
Hardware Accelerators in
Computational Biology:
Application, Potential,
and Challenges
Turbo Majumder

Indian Institute of Technology Delhi
Partha Pratim Pande and Ananth Kalyanaraman

Washington State University

h COMPUTING RESEARCH HAS become a vital cog

in the machinery required to drive biological

discovery. Unearthing and analyzing large amounts

of biological data involve exploration of a variety of

computational paradigms, collectively referred to as

computational biology. Most of the data processing

for computational biology applications is currently

done in software, which results in a high turnaround

time. For example, aligning even hundreds of

genome sequences using progressive alignment

tools such as ClustalW requires several hours on

state-of-the-art workstations. With the increased

throughput demands and popularity of such com-

putational biology tools, reducing time-to-solution

during computational analysis has become a signif-

icant challenge in the path to scientific discovery.

These aspects collectively position computational

biology as a domain that has the

potential to immensely benefit from

the latest advances in the computing

and architecture community. The pro-

ducts of research in this field, function-

ing as hardware accelerators, act as

technological enablers in order to fast-

track the process of scientific discovery.

A wide range of such hardware

accelerator platforms has been pro-

posed in recent work. Among these, FPGA-based

reconfigurable hardware platforms, graphics proces-

sing unit (GPU), cell broadband engine (CBE), and

multicore processors are notable. Each of these

platforms has advantages and limitations. The

principal advantages of using FPGA-, GPU-, or CBE-

based systems are fast prototyping and ease of

implementation. These systems use an existing

hardware platform to map algorithms and their

software implementations. On the other hand, the

massive scale of fine-grain parallelism inherent in

several computational biology applications can be

exploited efficiently in a multicore platform by

integrating a large number of processing elements

on a single chip. However, rapid prototyping with

suchmulticore processors is still not mature. Figure 1

summarizes the current state of the art in both the

architecture space and the computational biology

application space. The rest of the paper explores

existing solutions and open challenges over a wide

range of computational biology applications depicted

in Figure 1, viz., sequence analysis, phylogenetics,

Editor’s notes:
Computational biology is increasingly relying on hardware accelerators to
allow data processing to keep up with the increasing amount of data
generated from biology applications. This paper gives an introduction to the
area of hardware accelerators for computational biology and a comparative
study of a set of biological applications.

VJan Madsen, Technical University of Denmark

IEEE Design & Test2168-2356/14 B 2013 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC8

Hardware Acceleration in Computational Biology

Digital Object Identifier 10.1109/MDAT.2013.2290118

Date of publication: 07 November 2013; date of current version:

20 February 2014.

molecular-simulation-based methods, biological net-

work analysis, structural biology, and others. We

conclude by setting out broad research directions.

Sequence analysis
Sequence homology detection (or sequence

alignment) is a pervasive compute operation carried

out in almost all bioinformatics sequence analysis

(SA) applications. With exponentially growing

sequence databases, large-scale computing of this

operation is becoming prohibitive. The operation

can be carried out in three modes: as one-to-one,

one-to-many, or many-to-many comparisons. The

one-to-one alignment operation, called the pairwise

sequence alignment (PSA), is used to compute an

optimal edit distance between two sequences, after

taking into account evolutionary manifestations of

mutation such as substitution, insertion, and dele-

tion. In the one-to-many comparison model, a query

sequence is searched against a database of se-

quences. In the many-to-many comparison model,

multiple sequences are analyzed collectively for the

purpose of identifying subgroups of sequences that

share a common characteristic such as homology.

This operation is often implemented using an all-

against-all sequence comparison strategy. Multiple

sequence alignment (MSA) is an example of this

class. In all of the above, a sequence can be either a

DNA or a protein, and the bulk of the computations

involve integer arithmetic.

Algorithmically, computing an optimal PSA be-

tween two sequences of lengths m and n, respec-

tively, can be achieved using dynamic programming

(DP) in OðmnÞ time and Oðmþ nÞ space [1]. The

algorithm computes an ðmþ 1Þ � ðnþ 1Þ table in

two passes. In the forward pass, the table is com-

puted from cell ð0; 0Þ to cell ðm; nÞ, wherein a

recurrence is applied at every cell ði; jÞ based on the

values at cells ði � 1; jÞ, ði � 1; j � 1Þ, and ði; j � 1Þ.
The main challenge in the backward pass is to be

able to retrace without storing the DP table that was

computed during the forward pass.

Figure 1. Illustration of a representative subset of biocomputing applications alongside
state-of-the-art hardware accelerator platforms considered in this tutorial.

January/February 2014 9

Hardware accelerators using FPGA have been

developed for implementing ClustalW [2], which is a

popular MSAprogram. Since the underlying problem is

NP-hard, ClustalW approximates a solution in polyno-

mial time. A K -sequence MSA problem involves

computing KC2 PSA comparisons. This all-against-all

sequence comparison is the dominant phase within

ClustalW, taking more than 90% of the total time. The

FPGA implementation in [2] uses Xilinx Virtex II

XC2V6000, platform accommodating 92 processing ele-

ments (PEs) with a maximum clock speed of 34 MHz.

This gives a speedup of around 10� for the overall MSA

and about 50� for PSA. It achieves a sustained

performance (including all data transfer) of�1 GCUPS
(billion cell updates per second in the DP matrix).

The sequence search tool BLAST proceeds by

first identifying a subset of database sequences that

have short matching segments with the query

sequence and then performing a more thorough

evaluation of the query against each short-listed

candidate. The filtering step is implemented using a

lookup table data structure, and a subsequent

evaluation as a unit PSA. An FPGA implementation

of BLAST [3] on Annapolis Microsystems WildstarII-

Pro board with two Xilinx Virtex-II FPGAs evaluates

two algorithms: TREE BLAST and SERVER BLAST.

TREE BLAST is based on iterative merging using a

tree structure. The FPGA is initialized with the query

sequence and the DP (scoring) matrix. The indexing

of the scoring arrays is done using the block RAMs

(BRAMs). The database is streamed from the

memory through the FPGA. The main component

of SERVER BLAST is a systolic array that holds a query

string while the database flows through it. This is

implemented using a FIFO buffer in FPGA. The

performance reported was comparable to that of a

dedicated server at the National Center for Biotech-

nology Information, U.S. National Library of Medicine,

Bethesda, MD, USA. Sachdeva et al. [4] demonstrated

acceleration of BLAST on CBE. The system consisted

of a 64-bit power processor element (PPE) and eight

synergistic processing elements (SPEs). They

achieved a speedup of 2� compared to that

implemented on a single power PC processor. Liu et

al. [5] demonstrate about 16� speedup over an MSA

tool, OSEARCH, using nVidia GeForce 7800 GTX GPU.

They map the algorithm onto GPU by exploiting the

fact that all elements in the same antidiagonal of the

DP matrix can be computed independent of each

other in parallel. They have reformulated the Smith–

Waterman algorithm [1] in terms of computer

graphics primitives, in an attempt to exploit the GPU

platform for optimum performance. An enhanced

version of the Smith–Waterman protein database

search algorithm, CUDASW++ 3.0, is presented in [6],

which provides up to 186 GCUPS performance on a

dual-GPU GeForce GTX 690 graphics card.

Benkrid et al. [7] present a detailed design and

implementation of a generic and highly parameter-

ized FPGA skeleton for PSA using a high-level

language Handel-C, which is independent of the

underlying FPGA platform hardware architecture.

They evaluated their platform for different algorithms

(e.g., [1]) and reported peak performance of over 10

GCUPS, which represented two orders of magnitude

improvement over software. Taking into account host-

to-FPGA communication overheads on an Alpha Data

XP FPGA Mezzanine PCI-board, which has an

XC2VP100-6 Virtex-II Pro FPGA, they implemented a

135-PE system that shrank time-to-solution by 62�
relative to software. An effective way to deliver even

higher values of speedup is to integrate a large

number of PEs using a network-on-chip (NoC). Using

this approach for a hardware accelerator for PSA,

Sarkar et al. [8] report significant improvement over

other hardware accelerators owing to the custom-

made architecture and interconnection topology.

Even with 64 PEs in such a system, they achieved

two to three orders of magnitude better performance

compared to other existing hardware accelerators.

NoCs also provide the freedom to design and

experiment with different network topologies and

their suitability to different algorithmic settings.

Another related application is read mapping,

which involves mapping shorter DNA fragments

through alignment against a known reference

genome. This is necessitated by the fact that

sequencing tools take small fragments of whole

genomes as inputs. The problem is compounded by

presence of genomic repeats, nucleotide variations,

and sequencing errors. So far, read mapping has

been the focus of hardware acceleration initiatives

that are mostly based on FPGA. For example, in [9],

Olson et al. propose an FPGA-based solution that

demonstrates 31� speedup over the Bowtie soft-

ware tool and aligns a higher percentage (91%) of

short reads compared to software (80%) while

consuming less than 5% of the energy consumed

by the general-purpose microprocessor running the

software.

IEEE Design & Test10

Hardware Acceleration in Computational Biology

In a related problem, where the purpose is to

characterize the variations within tandem repeats in

large genomes, acceleration by over three orders of

magnitude has been achieved by building a systolic

array on an FPGA platform in [10]. Another

application of the FPGA platform has been on

accelerating sequence-to-profile hidden Markov

model (HMM) matching [11]. Table 1 summarizes

the performance of hardware accelerators for

different sequence analysis applications.

As the discussion above reveals, we have several

flavors of problems within the sequence analysis

domain. At the basic level is the comparison of two

sequences, and this task maps well to a wide range

of accelerating platforms. More complex functions

such as genome assembly and read mapping could

also benefit from hardware acceleration as they

generally entail computation of a large volume

(oftentimes, billions) of individual pairwise compar-

isons. As Table 1 shows, while accelerators based on

FPGAs and GPUs have been delivering decent

speedup, NoC-based multicores perform orders of

magnitude better by being able to integrate a large

number of PEs. This has held promise since the

emergence of such massively parallel coprocessors

as the 60-core Intel Xeon Phi.

Phylogenetics
While SA represents a data-intensive application

class in computational biology, phylogenetics repre-

sents a data-driven compute-intensive class of

applications. In phylogenetics research, the primary

goal is to reconstruct evolutionary trees that best

describe the evo-

lutionary rela-

tionship among

different species,

by observing and

character iz ing

variations at the

DNA and protein

level. The ‘‘tree of

life’’ is an exam-

ple of an ambi-

tious project for

inferring the phy-

logeny linking all

known life forms.

Typical probabil-

ity models of evo-

lution used for this purpose are Jukes–Cantor (JC)

and general time reversible (GTR). Unlike SA, the

computational intractability of the problem is the

primary stumbling block in advancing the state of

research in phylogenetic inference, as the underly-

ing problems have been proven to be NP-hard

under various formulations.

Phylogeny reconstruction approaches are based

on genomic distance (e.g., neighbor joining), combi-

natorial optimization (e.g., breakpoint phylogeny), or

statistical methods [e.g., maximum likelihood (ML)].

The choice of the approach represents a tradeoff

between accuracy and complexityVwith the statisti-

calmethods being themost computationally complex,

having super-exponential complexity, but also being

the most accurate. Additionally, statistical methods

involve real number computations as opposed to

integer arithmetic for the other approaches.

Blanchette et al. pioneered the work on break-

point phylogeny [12]. They reduced the problem of

reconstructing an optimal phylogenetic tree to one

of solving numerous instances of a version of the

traveling salesman problem (TSP) where edge

weights of the input graph are bounded to a fixed

set of integer values. Bakos and Elenis [13]

proposed a coprocessor design for whole-genome

phylogeny reconstruction using a parallelized ver-

sion of breakpoint median computation. The

coprocessor uses an FPGA-based multicore imple-

mentation of the combinatorial search space of the

TSP, while the input graph construction is performed

in software. The search tree partitioning is carried out

in such a manner that each core explores the tree in a

Table 1 Overview of speedups achieved through hardware acceleration for different

sequence analysis applications [2]–[10]. The ‘‘–’’ entries correspond to data not available.

January/February 2014 11

different order. This is done to avoid complex load-

balancing and intercore communication issues that

occur if disjoint subtrees are assigned to different

cores, because any of them might be subject to

pruning. Their best average speedup of 1005� over

software is observed using three cores. The best

overall reduction in execution time is by a factor of

417�. However, these observations are for synthetic

data, and hence difficult to correlate with real-life

examples. Majumder et al. [14] demonstrated speed-

up up to 8430� on their NoC-based custom multicore

platform, and evaluated both synthetic and biological

input data. Their solution integrated up to 64

lightweight custom PEs, each designed with fine-

grained parallel and pipelined architecture to effi-

ciently carry out matrix reduction and tree traversal

during the solution of TSP for breakpoint phylogeny.

Their search space subtree partitioning was sim-

pleVeach PE choosing from a pool of subtrees

assigned in no particular orderVand yet managed

to achieve good load balancing and branch pruning

by dint of an efficient interconnection topology, which

also made the system energy efficient.

Statistical methods like ML and Bayesian infer-

ence (BI) involve millions of computations of the

phylogenetic likelihood function (PLF), which calls

for high-throughput real-number arithmetic. Owing

to the computational intractability of the problems,

several approximate algorithms and heuristics have

been proposed, which have then been the subject of

hardware acceleration.

A hybrid hardware/software approach proposed

by Mak and Lam [15] takes the genetic algorithm for

maximum likelihood (GAML) approach. The genet-

ic algorithm is implemented in software and the

computationally intensive ML equation is imple-

mented in hardware. This work uses a Xilinx Virtex

XCV800 FPGA as the hardware accelerator and a

Pentium 4 PC with 1-GB RAM for running the

software. Their results while reconstructing a 4-taxa

phylogenetic tree under the JC model demonstrate

an overall speedup of 30� over software and an ML

speedup of over 300�, despite the communication

overhead of the hybrid system. This work, however,

does not explicitly state how the acceleration scales

for larger taxa or more realistic complex models like

GTR. Randomized axelerated maximum likelihood

version VI for high-performance computing

(RAxML-VI–HPC) is an efficient parallel algorithm

for ML phylogeny reconstruction that can incorpo-

rate different models of evolution, including rate

variation across sites. Blagojevic et al. have explored

the porting, optimization, and evaluation of RAxML-

VI–HPC on CBE [16]. They have taken advantage of

different layers of parallelism afforded by the

software and CBEVtask-level parallelism across

SPEs, task vectorization within SPEs, and/or loop-

level parallelization across SPEs. They show that

CBE speeds up the software over standard pro-

cessing architecturesVIntel Xeon and IBM

Power5Vand is more cost effective and power

efficient than either architecture. However, the sheer

complexity of porting the algorithm and the various

optimizations required for CBE collectively pose a

significant roadblock.

As mentioned earlier, PLF computation is the key

to these statistical methods. An FPGA platform for

accelerating PLF computation was proposed by

Alachiotis et al. [17], where a Xilinx Virtex 5 SX240T

with 1056 DSP48E slices was used to implement

double-precision floating point multipliers and

adders. Due to the limited amount of DSP48E slices

on the FPGA, several multiplexer units are deployed

to optimally exploit the available computational

resources. A Sun x4600 system equipped with

eight dual-core AMD Opteron processors running

at 2.6 GHz with 64 GB of main memory was used

as the baseline. An average speedup of 8.3� over a

single core has been demonstrated for trees com-

prising 4–512 sequences on FPGA. The FPGA

implementation also outperforms OpenMP-based

parallel implementation on 16 cores in most cases,

achieving speedups from 0.96� to 7.46�. The

projected computational time for a full tree traversal

using Felsenstein’s pruning algorithm for 512 taxa is

less than 1 ms, based on reported clock speed of

284.152 MHz. Through its partial limitations, this

study highlights two desirable features of a hardware

accelerator: efficient floating point computation

hardware and seamless resource allocation.

A holistic comparison of several hardware ac-

celerators is presented in [18], where Pratas et al.

apply the popular BI tool MrBayes to evaluate

performance, scalability, and programmability.

They consider multiple-instruction–multiple-data

(MIMD) architectures such as general purpose

multicore (dual-core and quad-core Intel and

AMD) processors and CBE, and single-instruction–

multiple-data (SIMD) architectures such as GPU. The

PLF in MrBayes is parallelized using OpenMP

IEEE Design & Test12

Hardware Acceleration in Computational Biology

directives for the general-purpose multiprocessors,

POSIX threads for the CBE systems, and compute

unified device architecture (CUDA) for the GPU

systems. For hardware-managed caches, the sharing

of a cache level within the chip by all cores is a

determining factor for efficient synchronization, and

hence scalability. Systems with software-managed

caches like CBE compensate the user effort by

efficient synchronization mechanisms. On the other

hand, there are fewer data transfers between the

device memory and CPU because GPU has sufficient

memory to handle input data. CUDA automatically

handles data transfer synchronization, thus relieving

the user of the responsibility of providing any

explicit synchronization mechanism. PLF computa-

tion speedup is penalized by computation intensity

and communication overhead inside the multi-

cores. Quad-core AMD Opteron, where four cores

are on a single die and share the same L2 cache,

scales better compared to quad-core Intel Xeon,

which has two L2 caches, each shared by a pair of

cores. For CBE, speedup values are close to ideal for

small data sets and performance is stable across

different computation intensities. Even though SPEs

do not share a common cache, CBE is more tolerant

to synchronization, primarily because it relies on

user-generated software for this. However, speedup

values for large data sets and computation intensi-

ties are almost equal for general-purpose multicores

and CBEs. GPUs display an increase in speedup as

the computation intensity increases because they

are designed to perform efficient execution of small

parallel threads in a scenario where the computation-

to-data ratio is high. The end-to-end time-to-solution

encompassing the serial and parallelized (PLF)

portions of the code is the minimum for general-

purpose multicore. The bottleneck in CBE with regard

to total execution time comes from the PPE that

handles the serial portion of the code: it is a rather

simple core with a small cache, in order execution

capability and is burdened with the additional

responsibility of synchronizing among SPEs.

A many-core system with custom lightweight

PEs for efficient floating-point computation, inte-

grated with a folded torus NoC, and colocality

preserving resource allocation methods was pro-

posed and evaluated with RAxML-VI–HPC in [19].

Majumder et al. implemented fast multiplication,

addition, log, and antilog computations based on

fixed-point hybrid number system. They explored

the benefits offered by 3-D NoC architectures both

in terms of speedup (up to 62% higher than 2-D

NoC) and energy consumption (up to 38% lower

than 2-D NoC). They devised Hilbert-curve-based

locality-preserving task allocation strategies. The

application model offloaded the computation-

heavy kernels to the NoC-based platform, where

up to 6594� application speedup was achieved.

Taking into account the serial software time, the

end-to-end runtime was reduced by 5�.
Table 2 summarizes the speedups achieved by

different hardware accelerators for phylogeny re-

construction. These applications are characterized

by high computation throughput requirements and

the consequent demand for massively parallel

architectures. FPGAs can suffice up to a certain

extent, but general purpose GPUs (GPGPUs) and

NoC-based multicores seem to be the way going

forward. At the application mapping level, the

current challenges come from on-chip resource

allocation and consequent intrachip communica-

tion throughput requirement, which follow a time-

varying, irregular pattern, though not random; and

the serial software bottleneck.

Molecular simulation
Molecular dynamics (MD) is a widely used

technique for studying the structural, functional, and

Table 2 Performance comparison for phylogenetic inference [12]–[18]. The ‘‘–’’ entries correspond to data not available.

January/February 2014 13

thermodynamic characteristics of biomolecules. It is a

particular case of an N -body problem where

hundreds of thousands of atoms of a molecular

complex, such as a protein, are allowed to interact

over a fixed spatial dimension, for over millions of

discrete time steps. As such, the problem is heavily

compute cycle bound. In [20], Stone et al. target

various MD algorithms, such as direct Coulomb

summation, multilevel Coulomb summation, and

molecular dynamic force evaluation, and demon-

strate that a CUDA-based GPU implementation pro-

vides up to 40� speedup over a highly optimized

CPU-based implementation. Chiu et al. [21] demon-

strate MD acceleration on a high-performance recon-

figurable computing (HPRC) platform, where they

use Altera Stratix-III EP3SE260 and fit eight force

pipelines running at up to 198 MHz, and report

80� speedup over the GPU-based design in [20].

Another notable approach for MD acceleration has

been the design of a massively parallel machine

ANTON [22] by Shaw et al. This design consists of 512

identical MD-specific ASICs that interact in a high-

speed 3-D torus NoC. The projected speedup was

100� that achieved using the dihydrofolate reductase

(DHFR) benchmark on IBM Blue Gene/L with 8192

processing cores. By leveraging its ultralow-latency

communication infrastructure to establish optimized

communication patterns, ANTON improves the laten-

cy of the critical path communication step up to 30�
the next fastest MD platform Desmond [23].

Molecular docking is another simulation class

application that is heavily used to study the binding

orientation of small molecule drug candidates to

their protein drug targets. Due to its high computa-

tional complexity, dedicated hardware platforms

have been considered for accelerating docking.

Sukhwani and Herbordt mapped the FFT, modula-

tion, accumulation, and some filtering tasks to GPU

in [24] to achieve 17.7� speedup over single-core

CPU and 6.1� speedup over a quad-core CPU. They

also implemented a docking code on an FPGA

platform [25] to achieve a 100� application speed-

up and 36� total speedup over single-core CPU and

10� speedup over quad-core CPU. The FPGA-based

accelerator was found to be better for small-

molecule docking while GPU excelled in protein–

protein docking, which uses FFT techniques for 3-D

grid representation of proteins. A method that

incorporates rotational correlations, called spheri-

cal polar Fourier (SPF) technique, has been accel-

erated by 45� using GTX 285 GPU over a single-core

CPU, but the same hardware does not perform well

enough for conventional 3-D FFT docking [26]. A

docking code, Autodock, was evaluated on FPGA

(SGI RASC RC100 blade containing two Xilinx

Virtex-4 LX200 FPGAs) and GPU (GeForce GT220

and GeForce GTX260) in [27]. The interesting

observation is that while FPGA provided a constant

speedup of 35� irrespective of the number of

docking runs, the speedup provided by the GPUs

varies from 5� for one run to 75� for 100 runs,

reaffirming the fact GPUs perform better for larger

molecules. Korb et al. [28] used GeForce 8800 GTX

GPU and implemented the docking code using

OpenGL and Cg (significantly, they did not use

CUDA to ensure backward compatibility) and

achieved speedup over 60� for rigid protein–protein

docking, and up to 16� for the more complex case

where the ligand and donor groups in the protein

binding site are treated as flexible. The current

research direction in molecular docking is increas-

ingly focusing on GPUs, which are having an ever-

increasing number of stream processors. However,

with the multitude of algorithms that are used for

docking, successfully mapping these onto GPUs

using CUDA or other graphics-oriented languages

appears to be a major challenge.

Biological network analysis
In addition to computational molecular biology,

there is a great deal of interest in using the

computational power of accelerator platforms, such

as GPUs, for biological pathway analysis or brain

neural network analysis. The complexity of the

interaction graphs involved in these problems leads

to HPC requirements, and quite a bit of recent

research has been devoted to utilizing hardware

acceleration platforms. For example, Han and Taha

[29] present the use of GPUs (GeForce 9800 GX2) and

GPGPUs (Tesla C1060 and Tesla S1070) to demonstrate

speedups of 5.6� and 84.4� on Izhikevich and the

Hodgkin–Huxley models, respectively, in the context

of modeling image recognition systems in the cortex

of the brain. Another work uses a CPU–GPU combi-

nation for brain network analysis, where the GPU

(AMD Radeon 5870) is used to accelerate correlation

calculation, modular detection, and all-pairs shortest

path [30], delivering speedups of about 28�, 44�, and
166�, respectively. Hybrid functional Petri net simula-

tion of biological pathways has been accelerated

IEEE Design & Test14

Hardware Acceleration in Computational Biology

using GeForce GTX 285 GPU in [31], where biological

pathway model simulations were accelerated by 18�
for models with 20 000 processes and boundary

formation by Delta–Notch signaling was sped up by

7� for tissue samples containing up to 1600 cells.

Interestingly, GPU underperforms for models with less

than 5000 processes because frequent kernel switching

and weak thread utilization lead to a global memory

access overhead for the CUDA-based application. As

also concluded from the findings reported in Section IV,

it is apparent that GPU-based acceleration is profitable

above a certain problem-size threshold, below which

overheads dominate, and above which these get

amortized and do not affect the overall speedup.

Structural biology
Some of the most important problems in struc-

tural biology involve predicting the structure of

macromolecules, such as proteins or RNAs. These

contain chains of smaller molecules (e.g., amino

acids or nucleic acids), which in turn form second-

ary structures (e.g., alpha-helices or loops), and

eventually ‘‘fold’’ to form tertiary structures. Existing

databases, such as the National Center for Biotech-

nology Information Protein Database (http://www.

ncbi.nlm.nih.gov/protein), sourced from databanks

such as GenBank, contain a repository of tens of

thousands of molecules, and new molecules are

discovered every day. Algorithms for predicting the

3-D structure and function of these molecules are

based on comparison with existing molecules in the

database, and are usually NP-hard. As such, there is

strong focus on employing heuristics and hardware

acceleration. In [32], Hung and Samudrala used a

GPU-based system to accelerate protein structure

prediction based on template modeling score,

which is computationally more complex and more

accurate than the conventional root mean square

deviation score. They used an ATI 5870 GPU to

obtain a 68� speedup over a general purpose

processor. Jacob et al. [33] present an FPGA-based

implementation of the Zuker DP algorithm to predict

RNA secondary structureVa problem that is poly-

nomial time solvable for simple cases, but becomes

significantly harder [34] for consideration with

pseudoknots. They use a Xilinx Virtex 4 LX100-12

FPGA to deliver 103� speedup over a CPU, and

higher speedups than prior implementations on

other FPGA and GPU platforms.

Other fields of application
Computation intensity, driven by either the

volume of data or the underlying problem’s intrac-

tability, is a key challenge in a wide range of other

biological applications. The previous sections pres-

ent the degree of progress and unmet challenges in

some major fields, but there are many others that are

being benefited by hardware accelerators. The field

of mass spectrometry-based proteomics has seen

the application of hardware acceleration, e.g., using

GPU [35]. The problem here is to compare an

experimentally acquired spectrum against a spectral

library and/or sequence database. The GPU-based

approach delivers up to 26� speedup for a

parallelized spectral search algorithm [35]. In

addition, there are applications that have been

shown to benefit from hardware acceleration

carried out using massively parallel hybrid systems

such as those available at Texas Advanced Comput-

ing Center (Austin, TX, USA, http://www.tacc.utexas.

edu/resources/hpc/stampede) and Convey Comput-

er (Richardson, TX, USA, http://www.conveycompu-

ter.com/solutions/life-sciences/). These studies

clearly demonstrate the potential for hardware

acceleration in this application domain.

IT IS EVIDENT that a lot of progress in computational

biology is dependent on the synergy with computer

architecture (for various types of hardware plat-

forms), which would act as an enabler in the

process. Most of these applications are data inten-

sive and/or compute intensive, and can readily

benefit from parallel architectures. Apart from

traditional high-performance computing architec-

tures such as supercomputers or server clusters,

even single-chip multicore solutionsVFPGA, GPU,

CBE, and custom multicoreVhave provided exten-

sive performance benefits in terms of speed, energy

consumption, cost, and portability. Some of these

architectures such as FPGAs and custom multicores

have been designed to accelerate a specific target

application, while for others such as GPU and CBE,

the application has to be ported using platform-

specific software tools. GPUs and their descendants

GPGPUs currently integrate thousands of stream

processors, and provide a clear edge in case of

applications that can be cast into a SIMD model.

Communication between the CPU and the GPU has

been a bottleneck, but with better on-chip memory

and software tools such as CUDA, GPGPUs have

January/February 2014 15

been able to minimize such data transfers and work

around the I/O bandwidth issue. Due to their

reconfigurable nature, FPGA platforms can provide

problem-specific tailor-made parallel architectures.

However, as we have seen, they often run into

capacity limitations even with the latest FPGA

boards that allow hundreds of cores to be imple-

mented. In fact, certain applications seem to be

better addressed using GPUs rather than FPGAs. On

the other hand, custom multicores embedded on a

network-on-chip have the advantage of a VLSI

application-specific IC (ASIC), where the NoC can

provide a much higher level of integration than in an

FPGA. This has been shown to make a significant

difference in certain classes of applications, and

justifies the investment in research. Table 3 shows a

comparison among different acceleration platforms,

not only with respect to their speedup performance

and energy-efficiency, but also with respect to design

cost and development effort. These latter para-

meters will enable the designer to factor in the

R&D and production expenses in developing the

solution. This table should serve as a general

guideline for choosing a particular platform based

on the application requirement and evaluation of

tradeoffs. While the architecture community is

ceaselessly innovating, applications are coming up

with newer demands, and it will ultimately be the

researcher who decides what combination is best

for the problem at hand. h

h References
[1] T. F. Smith and M. S. Waterman, ‘‘Identification of

common molecular subsequences,’’J. Molecular Biol.,

vol. 147, no. 1, pp. 195–197, Mar. 25, 1981.

[2] T. Oliver, B. Schmidt, D. Nathan, R. Clemens, and

D. Maskell, ‘‘Using reconfigurable hardware to

accelerate multiple sequence alignment with

ClustalW,’’ Bioinformatics, vol. 21, no. 6,

pp. 3431–3432, 2005.

[3] M. C. Herbordt, J. Model, G. Yongfeng, B. Sukhwani,

and T. VanCourt, ‘‘Single pass, BLAST-like,

approximate string matching on FPGAs,’’ in Proc.

14th Annu. IEEE Symp. Field-Programmable

Custom Comput. Mach., 2006, pp. 217–226.

[4] V. Sachdeva, M. Kistler, E. Speight, and

T.-H. K. Tzeng, ‘‘Exploring the viability of the

cell broadband engine for bioinformatics applications,’’

in Proc. IEEE Int. Parallel Distrib. Process. Symp.,

2007, DOI: 10.1109/IPDPS.2007.370449.

[5] W. Liu, B. Schmidt, G. Voss, and W. Muller-Wittig,

‘‘Streaming algorithms for biological sequence

alignment on GPUs,’’IEEE Trans. Parallel Distrib.

Syst., vol. 18, no. 9, pp. 1270–1281,

Sep. 2007.

[6] Y. Liu, A. Wirawan, and B. Schmidt, ‘‘CUDASW++ 3.0:

Accelerating Smith-Waterman protein database search

by coupling CPU and GPU SIMD instructions,’’

BMC Bioinf., vol. 14, p. 117, 2013.

[7] K. Benkrid, Y. Liu, and A. Benkrid, ‘‘A highly

parameterized and efficient FPGA-based skeleton

for pairwise biological sequence alignment,’’IEEE

Trans. Very Large Scale Integr. (VLSI) Syst., vol. 17,

no. 4, pp. 561–570, Apr. 2009.

[8] S. Sarkar, G. R. Kulkarni, P. P. Pande, and

A. Kalyanaraman, ‘‘Network-on-chip hardware

accelerators for biological sequence alignment,’’IEEE

Trans. Comput., vol. 59, no. 1, pp. 29–41, Jan. 2010.

[9] C. B. Olson, M. Kim, C. Clauson, B. Kogon, C. Ebeling,

S. Hauck, and W. L. Ruzzo, ‘‘Hardware acceleration of

short read mapping,’’ in Proc. IEEE 20th Annu. Int.

Symp. Field-Programmable Custom Comput. Mach.,

2012, pp. 161–168.

[10] T. Martı́nek and M. Lexa, ‘‘Hardware acceleration of

approximate tandem repeat detection,’’ in Proc. IEEE

Table 3 Design tradeoffs for acceleration platforms for computational biology.

IEEE Design & Test16

Hardware Acceleration in Computational Biology

18th Annu. Int. Symp. Field-Programmable Custom

Comput. Mach., 2010, pp. 79–86.

[11] M. N. M. Isa, K. Benkrid, and T. Clayton, ‘‘A novel

efficient FPGA architecture for HMMER acceleration,’’

in Proc. Int. Conf. Reconfigurable Comput. FPGAs,

2012DOI: 10.1109/ReConFig.2012.6416723.

[12] M. Blanchette, G. Bourque, and D. Sankoff,

‘‘Breakpoint phylogenies,’’ in Genome Informatics

Workshop. Tokyo, Japan: Univ. Academy Press,

1997, pp. 25–34.

[13] J. D. Bakos and P. E. Elenis, ‘‘A special-purpose

architecture for solving the breakpoint median

problem,’’ IEEE Trans. Very Large Scale Integr. (VLSI)

Syst., vol. 16, no. 12, pp. 1666–1676, Dec. 2008.

[14] T. Majumder, S. Sarkar, P. P. Pande, and

A. Kalyanaraman, ‘‘NoC-based hardware accelerator

for breakpoint phylogeny,’’ IEEE Trans. Comput.,

vol. 61, no. 6, pp. 857–869, Jun. 2012.

[15] T. S. T. Mak and K. P. Lam, ‘‘High speed GAML-based

phylogenetic tree reconstruction using HW/SW

codesign,’’ in Proc. IEEE Bioinf. Conf., 2003,

pp. 470–473.

[16] F. Blagojevic, A. Stamatakis, C. D. Antonopoulos, and

D. S. Nikolopoulos, ‘‘RAxML-Cell: Parallel phylogenetic

tree inference on the cell broadband engine,’’ in Proc.

IEEE Int. Parallel Distrib. Process. Symp., 2007,

DOI: 10.1109/IPDPS.2007.370267.

[17] N. Alachiotis, E. Sotiriades, A. Dollas, and

A. Stamatakis, ‘‘Exploring FPGAs for accelerating

the phylogenetic likelihood function,’’ in Proc. IEEE

Int. Symp. Parallel Distrib. Process., 2009,

DOI: 10.1109/IPDPS.2009.5160929.

[18] F. Pratas, P. Trancoso, A. Stamatakis, and L. Sousa,

‘‘Fine-grain parallelism using multi-core, cell/BE, and

GPU systems: Accelerating the phylogenetic likelihood

function,’’ in Proc. Int. Conf. Parallel Process., 2009,

pp. 9–17.

[19] T. Majumder, M. E. Borgens, P. P. Pande, and

A. Kalyanaraman, ‘‘On-chip network-enabled multicore

platforms targeting maximum likelihood phylogeny

reconstruction,’’ IEEE Trans. Comput.-Aided Design

Integr. Circuits Syst., vol. 31, no. 7, pp. 1061–1073,

Jul. 2012.

[20] J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy,

L. G. Trabuco, and K. Schulten, ‘‘Accelerating

molecular modeling applications with graphics

processors,’’ J. Comput. Chem., vol. 28, no. 16,

pp. 2618–2640, Dec. 2007.

[21] M. Chiu and M. C. Herbordt, ‘‘Molecular dynamics

simulations on high-performance reconfigurable

computing systems,’’ ACM Trans. Reconfigurable

Technol. Syst., vol. 3, no. 4, Nov. 2010, article 23.

[22] D. E. Shaw, M. M. Deneroff, R. O. Dror, J. S. Kuskin,

R. H. Larson, J. K. Salmon, C. Young, B. Batson,

K. J. Bowers, J. C. Chao, M. P. Eastwood, J. Gagliardo,

J. P. Grossman, C. R. Ho, D. J. Ierardi, I. Kolossváry,

J. L. Klepeis, T. Layman, C. McLeavey, M. A. Moraes,

R. Mueller, E. C. Priest, Y. Shan, J. Spengler,

M. Theobald, B. Towles, and S. C. Wang, ‘‘Anton, a

special-purpose machine for molecular dynamics

simulation,’’ SIGARCH Comput. Archit. News, vol. 35,

no. 2, pp. 1–12, Jun. 2007.

[23] R. O. Dror, J. P. Grossman, K. M. Mackenzie,

B. Towles, E. Chow, J. K. Salmon, C. Young,

J. A. Bank, B. Batson, M. M. Deneroff, J. S. Kuskin,

R. H. Larson, M. A. Moraes, and D. E. Shaw,

‘‘Exploiting 162-nanosecond end-to-end

communication latency on Anton,’’ in Proc. Int. Conf.

High Performance Comput. Netw. Storage Anal., 2010,

DOI: 10.1109/SC.2010.23.

[24] B. Sukhwani and M. C. Herbordt, ‘‘GPU acceleration of

a production molecular docking code,’’ in Proc. 2nd

Workshop General Purpose Process. Graphics

Process. Units, 2009, pp. 19–27.

[25] B. Sukhwani, M. C. Herbordt, and M. C., ‘‘FPGA

acceleration of rigid-molecule docking codes,’’

IET Comput. Digit. Tech., vol. 4, no. 3, pp. 184–195,

May 2010.

[26] D. W. Ritchie and V. Venkatraman, ‘‘Ultra-fast

FFT protein docking on graphics processors,’’

Bioinformatics, vol. 26, no. 19, pp. 2398–2405,

2010.

[27] I. Pechan and B. Feher, ‘‘Molecular docking on FPGA

and GPU platforms,’’ in Proc. Int. Conf. Field

Programmable Logic Appl., 2011, pp. 474–477.

[28] O. Korb, T. Stützle, and T. E. Exner, ‘‘Accelerating

molecular docking calculations using graphics

processing units,’’ J. Chem. Inf. Model., vol. 51, no. 4,

pp. 865–876, 2011.

[29] B. Han and T. M. Taha, ‘‘Acceleration of spiking neural

network based pattern recognition on NVIDIA graphics

processors,’’ Appl. Opt., vol. 49, pp. B83–B91, 2010.

[30] Y. Wang, M. Xu, L. Ren, X. Zhang, D. Wu, Y. He, N. Xu,

and H. Yang, ‘‘A heterogeneous accelerator platform

for multi-subject voxel-based brain network analysis,’’

in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design,

2011, pp. 339–344.

[31] G. Chalkidis, M. Nagasaki, S. Miyano, and S., ‘‘High

performance hybrid functional petri net simulations of

biological pathway models on CUDA,’’ IEEE/ACM

January/February 2014 17

Trans. Comput. Biol. Bioinf., vol. 8, no. 6,

pp. 1545–1556, Nov.–Dec. 2011.

[32] L.-H. Hung and R. Samudrala, ‘‘Accelerated protein

structure comparison using TM-score-GPU,’’

Bioinformatics, vol. 28, no. 16, pp. 2191–2192, 2012.

[33] A. C. Jacob, J. D. Buhler, and R. D. Chamberlain,

‘‘Rapid RNA folding: Analysis and acceleration of the

Zuker recurrence,’’ in Proc. 18th IEEE Annu. Int. Symp.

Field-Programmable Custom Comput. Mach., 2010,

pp. 87–94.

[34] E. Rivas and S. R. Eddy, ‘‘A dynamic programming

algorithm for RNA structure prediction including

pseudoknots,’’ J. Molecular Biol., vol. 285, no. 5,

pp. 2053–2068, 1999.

[35] L. A. Baumgardner, A. K. Shanmugam, H. Lam,

J. K. Eng, and D. B. Martin, ‘‘Fast parallel tandem mass

spectral library searching using GPU hardware

acceleration,’’ J. Proteome Res., vol. 10, no. 6,

pp. 2882–2888, 2011.

Turbo Majumder is an Assistant Professor in the
Department of Electrical Engineering, Indian Institute
of Technology Delhi, New Delhi, India. He works on
many-core network-on-chip platforms, system-on-
chip platforms, hardware acceleration, and high-
performance computing. He has a BS in electronics
and electrical communication engineering and anMS
in automation and computer vision from Indian
Institute of Technology, Kharagpur, India, and a
PhD in electrical engineering from Washington State
University, Pullman, WA, USA. He is a Member of
the IEEE.

Partha Pratim Pande is an Associate Professor
and the holder of the Boeing Centennial chair in
Computer Engineering at the School of Electrical
Engineering and Computer Science, Washington
State University, Pullman, WA, USA. His current
research interests are novel interconnect architec-
tures for multicore chips, on-chip wireless commu-
nication networks, and hardware accelerators for
biocomputing. He has an MS in computer science
from the National University of Singapore, Singapore
and a PhD in electrical and computer engineering
from the University of British Columbia, Vancouver,
BC, Canada. He is a Senior Member of the IEEE.

Ananth Kalyanaraman is an Associate Profes-
sor at the School of Electrical Engineering and
Computer Science, Washington State University,
Pullman, WA, USA. His research interest is in high-
performance computational biology. He has a PhD in
computer engineering from Iowa State University,
Ames, IA, USA (2006). He is a member of the
American Association for the Advancement of Sci-
ence (AAAS), the Association for Computing Ma-
chinery (ACM), the IEEE Computer Society, and the
International Society for Computational Biology
(ISCB).

h Direct questions and comments about this article
to Partha Pratim Pande, School of Electrical Engi-
neering and Computer Science, Washington State
University, Pullman, WA 99164-2752 USA; pande@
eecs.wsu.edu.

IEEE Design & Test18

Hardware Acceleration in Computational Biology

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

