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h PHYLOGENETIC INFERENCE IS one of the grand

challenge problems in bioinformatics. Its aim is to

reconstruct an evolutionary tree given a set of n taxa

(species). In the reconstructed tree, the taxa form

the leaves, and the branches indicate divergence

from a common ancestor. The key to reconstruction

is observing and characterizing variations at the

DNA and protein level. Phylogeny reconstruction

can be broadly categorized into the following:

distance-based hierarchical methods [e.g., neighbor

joining (NJ)], combinatorial optimization using

maximum parsimony (MP), and statistical estima-

tion methods [e.g., maximum likelihood (ML),

Bayesian inference (BI)]. Of these, the estimation

approaches such as ML and BI are statistically con-

sistent and are therefore widely used [1]. These

methods provide a statistical likelihood score for

each reconstructed tree using the phylogenetic like-

lihood function (PLF) [2]. The boost in

quality, however, comes at a high

computation cost as the ML formulation

is NP-hard [3] and suffers from the

need to explore a super-exponential

(in n) number of trees. For example, a

run using RAxML [4], which is one of

the most widely used programs to

compute ML-based phylogeny, on an

input comprising 1500 genes has

been reported to take up to 2.25 million CPU

hours on the IBM BlueGene/L supercomputer [5],

which has been parallelized at a coarse level (using

compute clusters) to finish in 14 h using 1024 CPUs.

With increasing availability of genomic data, as

documented in public genomic data banks such as

the National Center for Biotechnology Information

(http://www.ncbi.nlm.nih.gov/guide/dna-rna/), the

relevance and the utility of the statistical estimation

approaches are only expected to grow. To realize

their full potential, scalable methods that use novel

combinations of algorithmic heuristics, hardware

acceleration, and high-performance computing are

needed. An effective way to harness the compute

power within the hardware acceleration units of

modern day multicore architectures is to couple

them with software-level parallelizationVi.e., run

the software on a conventional CPU and offload

the computation-heavy tasks to the accelerator

through an interface like PCIe.

The advantage of using conventional NoC-based

platforms to accelerate ML applications has been

and
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shown in [6], where we evaluated the performances

of conventional wireline 2-D and 3-D NoCs. Intro-

duction of long-range links in regular 2-D architec-

tures like mesh have been shown to reduce the

overall network diameter and improve intercore

communication latency [7]. Use of on-chip wireless

links to implement these shortcuts has been shown

to generate significant savings in latency and energy

in presence of standard benchmarks, even consid-

ering the overhead of wireless transceivers [8]. In

this paper, we design and evaluate wireless-NoC

(WiNoC)-enabled many-core platforms to accelerate

ML phylogeny reconstruction applications by target-

ing computationally intensive function kernels. We

explore different approaches of allocating these jobs

to the accelerator, determine the overheads, and

evaluate the tradeoffs. The targeted kernels are sped

up by over 2000� (application speedup, consider-

ing all relevant overheads) for a fairly large input,

and the total runtime (including the nonaccelerated

portion running in software and data transfer over-

heads) gets reduced by more than 80%. The plat-

forms are also energy efficient, consuming �0.5 nJ

per arithmetic operation. We also demonstrate how

our NoC architectures would scale with a higher

computational footprint per kernel.

Related work
Considerable work has been done on designing

hardware accelerators for the different approaches

of phylogeny reconstruction. These efforts have

generally targeted MP, ML, and BI because of their

wide usage and large time complexities.

A detailed survey of various hardware accele-

ration approaches for biocomputing is provided in

[9]. A parallelized version of breakpoint-median

phylogeny using both software and FPGA was

shown to achieve a speedup of 417� for a whole-

genome phylogeny reconstruction. In [10], we im-

plemented a NoC-based accelerator that achieves a

speedup of 774�.
For BI, hardware acceleration has been proposed

using cell broadband engine (CBE), GPU, and gene-

ral purpose multicores and FPGA. These platforms

achieve an order of magnitude speedup over

software [9].

For ML phylogeny, which is the target application

in this paper, a genetic algorithm using a hybrid

hardware–software approach achieves an overall

speedup of 30�. A CBE-based implementation for

RAxML is shown to outperform the software by 2�.
Another implementation of RAxML using FPGA

boards with built-in DSP slices achieves a speedup

of 8�. We presented 2-D and 3-D wireline NoC-based

hardware accelerators [6] that achieved applica-

tion speedups (considering all relevant overheads)

over 900� and 1000�, respectively, and overall run-

time reduction more than 5�, while being energy

efficient.

NoCs have been shown to perform better by in-

sertion of long-range wired links following princi-

ples of small-world graphs [7]. Although there are

significant performance gains, the use of wired links

beyond a certain length has been shown to be less

energy efficient than the use of on-chip wireless

links. Several standard traffic patterns have been

explored using WiNoC architectures in [8]. In this

work, we leverage the benefits of using long-range

wireless shortcuts on a 2-D NoC to design energy-

efficient hardware accelerators for ML phylogeny

reconstruction, delivering an application speedup

over 2000� and energy efficiency of �0.5 nJ per

arithmetic operation.

In our design, we implement logarithmic calcu-

lations in hardware. Fast calculation of logarithms in

hardware has been a well-researched topic. A brief

discussion on existing work in this area can be

found in [6]. Here, we build upon the unified

computation architecture for calculating elementa-

ry functions presented in [11], which uses a fixed-

point hybrid number system (FXP–HNS) to integrate

all operations in a power- and area-efficient manner

with a low percentage of error.

Design of NoC with long-range links
We present the design of a multicore SoC, where

the cores consist of lightweight custom-designed

processing elements (PEs), and the on-chip network

is a folded torus (network choice explained later).

We insert long-range shortcuts using on-chip wire-

less links on top of the folded torus, and explore

different strategies to allocate the computational

resources of the system to the application. The

details of the system design, wireless shortcut place-

ment, resource allocation, and routing are de-

scribed in this section.

Processing element (PE)
ML applications typically involve millions of small

task kernels that carry out node-level likelihood
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computations. These computations involve vector

products, and logarithm/antilogarithm computations

(to obtain log likelihood values). We designed a six-

stage, pipelined computation core to carry out these

computations efficiently. Details of the computation

core design can be found in [6]. We used FXP–HNS

[11], an efficient and accurate number system to

represent floating point numbers. We use 64 bits for

number representation; as such our core datapath is

64 bit wide.

Each PE consists of four computation cores,

because the input vector sizes in each task kernel

are multiples of four. In our implementation, for

the demonstration case of RAxML [4], in the three

task kernels collectively accounting for more than

85% of the software runtime, these vector sizes are

8, 12, and 24. As such, their computation requires

2, 3, and 6 PEs, respectively. We call these functions

f2, f3, and f6, respectively, to indicate their

computational footprint [6]. In addition, each PE

has 2 MB of memory in the form of register banks

to store inputs and computation outputs. The num-

ber of PEs represents the system size N of the

multicore system. We used Verilog HDL to design

the PE along with a wrapper for instruction decod-

ing, data fetching, and data write-back. We synthe-

sized the design with 65-nm standard cell libraries

from CMP (http://cmp.imag.fr). The critical path in

the computation core determines the clock fre-

quency of 1 GHz.

Wired network architecture
ML applications spawn a stream of independent

jobs (function kernels) that individually require va-

riable amounts of computation resources. Commu-

nication occurs only among computation nodes

(PEs) catering to a single job during its execution.

The location of these nodes on the network can be

arbitrary, although preserving locality of allocation

becomes important in the interest of keeping the

communication overhead low. Given this setup, dis-

tributed network architectures such as a folded

torus are well suited to cater to such traffic patterns.

From the VLSI implementation perspective, a torus is

a scalable network architecture whose regularity

provides for easier timing closure and reduces de-

pendence on interconnect scalability. We imple-

ment a wired folded torus where all internode links

are one-hop links with respect to the 1-GHz clock

used. As mentioned above, this clock frequency

requirement arises from the critical path constraint

in the PE computation core. Since our datapath is

64 bit wide, we split each internode message into

three 64-bit flitsVheader, body, and tail. As a result,

each internode link needs a minimum bandwidth

of 64 Gb/s.

Long-range on-chip wireless links
Our aim is to minimize the average distances

among nodes catering to one job. We try to achieve

this goal through: 1) use of on-chip wireless short-

cuts; and 2) intelligent dynamic node allocation

methods. The latter is described in the Dynamic

Node Allocation section. As will be seen there,

owing to the nature of the application, the nodes

allocated to a job could turn out to be physically

separated on the network, leading to a large com-

munication overhead. From the network architec-

ture point of view, bridging these gaps is possible

through the use of long-range point-to-point

shortcuts.

Physical layer. Suitable on-chip antennas are nec-

essary to establish the wireless links. It has been

shown that for some standard traffic patterns, wire-

less NoCs designed using carbon nanotube (CNT)

antennas can outperform conventional wired coun-

terparts significantly [8]. Antenna characteristics of

CNTs in the terahertz frequency range have been

investigated both theoretically and experimentally

[12]. Such nanotube antennas are good candidates

for establishing on-chip wireless communication

links and are henceforth considered in this work.

Using CNT antennas, different frequency channels

can be assigned to pairs of communicating source

and destination nodes, thus creating a form of fre-

quency division multiplexing. This is possible by

using CNTs of different lengths, which are multiples

of the wavelengths corresponding to the respective

carrier frequencies. Using current technology, it is

possible to create 24 nonoverlapping wireless

channels, each capable of sustaining a data rate of

10 Gb/s using CNT antennas, details of which are

discussed in [8]. The number of wireless links in our

system is determined by the bandwidth each link

needs to support. As mentioned earlier, each wire-

less (internode) link needs to sustain a band-

width of 64 Gb/s. Based on the capacity of the

wireless channels (10 Gb/s), we need seven chan-

nels per link (providing up to 70-Gb/s bandwidth).
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Consequently, the maximum number of single-hop

wireless links that we can allow with the current

technology is intð24=7Þ ¼ 3.

Link placement. The traffic pattern generated by

an application determines the most appropriate lo-

cations for placement of wireless links. However,

such a traffic-reliant approach is not suitable here,

because the sets of communicating PEs (pertaining

to the execution of a single kernel) change their

location on the network with time. The overhead of

assigning wireless links for every change in the

application map (�10�7 s) is very high. As it is not

possible to predict a standard traffic pattern, we

observed and analyzed long-term traffic statistics.

Observation of traffic patterns across numerous

application maps has shown that among nodes

that are not colocated (internode hop count > 2),

the probability of pairwise interaction is highest

when they are separated by the maximum hop

count along a dimension, or diameter. Analytic-

ally, this observation can be explained by the fact

that the most efficient of the node allocation

methods described later in the Dynamic Node

Allocation section divides the network into four

quadrants and the need for long-range links arises

when allocated nodes are noncontiguous and lie

in neighboring quadrants, the mean distance be-

tween which is equal to the diameter, as shown in

Figure 1.

Note that we are constrained by only three wire-

less links due to current technology limitations, as

explained earlier. Hence, we need to determine an

optimal placement of these links along torus diam-

eters so that most sets of communicating nodes

across all application maps can gainfully access the

wireless shortcuts. To this end, we ‘‘cover’’ the entire

network by placing them along diameters of the

folded torus with similar angular separation, as

shown in Figure 1.

Dynamic node allocation
A network node is busy during the execution of a

job by the PE; it is available otherwise. The compu-

tation nodes (PEs) continually send their busy/

available status to the allocation unit, MasterCon-

troller. When a job requests computation resources,

MasterController allocates the requisite number of

Figure 1. Noncontiguous nodes and long-range communication requirements leading to wireless link
placement along diameters.
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available computation nodes from the system. The

nodes thus allocated form a partition during the

course of function execution and communicate

with one another. As mentioned earlier, we need

intelligent dynamic node allocation methods to

ensure colocality of the nodes in a partition. We also

have to make sure that these methods do not incur a

large allocation time overhead. Simple approaches

like breadth-first search do not fit these criteria. We

developed the following allocation methods, which

can be classified into wireless-agnostic and wireless-

aware methods. We also make use of the locality-

preserving, space-filling Hilbert curve (see Figure 1)

for allocation. The resultant allocated partitions are

denoted A-type if all nodes belonging to that

partition are contiguous along wired links on the

folded torus; else the partition is B-type.

Parallel best-fit allocation using multiple Hilbert
curves. This allocation strategy preferentially looks

for a partition with contiguous nodes to maximize

colocality, and parallelizes the search in order to

increase the probability of a quick hit. The algorithm

is as follows.

1) First, we use four Hilbert curves on a square

folded torus. These four curves are given by

three successive rightangle rotations of a single

Hilbert curve.

2) We further divide each of the four Hilbert curves

into four segments, one from each quadrantV

thereby resulting in a total of 16 segments (as

shown in Figure 1). MasterController now has

16 heads, each of which is responsible for

scanning a segment. All 16 heads act in paral-

lel, to cover different parts of the network

simultaneously.

3) Each head now preferentially looks for an

A-type partition in its segment. The first head to

find such a partition returns it to the requesting

job and interrupts all the other scanning

heads.

4) In case no A-type partition is found after each

head has finished scanning its segment, Master-

Controller carries out a serial scan along a

Hilbert curve and allocates available nodes as

they are encountered.

This method of allocation is wireless agnostic

because we do not make use of the information

regarding the location of wireless shortcuts. We

refer to the systems using this method as simply

‘‘2D_parallel’’ if they do not use wireless shortcuts,

and ‘‘2D_parallel + wireless’’ if wireless shortcuts

are utilized only dynamically during message

transfers (i.e., not during allocation) if that reduces

the overall distance traversed.

Wireless-first allocation using Hilbert curve. This
is a wireless-aware allocation method in which

MasterController preferentially looks for available

node pairs directly connected by a wireless short-

cut. If such a pair is available, they are allocated to

the requesting job. MasterController then serially

scans for the remaining nodes following a Hilbert

curve starting from a terminal node of the wireless

shortcut. Since only nodes belonging to the same

partition communicate with one another, this

method ensures that wireless shortcuts are fully

utilized. In case no wireless shortcut is available at

the time of allocation, nodes are allocated based on

a serial scan along the Hilbert curve. We refer to the

systems using this allocation method as ‘‘wireless +

Hilbert.’’

Wireless-first, column-major allocation. This is

another wireless-aware allocation method, which

looks for available wireless shortcuts to be allocated

first. The remaining nodes are allocated following

the direction of wireless shortcuts such that the

nodes in the partition are aligned with the shortcut,

so as to maximize the traffic the shortcut carries. As

shown in Figure 1, the wireless shortcuts are placed

along the y-axis diameters (columns) of the folded

torus. Hence, the node allocation also follows a

column-major ordering. The major benefit of this

method is that a wireless shortcut can potentially

carry traffic from partitions that do not directly

include it but are closely aligned with it. Systems

using this allocation method are referred to as

‘‘wireless + column-major.’’

Randomized allocation. We also explore the sim-

ple randomized allocation approach, where Mas-

terController maintains a list of available nodes in a

random order, and allocates the requested number

of nodes from the head of the list. This method of

allocation is neither wireless aware nor does it

attempt to achieve any colocality among the allo-

cated nodes. The only advantage of this allocation
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method is the simplicity of MasterController logic

and fewer cycles spent in allocation.

On-chip routing
As mentioned earlier, we adopt wormhole rout-

ing to exchange three-flit messages among nodes of

a partition. Network switches are based on the de-

signs presented in [13]. Each switch consists of four

bidirectional ports (E, W, N, S) to neighboring

switches and one local port to/from the computa-

tional node. Each port has a buffer depth of two flits

and each physical channel is split into four virtual

channels. We use deadlock-free e-cube routing in

torus [14].

For routing in the presence of wireless shortcuts,

we need information about the wireless links closest

to a source–destination pair, and the bandwidth

provided by such links. This information is known

beforehand and is available to the router. Based on

this knowledge, the router chooses a path via a

wireless shortcut if that entails fewer hops to transfer

a message between a source–destination pair. The

message follows deadlock-free south-last routing [7]

when involving wireless shortcuts, and e-cube

routing when following wired-only paths between

a source and a destination.

Experimental results

Experimental setup
The computation core has a datapath width of

64 bits and provides a number representation accu-

racy of �10�15. As mentioned earlier, each PE in the

system consists of four computation cores. We syn-

thesized Verilog RTLs for the PEs, the network

switches and MasterController with 65-nm standard

cell libraries from CMP. We used a clock period of

1 ns constrained by the critical path occurring in

the core datapath as mentioned in the Processing

Element (PE) section. We verified that our design

meets all timing constraints, and evaluated power

consumption. We laid out the wired NoC intercon-

nects and determined their physical parameters

(power dissipation, delay) using the extracted

parasitics (resistances and capacitances). We veri-

fied that all wired links could be traversed within

one clock cycle. Each wireless link consists of

seven channels of 10 Gb/s each, providing a total

link bandwidth of 70 Gb/s. In this work, we con-

sidered CNT-antenna-based wireless link design

using the technology described in [8]. We con-

sidered 0.33 pJ/bit energy dissipation as reported

in that work as the energy consumed by each

wireless link.

We implemented each of the dynamic node allo-

cation methods mentioned in the Dynamic Node

Allocation section. We used a system size of N ¼ 256

in our experiments. We model the NoC-based multi-

core platform as a coprocessor connected using a

PCIe interface. We modeled a PCI Express 2.0 inter-

face using Synopsys Designware IP PCI Express 2.0

PHY implemented on 65-nm process and operating

at 5.0 Gb/s. We use a 32-lane PCIe 2.0 for our

simulation.

We selected an ML-based phylogenetic recon-

struction software called RAxML version 7.0.4

(http://sco.h-its.org/exelixis/software.html) for the

purpose of this experimental study. A detailed pro-

filing of RAxML runs using the GNU gprof utility

reveals that a small set of functions consume a pre-

dominant portion (> 85%) of the runtime. These

functions are denoted by f6 (newviewGTRGAMMA),

f 3 (coreGTRCAT), and f2 (newviewGTRCAT), re-

spectively, based on the computation resources (the

number of computation nodes or PEs) they need for

execution. We ran RAxML on some inputs that are

provided with the suite. These inputs comprised

DNA sequences originally derived from a 2177-taxon

68-gene mammalian data set described in [15]. An

input x y is a set of x aligned sequences (taxa)

each y characters long. For example, the input

50_5000 consists of 50 sequences with 5000

characters in each.

Performance
We demonstrate the performance of our WiNoC-

based hardware accelerator in Figure 2 and Table 1

by providing a detailed breakdown of different

times while running RAxML. The time spent in

running RAxML using four threads on a Pentium IV-

based server is used as the baseline. When using the

hardware accelerator, a portion of this runtime has

serial dependency or contains functions not tar-

geted by the accelerator ðtxÞ and the other portion is

taken care of by the accelerator ðtuÞ. The time spent

by the accelerator in actually computing those func-

tion kernels is referred to as th, the time spent in

allocating these function kernels is referred to as ta,

and the time spent in data transfer over PCIe is

referred to as tp. Clearly, application speedup is
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given by tu=ðth þ ta þ tpÞ, and the overall runtime

reduction is given by ðtu þ txÞ=ðth þ ta þ tp þ txÞ.
Referring to Figure 2, we note that we obtain over

2000� application speedup for input 50_5000

and 2D_parallel+wireless allocation. For this case,

from Table 1, we have tu ¼ 632.052 s, th ¼ 0.113 s,

Figure 2. Breakdownofdifferent timeswhile runningRAxMLwith twodifferent inputsonourWiNoC-based
hardware accelerator. Definitions of th, ta, tp, tu and tx are provided in the Performance section.
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ta ¼ 0.05 s, and tp ¼ 0.145 s, which gives us an

application speedup of 2050�. The same metric

in [6] evaluates to a best-case application speed-

up of 1061� for a 3-D torus NoC, and 908� for a

2-D wired torus NoC. Comparing the different

allocation methods in Figure 2 and Table 1, we

observe that randomized allocation indeed has

the lowest allocation time ðtaÞ as expected, but

there is a much lower degree of colocality in the

allocated partitions, leading to poorer accelera-

tion. The total time spent in node allocation for

the methods discussed in this paper (e.g., ta ¼ 2.

859 s for 2D_parallel+wireless as shown in Table 1)

compare favorably with the methods proposed for

3-D NoC in [6] (e.g., ta ¼ 3.305 s for 3-D torus

NoC). On the other extreme, the time spent in

accelerated kernels ðthÞ is the lowest in wireless+-

column-major, but a lot of time overhead is spent

in allocation because we cannot leverage the

advantages of the Hilbert curve. As such, the

application speedup is worse than both wireles-

s+Hilbert and 2D_parallel+wireless. Note that the

time spent in data transfer via PCIe is independent

of the accelerator architecture and is a function of

input size only.

In terms of energy efficiency, 2D_parallel+wire-

less is the most efficient, as explained in detail in

[16], with each method consuming �0.5 nJ per

operation. For the test cases 50_5000 and 500_5000,

across different allocation methods, this translates

to a total energy consumption in the range of 25–

27.8 J and 949–1060 J, respectively. The energy

spent by MasterController is between 0.15 mJ (for

randomized allocation) and 0.49 mJ (for wireless þ
column-major) for 50_5000, and between 8.7 mJ

(for randomized allocation) and 28 mJ (for

wireless_column-major) for 500_5000. Its area foot-

print is �0.024 mm2. This makes its energy and area

overhead negligible with respect to that of the

system.

Scaling computation footprint
In order to investigate how our WiNoC-based

platforms respond to different computational foot-

prints, we note that our application model subsumes

several task kernels being simultaneously executed.

Keeping the system size constant at N ¼ 256, we can

increase the footprint of each kernel while still

allowing for a large number of kernels to execute

simultaneously. We choose three kernels, now with

Table 1 Breakup of the different components of time spent while using a wireless NoC-based accelerator vis-a-vis only software.
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(larger) footprints of 6 ðf6Þ, 12 ðf12Þ, and 16 ðf16Þ
PEs, build a large number of application maps with

these, and compare the performance with the

RAxML kernels (f2, f3, and f6). The comparison

with respect to the number of clock cycles spent in

allocation of partitions and execution time (time to

completion) is shown in Figure 3. Note that the

allocation time reduces in all the methods because

with larger partition sizes, we have fewer partitions

to allocate. The reduction is most prominent in

wireless+column-major and wireless+Hilbert meth-

ods. However, with larger partitions, we observe the

execution time to go up for wireless+column-major

and randomized allocation. This is because these

two methods have little or no focus on ensuring co-

locality while task allocation and larger partitions

end up having more dispersed nodes. In general, we

note that with computational footprints scaling up,

both methods using Hilbert curves tend to perform

at par.

OUR PAPER DEMONSTRATES the design of a NoC-

based many-core chip that accelerates targeted

functions in a computation-intensive bioinformatics

application, viz., ML phylogeny reconstruction, and

can be easily extended to similar biocomputing ap-

plications. Our NoC design incorporates on-chip

wireless shortcuts, and we propose and evaluate

various schemes to allocate tasks on the many-core

platform. Our experiments show that the use of

space-filling Hilbert curve provides greater colocal-

ity of dynamically allocated computation nodes,

particularly when the computational footprint

scales up. For the ML application we used as a de-

monstration case, we achieved over 2000� applica-

tion speedup. h
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