems using 
this allocation method as “wireless + Hilbert”. 

3) Wireless-First, Column-Major Allocation 
This is another wireless-aware allocation method, 

which looks for available wireless shortcuts to be 
allocated first. The remaining nodes are allocated 
following the direction of wireless shortcuts such that the 
nodes in the partition are aligned with the shortcut, so as 
to maximize the traffic the shortcut carries. As shown in 
Fig. 3 (b), the wireless shortcuts are placed along the y-
axis diameters (columns) of the folded torus. Hence, the 
node allocation also follows a column-major ordering. 
The major benefit of this method is that a wireless 
shortcut can potentially carry traffic from partitions that 
do not directly include it but are closely aligned with it. 

Systems using this allocation method are referred to as 
“wireless + column-major”. 

4) Randomized Allocation 
We also explore the simple randomized allocation 

approach, where MasterController maintains a list of 
available nodes in a random order, and allocates the 
requested number of nodes from the head of the list. This 
method of allocation is neither wireless-aware nor does it 
attempt to achieve any co-locality among the allocated 
nodes. The only advantage of this allocation method is 
the simplicity of MasterController logic and fewer cycles 
spent in allocation. 

E. On-Chip Routing 
As mentioned earlier, we adopt wormhole routing to 

exchange three-flit messages among nodes of a partition. 
Network switches are based on the designs presented in 
[18]. Each switch consists of four bidirectional ports (E, 
W, N, S) to neighboring switches and one local port 
to/from the computational node. Each port has a buffer 
depth of two flits and each physical channel is split into 4 
virtual channels. We use deadlock-free e-cube routing in 
torus [19].  

For routing in the presence of wireless shortcuts, we 
need information about the wireless links closest to a 
source-destination pair, and the bandwidth provided by 
such links. This information is known beforehand in the 
form of an N-sized routing table available to each router. 
Based on this knowledge, the router chooses a path via a 
wireless shortcut if that entails fewer hops to transfer a 
message between a source-destination pair. The message 
follows deadlock-free south-last routing [3] when 
involving wireless shortcuts, and e-cube routing when 
following wired-only paths between a source and a 
destination. 

IV. EXPERIMENTAL RESULTS 
A. Experimental Setup 

The computation core has a datapath width of 64 bits 
and provides a number representation accuracy of ~10-15. 
Our design could potentially accommodate multiple cores 
per PE. For the purpose of experiments, we implemented 
each PE with four computation cores. Each core of the 
PE has 0.5 MB of register-bank memory associated with 
it. We synthesized Verilog RTLs for the PEs, the network 
switches and MasterController with 65 nm standard cell 
libraries from CMP [14]. We used a clock period of 1 ns 
constrained by the critical path occurring in the core 
datapath as mentioned in Section III-A. We verified that 
our design meets all timing constraints, and evaluated 
power consumption. We laid out the wired NoC 
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Figure 4. Impact of different node allocation methods and presence of wireless links.  For 2D_parallel+wireless and wireless+Hilbert, the average inter-node 
hop count is mostly below 4, whereas for a randomized allocation method, the average hop-count remains higher even with 24 wireless shortcuts. 

interconnects and determined their physical parameters 
(power dissipation, delay) using the extracted parasitics 
(resistances and capacitances). We verified that all wired 
links could be traversed within one clock cycle. Each 
wireless link consists of seven channels of 10 Gbps each, 
providing a total link bandwidth of 70 Gbps. For the 
wireless links, we considered an energy dissipation of 
0.33 pJ/bit as mentioned in [4] to include the energy 
consumed in the transceiver circuitry and the antennas, 
and used these to evaluate the total energy consumption 
of our system. 

We experimented with the allocation methods 
mentioned in Section III-D. We used system sizes of 
N=64 and N=256 in our experiments. We model the 
NoC-based multicore platform as a co-processor 
connected using a PCIe interface. We modeled a PCI 
Express 2.0 interface using Synopsys ™ Designware ™ 
IP PCI Express 2.0 PHY implemented on 65 nm process 
and operating at 5.0 Gbps. We use a 32-lane PCIe 2.0 for 
our simulation. 

We selected a Maximum Likelihood-based 
phylogenetic reconstruction software called RAxML 
version 7.0.4 [20], [21] for the purpose of this 
experimental study. A detailed profiling of RAxML runs 
using the GNU gprof utility reveals that a small set of 
functions consume a predominant portion (>85%) of the 

runtime. These functions are denoted by f6, f3 and f2 
respectively based on the computation resources (number 
of computation nodes) they need for execution. Based on 
the composition of jobs executing on our system, we bin 
the system job loads into two categories – one in which f6 
jobs are dominant and the other in which f3 and f2 jobs 
occupy up to half of all the nodes. The total number of 
jobs concurrently executing on the system is clearly 
higher in the latter case. Since each f6 individually 
requires the largest number of computation nodes (six), 
the probability that one will be allocated a contiguous 
partition on the network is relatively low. Therefore, the 
above test plan represents the conservative end of the 
spectrum for performance evaluation. 

B. Traffic Pattern Analysis 
Traffic generated as a result of inter-node 

communication varies with resource (node) allocation 
schemes, and usage of shortcuts. We analyzed the 
distribution of probability of interaction of any pair of 
nodes and their hop-count separation. Note that hop-
count depends on whether the NoC uses wireless 
shortcuts or uses only wireline communication. As 
expected, a randomized node allocation method is the 
least expensive in terms of number of clock cycles used 
by MasterController. Using this method, we 
experimentally found that an average of 85.56 cycles are 
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Figure 5. Computation throughput across different network architectures, system sizes and job loads. 

spent in allocating 256 nodes to different tasks (each task 
uses more than one node). On the other hand, allocation 
methods that preserve co-locality of nodes pertaining to a 
task – 2D_parallel+wireless and wireless+Hilbert – use 
an average of 141.54 and 170 allocation cycles 
respectively. Fig. 4 shows the variation of average 
probability of interaction between two nodes vs. the hop-
count separating them. We plot this for each of the 
allocation methods described in Section III-D. For 
wireless+Hilbert, we have two different placements of 
wireless links – along the x-axis and the y-axis diameters. 
The additional time spent in allocation using 
wireless+Hilbert and 2D_parallel+wireless is justified, 
as shown in Fig. 4, because inter-node interaction 
probability peaks at shorter hop-counts of 1-2 in 
2D_parallel+wireless and wireless+Hilbert, whereas 
randomized allocation peaks are at larger hop-counts 
between 6 and 8. With addition of 3, 6, 10 or 24 wireless 
shortcuts, the peak shifts to the left but much less than 
desired. Consequently, we do not use the randomized 
allocation method in further experimentation, and use 
specialized allocation methods that preserve co-locality, 
as described in Section III-D.  

C. Computation Throughput 
To measure the computation throughput of our 

system, we only use each basic operation (log/exp) 
performed by a core (see Section III-A) as the unit 
(leaving out addition because it is much simpler), and the 
number of operations per second as the metric. 
Computation throughput is not only affected by the mix 
of jobs running on the system at any point of time, but 
also by allocation time overhead, usage of wireless 
shortcuts, and network architecture. Fig. 5 shows the 
computation throughput for the two different job loads 

mentioned earlier across different network architectures 
and system sizes. 2D_parallel + wireless consistently 
provides the best computation throughput across job 
loads and system sizes. It is interesting to note that the 
best performing architecture has a wireless-agnostic 
allocation method. While wireless-aware allocation 
methods guarantee that a larger proportion of flits use the 
wireless shortcuts (see Fig. 6), this also leads to 
congestion over these links. Since we use a static routing 
technique that is based only on the comparison of 
distances traversed in alternative paths (using shortcuts 
vs. not using shortcuts), with a wireless-aware allocation 
strategy, we end up attempting to route more flits through 
the wireless shortcuts than their bandwidth can sustain 
without incurring a latency penalty. In a wireless-
agnostic allocation method such as 2D_parallel + 
wireless, we try to maximize the number of A-type 
partitions during allocation, leaving to the wireless 
shortcuts the job of carrying traffic from B-type 
partitions. 

Referring to Fig. 5, we also note that the cases 
containing a higher proportion of f2 and f3 jobs have a 5-
10% higher computation throughput than the f6 dominant 
loading scenario. Note that a larger system size (Fig. 
5(b)) provides proportional gain in computation 
throughput because the problem size can be appropriately 
scaled up. The lowest parallelization efficiency is 
obtained for wireless + column-major and this is 
attributed to the high allocation-time overheads for larger 
system sizes, proving that this allocation method is less 
scalable with system size. 

D. Proportion of Flits Using Wireless Shortcuts 
Fig. 6 shows the percentage of total flits that used the 
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Figure 6. Proportion of flits using wireless shortcuts and energy consumption across network architectures and system sizes 

wireless shortcuts. Note that the number of shortcuts 
(three) is much lower than the number of nodes (64, 256) 
in the system. As expected, 2D_parallel + wireless, 
being a wireless-agnostic allocation method, leads to the 
lowest proportion of flits using wireless shortcuts. On the 
other hand, wireless + column-major allocation leads to 
the highest proportion of flits using wireless shortcuts 
across system sizes. This is because it is a wireless-aware 
allocation method, in which the partitions that do not get 
direct access to wireless shortcuts are aligned with the 
shortcuts, providing them with access to the shortcuts 
during routing, as explained earlier in Section III-D-3. 

E. Energy Consumption 
In order to determine which architecture is the most 

energy-efficient, we evaluated the energy spent per 
operation. This consists of the computation energy 
component spent within the computation nodes, and the 
network energy component spent in the network 
switches, wireless transceivers and wired links. Fig. 6 
shows a comparison of the energy spent per operation 
across different network architectures and system sizes. 
2D_parallel + wireless is the most energy-efficient in 
terms of overall energy consumption per operation. A 
closer look reveals that for N=64, the network energy 
component is indeed lower for the wireless-aware 
methods, wireless + Hilbert and wireless + column-
major, due to a larger proportion of their flits using 
wireless shortcuts, each of which consumes less energy 
than a wired link. However, as mentioned earlier, these 
suffer from larger communication latencies, thereby 
making computation nodes wait for longer. Since the 
contribution of the computation energy component is 
greater, the overall energy per operation turns out to be 

higher. The network energy advantage is lost as system 
size increases (e.g. N=256) because the proportion of flits 
using wireless shortcuts becomes low across all 
architectures, and the saving in energy due to flits using 
wireless shortcuts is more than offset by the additional 
energy consumption in the wired links. 

V. CONCLUSION 
This paper demonstrates a novel use of on-chip 

networks and on-chip wireless shortcuts in multicore 
systems to achieve computation throughput of over 1011 
log/exp operations per second for a class of scientific 
applications involving concurrently-executing jobs of 
similar nature but variable computational footprint, while 
consuming ~0.5 nJ for each such operation. We 
demonstrate our performance on a widely-used 
biocomputing application, and explore different methods 
of allocating these jobs to the computational nodes to 
achieve high computation throughput in a single 
multicore chip. 
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