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Abstract—In phylogenetic inference, which aims at finding
a phylogenetic tree that best explains the evolutionary rela-
tionship among a given set of species, statistical estimation
approaches such as maximum likelihood (ML) and Bayesian
inference provide more accurate estimates than other nonsta-
tistical approaches. However, the improved quality comes at a
higher computational cost, as these approaches, even though
heuristic driven, involve optimization over multidimensional real
continuous space. The number of possible search trees in ML is at
least exponential, thereby making runtimes on even modest-sized
datasets to clock up to several million CPU hours. Evaluation
of these trees, involving node-level likelihood vector computation
and branch-length optimization, can be partitioned into tasks (or
kernels), providing the application with the potential to benefit
from hardware acceleration. The range of hardware acceleration
architectures tried so far offer limited degree of fine-grain par-
allelism. Network-on-chip (NoC) is an emerging paradigm that
can efficiently support integration of massive number of cores
on a chip. In this paper, we explore the design and performance
evaluation of 2-D and 3-D NoC architectures for RAxML, which
is one of the most widely used ML software suites. Specifically,
we implement the computation kernels of the top three functions
consuming more than 85% of the total software runtime. Simula-
tions show that through appropriate choice of NoC architecture,
and novel core design, allocation and placement strategies, our
NoC-based implementation can achieve individual function-level
speedups of 390x to 847x, speed up the targeted kernels in excess
of 6500x, and provide end-to-end runtime reductions up to 5x
over state-of-the-art multithreaded software.

Index Terms—Hardware accelerator, multicore, network-on-
chip (NoC), phylogeny reconstruction.

I. Introduction

PHYLOGENETIC inference is one of the grand challenge
problems in bioinformatics. It aims at finding a phyloge-

netic tree that best explains the evolutionary relationship for a
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set of n taxa. In a phylogenetic tree, the taxa form the leaves,
and the branches indicate divergence from a common ancestor.
Reconstruction of the tree is done by observing and character-
izing variations at the DNA and protein level. Broadly, there
are three types of approaches used for phylogeny reconstruc-
tion: distance-based hierarchical methods (e.g., neighbor join-
ing), combinatorial optimization using maximum parsimony
(MP), and statistical estimation methods [e.g., maximum like-
lihood (ML), Bayesian inference (BI)]. Of these, the estimation
approaches such as ML and BI are statistically consistent
and are therefore widely used [1]. These methods provide a
statistical likelihood score for each reconstructed tree using
the phylogenetic likelihood function [2], [3]. The boost in
quality, however, comes at a high computation cost as the
ML formulation is nondeterministic polynomial-hard [4] and
suffers from the need to explore a super-exponential (in n)
number of trees. For example, a run using RAxML [5], [6],
which is one of the most widely used programs to compute
ML-based phylogeny, on an input comprising of 1500 genes
can take up to 2.25 million CPU hours [7]. With increasing
availability of genomic data, as documented in public genomic
data banks such as the National Center for Biotechnology
Information [8], the relevance and the utility of the statistical
estimation approaches are only expected to grow. However,
to realize their potential, scalable methods that use novel
combinations of algorithmic heuristics, hardware acceleration,
and high-performance computing are needed.

In this paper, we present a novel design of a network-on-
chip (NoC) based multicore platform for addressing the issue
of computational complexity in ML methods. The rationale for
using a NoC to address the ML application stems from the fact
that there are different levels of parallelism in the ML algorith-
mic structure that can be exploited by the NoC to accelerate
computation. Fine-grained parallelism can be exploited within
a processing element (PE) to render a fast hardware imple-
mentation for each phylogenetic function kernel. While the
same can also be implemented on a large field-programmable
gate array (FPGA) board that supports several computation
cores (e.g., similar to [9]), a NoC-based multicore system
can also handle coarse-grained parallelism more efficiently
[10]. The latter requirement becomes particularly important
in the context of ML programs because they typically involve
a large number of function invocations (see Section IV); and

0278-0070/$31.00 c© 2012 IEEE



1062 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 7, JULY 2012

at any instant, there could be a variable number of instances
of each function running simultaneously. Each instance of a
function occupies a set of nodes, and this associativity is a
time-varying property dictated by the application at runtime.
As such, use of a bus or even a hierarchical bus does not
satisfy the requirement. Using a multicore platform with on-
chip network, these requirements can be effectively addressed
by:

1) designing a homogeneous system, where application-
specific PEs are able to seamlessly support execution
of multiple function kernels at different times;

2) interconnecting them using a suitable network that al-
lows concurrent execution of an arbitrary combination
of function instances and provides the backbone for
efficient data exchange among individual PEs.

In other words, we can build a heterogeneous application
map on top of a homogeneous-core NoC. Furthermore, such
a homogeneous NoC-based system can be scaled up to pro-
vide the computation bandwidth necessary for solving larger
problems.

In our solution, we implemented different NoC architec-
tures, and tested their acceleration performance using three
most dominant function kernels in RAxML. Based on our
experiments on multiple input datasets, these kernels collec-
tively account for more than 85% of the total runtime, and in-
volve several computations of sum-of-products, antilogarithm
(exponential) and logarithm. The performance improvements
due to the architectural advantages of NoC can be signifi-
cantly enhanced if 3-D integration is adopted as the basic
fabrication methodology. The amalgamation of two emerging
paradigms—NoCs in a 3-D IC environment—allows for the
creation of new structures that enable significant performance
enhancements over traditional solutions. Consequently, we
implemented and evaluated three different NoC architectures,
namely 2-D torus, 3-D torus, and stacked torus.

The major contributions are as follows:

1) a homogeneous, unified PE design for parallel execution
of three function kernels;

2) an efficient, fine-grained implementation of the differ-
ent floating-point arithmetic operations involved in this
application;

3) novel dynamic core-allocation schemes to minimize
internode communication latency;

4) exploration and evaluation of the merits of different 2-D
and 3-D NoC architectures.

Simulations show that through appropriate choice of NoC
architecture, and novel core design, allocation and place-
ment strategies, our NoC-based implementation can achieve
function-level speedups of 390x to 847x, aggregate speedups
of accelerated kernels in excess of 6500x, and end-to-end
runtime reductions of over 5x with respect to state-of-the-art
multithreaded software.

II. Related Work

Considerable work has been done on designing hardware
accelerators for the different approaches of phylogeny recon-

struction. These efforts have generally targeted MP, ML and
BI because of their wide usage and large time complexities.

Acceleration of breakpoint-median phylogeny, which is
based on MP, is the topic of [11] and [12]. The primary
computational characteristic of breakpoint-median phylogeny
is the computation of an optimal solution for the traveling
salesman problem. In [11], Bakos and Elenis implemented
a parallelized version of breakpoint-median phylogeny using
both software and FPGA, and achieved a speedup of 417x
for a whole-genome phylogeny reconstruction. In [12], we
implemented a NoC-based accelerator that achieves a speedup
of 774x on genome sizes comparable to those used in [11].

For BI, hardware acceleration has been proposed using cell
broadband engine (CBE), GPU and general-purpose multi-
cores [13], and FPGA [9]. These platforms achieve an order
of magnitude speedup over software.

For ML phylogeny, which is the target application in this
paper, a genetic algorithm using a hybrid hardware–software
approach achieves an overall speedup of 30x [14]. A CBE-
based implementation [15] for RAxML is shown to outperform
the software by 2x. Another implementation of RAxML using
FPGA boards [7] with built-in digital signal processor slices
achieves a speedup of 8x.

In this paper, we explore the suitability and merits of using
the NoC paradigm for ML phylogeny. We extend our analysis
by evaluating the performance of 3-D NoC architectures for
this application. 3-D NoCs have been shown to have higher
performance and lower power consumption [16] compared to
2-D counterparts. 3-D NoCs have been proposed for improving
the performance of application-specific architectures in [17].
3-D design-space exploration for cache memories has been
considered in [18]. A detailed comparison of different 3-D
NoC interconnect topologies is carried out in [19]. Our results
show that the NoC platform can provide two orders of magni-
tude speedups over other existing hardware accelerators. To the
best of our knowledge, this represents the first implementation
of a NoC-based accelerator for ML phylogeny.

In our proposed implementation, we use logarithmic calcu-
lations in hardware. Fast calculation of logarithms in hard-
ware has been a well-researched topic. Kwon et al. [20]
described a fast implementation of exponentiation in hardware
targeting graphics applications. A 32-bit binary-to-binary lin-
ear approximation-based logarithm converter is described in
[21]. Optimality of Chebyshev polynomials for table-based
approximations of elementary functions is described in [22].
A technique for designing piecewise polynomial interpolators
for implementing elementary functions such as logarithm and
exponentiation in hardware is described in [23]. A unified
computation architecture for calculating elementary functions
is presented in [24], which uses a fixed-point hybrid number
system (FXP-HNS) to integrate all operations in a power and
area-efficient manner with a low percentage of error.

Our approach for accelerating ML phylogeny integrates fast
floating-point computation hardware within a multicore NoC
framework. We exploit the advantages offered by the 3-D
NoC architectures for this application domain and demonstrate
tangible improvements in speedup and energy consumption
over traditional 2-D NoC architectures.
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Fig. 1. Internal architecture of PE computation core for sum-of-four-products, logarithm, and antilogarithm.

III. NoC Design

The process of designing our NoC involves the designing of
a homogeneous computation core, the interconnect network,
application mapping, and routing and arbitration policy. The
NoC-based hardware accelerator platform is designed to op-
erate as a coprocessor with a CPU that is running RAxML
code and that offloads certain computations to the processing
cores of our platform. The offloading happens through a PCIe
interface, details of which are described in Section IV-D2.

A. Computation Core

Each core implements the principal computation kernels
of three dominant functions of the RAxML suite, namely
coreGTRCAT, newviewGTRCAT, and newviewGTRGAMMA
[6], which collectively account for more than 85% of the soft-
ware runtime. These kernels comprise of the following three
operations: sum-of-four-products, logarithms, and antiloga-
rithms. We designed a unified core architecture that is capable
of performing all these operations. The core has a six-stage
pipelined architecture as shown in Fig. 1. For computing sum-
of-four-products, all six stages are used. In stages 1 and 2, the
input is transformed to the log-domain. Stage 3 adds four pairs
of these numbers in the log-domain. Stages 4 and 5 are used
to transform these four numbers back to the linear domain.
Stage 6 adds four numbers to arrive at the final sum. The same
architecture can be used to perform the logarithm operation
by using stages 1 and 2. Similarly, antilogarithm (or expo-
nentiation) can be computed using stages 4 and 5. Stages 1,
2, and 4, 5 use piecewise linear table-based approximations

as described in [24]. These functions are implemented using
logic gates without using a ROM.

The three representative functions of RAxML are
instruction-coded to be run on the computation core. The
core is instantiated within a wrapper that provides instruction
decoding, data fetching, and data write-back functions. The de-
sign has been implemented with Verilog HDL and synthesized
with a clock frequency of 1 GHz using 65 nm standard cell
libraries from CMP [25]. The choice of the clock frequency
is based on the critical path delay of 1 ns (stage 2) shown in
Fig. 1.

1) Memory Subsystem: The computation core has the req-
uisite memory to store the input vectors and the computation
results for each step of the function computation, all in FXP-
HNS format. The per-PE memory requirement is 0.5 MB. This
is implemented in the form of register banks. As mentioned
earlier, there are no ROM-based lookup tables for computing
logarithm and antilogarithm.

B. NoC Node

The core with a wrapper is designated as a PE. Four
such PEs are integrated to form one subgroup. The choice
of this subgroup size comes from the fact that the three
functions require different numbers of sum-of-four-product
computations (8, 12, 24) for which the greatest common
divisor is four. The PEs are labeled PE0, PE1, PE2, and PE3.
A crossbar switch, shown in Fig. 2, connects the four PEs
and coordinates communication among them. The crossbar
switch has to deal with three kinds of traffic, which consists
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Fig. 2. Network switch of NoC and crossbar-connected subnet.

of intermediate function results. The first and simplest kind
involves sending data received from PEx back to PEx. The
second kind of communication involves sending data from one
particular PE to all the other three PEs within the subgroup.
The third kind of communication involves sending/receiving
data to/from the external network through a network switch.
This subgroup of four PEs along with the crossbar switch
forms a subnet under one NoC node. The number of nodes in
the system is denoted by N.

C. Network

The choice of the network is determined by the traffic
patterns [26] generated by the application. In our case, a
single RAxML run typically generates millions of invocations
of a few functions at different time-points, and each of
these functions can benefit from fine-grain parallelism by an
assignment to multiple PEs. This leads to a high volume
of arbitrary point-to-point communication. In addition, we
observed dynamically changing traffic patterns and a clear
absence of steady-state localized traffic or clustering, all of
which indicate the desirability of a distributed interconnection
topology. A statistical analysis of the traffic patterns under
the assumption of an underlying folded torus network reveals
this fact. The mean and normalized standard deviation of the
number of flits per cycle contained in the buffers of each router
in a 8 × 8 folded torus for a typical application scenario is
shown in Fig. 3. The clear lack of clustering can be observed
from the absence of prominent peaks in the mean traffic plot
in Fig. 3(a). The dynamically varying nature of the traffic
can be gleaned from Fig. 3(b) that shows substantial standard
deviation of traffic (typically above 50% of the mean) across
simulation cycles. Hence, topologies like star or quad-tree that
cater to regular or localized traffic patterns would not benefit
this application scenario.

From the VLSI implementation perspective, a mesh is a
scalable network architecture whose regularity provides for
easier timing closure and reduces dependence on interconnect
scalability [27]. A folded torus further reduces the point-
to-point separation (Manhattan distance) between nodes by
cutting down the diameter of the network by half without
compromising on the regularity or scalability of the entire

Fig. 3. (a) Mean and (b) normalized standard deviation of flits per cycle in
routers in a folded torus network.

network. Hence, we decided to explore folded torus in our
2-D NoC design.

As mentioned earlier, 3-D NoCs provide enhanced per-
formance due to the additional degree of freedom in the
vertical dimension. For larger system sizes, this enables better
integration and reduced internode hop-count [19]. We explored
the design of two different 3-D NoC architectures: 3-D folded
torus and 3-D stacked torus; and used a system size N of
64 (= 4 × 4 × 4) in our application study. A 3-D folded torus
NoC has a folded torus along each dimension (x, y, and z).
There are one-hop vertical links (in the z dimension) between
adjacent layers. On the other hand, a stacked torus [18] is
a hybrid between a 2-D folded torus, which is a packet-
switched network, and a bus, which takes advantage of the
short interlayer distances. It integrates multiple layers of folded
tori by connecting them with buses spanning the entire vertical
height of the chip. Hence, any interlayer communication (for
the same <x, y> coordinates) is one-hop.

Since each subnet associated with a node has four PEs, our
system has 64 PEs for N = 16 and 256 PEs for N = 64.
A network switch handles traffic emanating from or destined
to each network node. We use the switches described in [19]
and [28] for our design. Each switch in the 2-D architecture
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has four bidirectional ports to neighboring switches and one
bidirectional port to the crossbar switch of the subnet (Fig. 2).
In the 3-D folded torus, the switch has two additional ports
(total seven ports) to the layers above and below. Alternatively,
in the 3-D stacked torus, the switch has just one additional port
(total six ports) to the vertical bus connecting all the layers.

We adopted wormhole routing-based data exchange among
the NoC nodes. The primary data contained in the messages
exchanged among nodes are intermediate function results,
which are 64-bit numbers using FXP-HNS format [24]. Given
this small message size, we split each message into 3 flits
(header, body, and tail), each of width 64 bits. Since deeper
buffers may slow down clock frequency and do not appre-
ciably improve performance for short messages [29], we use
buffer depth of 2 flits. We adopt the routing and arbitration
mechanism from [19] and [28].

D. Function-Level Parallelization

The three target phylogenetic function kernels from
RAxML are newviewGTRCAT (f2), coreGTRCAT (f3), and
newviewGTRGAMMA (f6). We parallelize each function by
breaking down larger computation arrays into smaller units
as follows. Taking newviewGTRCAT (f2) as an example, we
can see from Fig. 4 that computation of the x3 array in each
iteration requires computation of eight sums-of-four-products,
using arrays left, x1, x2 and the eigenvalue vector EV[15:0].
Since each PE can compute one sum-of-four-products, eight
PEs (or equivalently two NoC nodes) are required. We refer
to this function as f2, indicating that its computation requires
two NoC nodes. Similarly, each iteration within the function
coreGTRCAT (newviewGTRGAMMA) involves computation of
up to 12 (24) sums-of-four-products, thereby requiring three
(six) NoC nodes. Hence, we refer to it as f3 (f6). Other
operations, such as carrying out the exponentiation operation
involved in computing the left vector in newviewGTRCAT,
are also computed in the PEs within each node. Also, in
coreGTRCAT for example, sum-of-products, exponentiation,
and cumulative addition are involved. All these operations are
executed in parallel over multiple PEs. Intermediate results
are redistributed among PEs within the same node using the
intranode crossbar switch and among other nodes using the
network switch/router.

E. Dynamic Node Allocation

A node is busy when the PEs within its subnet are
collectively executing a function; otherwise it is available.
Nodes continually keep sending their busy/available status to
a centralized controller (MasterController) that dynamically
allocates a subset of nodes from the set of available NoC nodes
to a function. If the number of available nodes at any point
of time is less than the number of nodes requested by that
function (2, 3, or 6), the function waits till the requisite number
of nodes is available. The nodes allocated for executing one
function instance are said to belong to one partition. Nodes
can be reused after execution of the function has completed
in the partition.

Since the nodes belonging to a given dynamically allocated
partition need to communicate with one another, it is desired

that they be colocated on the network in order to reduce the
number of hops required for data exchange and thereby reduce
the communication latency associated with the function. A
good allocation strategy needs to ensure this colocality, as
well as execute fast enough to not introduce any significant
allocation overhead.

One approach for allocating a partition is to use breadth-
first search (BFS) on the network. Although this appears to
be a reasonable strategy, there are certain drawbacks. First,
BFS does not guarantee the colocality of nonroot nodes. The
dispersion could become greater if the root node for BFS lies
in a neighborhood containing a majority of busy nodes. Higher
dispersion among allocated nodes in a partition results in a
higher average message hop-count, resulting in higher com-
munication latency. Second, the allocation overhead becomes
dependent on the choice of the BFS root node, and growing a
partition around a root node surrounded by a majority of busy
nodes has the risk of increasing the allocation overhead. This
is because the MasterController handling the node allocation
has to traverse each node in the neighborhood (in the adjacency
list of the parent node). Scanning the adjacency list of each
node takes one clock cycle, and therefore, growing the full
partition requires a number of cycles equal to the number of
nodes requested by the function in the best case, and N clock
cycles in the worst case, where N is the system size.

In this paper, we have developed a novel approach that uses
the Hilbert curve [30] for the dynamic allocation problem.
A Hilbert curve is a locality-preserving space-filling curve
widely used in scientific computing [31]. In addition, this
approach results in consistently lower allocation times, as
described below. In the following subsections, we describe
different approaches for dynamic node allocation that make
use of the Hilbert curve superposed on different 2-D and 3-D
NoC architectures.

1) 2-D Hilbert Curve With Serial Scan and First Fit
(2D−serial): In our first approach, we use the Hilbert curve on
a 2-D folded torus as follows. The MasterController serially
scans the nodes along the Hilbert curve and chooses the
required number of available nodes and allocates them as a
partition to the requesting function.

Using the Hilbert curve offers a couple of key advantages. A
Hilbert curve has the property that when mapped onto a regular
mesh or a folded torus, nodes adjacent along the Hilbert
curve traversal are also adjacent on the network. Furthermore,
there could be nodes which are not adjacent along a Hilbert
curve but are adjacent on the folded torus. Also, a Hilbert
curve is essentially converting a 2-D allocation problem into
a 1-D problem. Taking advantage of this property, we use a
fixed Hilbert curve embedded on a folded torus as shown in
Fig. 5 (for N = 16), where there is a one-to-one correspondence
between the node ids on the torus and those on the Hilbert
curve. This allows us to effectively predetermine the set of
possible nodes for allocation. Since this information can be
hard-wired in the design, the allocation of an entire partition
can be achieved in one clock cycle (for N = 16) or four clock
cycles (for N = 64) in our design.

Note that our Hilbert curve-based approach may lead to
three scenarios, as shown in Fig. 5. First, allocated nodes are
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Fig. 4. Schematic representation of computation tree of newviewGTRCAT (f2).

Fig. 5. Hilbert curve embedded in folded torus network architecture
(for N = 16) showing contiguous and noncontiguous partitions.

all adjacent to each other or contiguous on Hilbert and hence
the partition is contiguous on the torus. Second, the nodes are
noncontiguous on Hilbert but form a contiguous partition on
the torus. Third, the nodes are noncontiguous both on Hilbert
and on the torus.

2) Multiple 2-D Hilbert Curves With Parallel Scan and
Best Fit (2D−parallel): Despite the ease of implementing the

2D−serial approach, there are two main drawbacks. First, there
is a constant allocation penalty of four cycles per partition
for a system size of 64. In addition, the allocation policy in
2D−serial is first-fit. Hence, it does not guarantee allocation
of a contiguous partition even if one is available. Therefore,
we developed an alternative approach, 2D−parallel, where we
make the following changes to the allocation policy. This
policy is particularly suited for larger system sizes; so we will
use N = 64 in the following description of the underlying
algorithm.

1) First, we use four Hilbert curves on a square folded torus
in 2D−parallel (instead of one as in 2D−serial). These
four curves are obtained by using right-angle rotation
operations of a single Hilbert curve.

2) We further divide each of the four Hilbert curves into
four segments, one from each quadrant—thereby result-
ing in a total of 16 segments. The MasterController
module now has 16 heads, each of which is responsible
for scanning a segment. All 16 heads act in parallel.

3) Each head now preferentially looks for a contiguous
partition starting from any of the nodes in its segment.
The first head to find a contiguous partition returns it
to the requesting function and interrupts all the other
scanning heads.

4) In case, no contiguous partition is found after each
head has finished scanning its segment, we fall back
to execute 2D−serial.

We have experimentally verified that step 4) has a low
probability (<0.2) of occurring and a contiguous partition
can be found in most cases. Although there is an additional
allocation penalty due to the best-fit strategy we use [step
3)], it provides a higher percentage of contiguous partitions
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Fig. 6. 3-D folded torus NoC architecture for N = 64; also shown are the
alternating vertical node allocation directions.

than is obtained using 2D−serial. The average number of
cycles spent per allocation comes down from 4 to 3.22. More
importantly, greater contiguity of allocated partitions reduces
internode communication latency and provides better speedup,
as will be shown in Section IV.

3) 3-D Folded Torus NoC (3D−torus): To further improve
contiguity of the allocated partitions while spending fewer
allocation cycles, we map our application to a 3-D folded torus
architecture. The NoC is a 4×4×4-folded torus as shown in
Fig. 6. A 2-D 16-point Hilbert curve is embedded on the top
layer (layer 0) and is used to allocate partitions. For each
allocation request, MasterController allocates all available
nodes in the column (consisting of four layers) corresponding
to the current head position. The next head position follows
from the 16-point Hilbert curve. This is done till all requested
nodes are allocated. In addition, we ensure vertical contiguity
by flipping the vertical direction of allocation. For instance,
if the most recent node allocated in the current column is
from layer 3, the next node to be allocated comes from layer
3 in the column corresponding to the next head position. In
other words, we alternately move up and down the columns
during node allocation. We are able to handle allocation of
nodes in one vertical column in one cycle; hence the average
allocation time for 3D−torus goes down to 1.56 cycles. As
shown in Section IV, 3D−torus provides the highest speedup
and greatest energy efficiency.

4) 3-D Stacked Torus (3D−sttorus): Another popular 3-D
NoC architecture is the stacked torus. For our application, we

Fig. 7. Stacked torus NoC architecture for N = 64.

have four 4×4-folded tori vertically stacked using 16 buses as
shown in Fig. 7. Bus width is a determinant of the performance
of a stacked torus. As shown in [19], a stacked torus with a
bus width of 4 flits achieves the same throughput performance
as of a 3-D torus. Hence, we use a bus width of 4 flits, i.e.,
256 bits in our design. Note that these are very short buses
spanning four layers. The allocation policy in 3D−sttorus is
exactly the same as 3D−torus. However, as a consequence
of the allocation method, our application generates significant
amount of traffic between nodes in the same column, which
in turn leads to bus contention and destination contention, as
will be shown in Section IV.

F. Routing and Arbitration

Our routing policy is based on dimension-order: XY routing
on folded torus for 2D−serial and 2D−parallel, and XYZ
routing for 3D−torus and 3D−sttorus.

In 2D−serial and 2D−parallel systems, we distinguish be-
tween messages originating from contiguous partitions and
noncontiguous partitions, and the corresponding flits are des-
ignated as A-type or B-type, respectively. Each node has a set
of allowed directions depending on the partition it is situated
in. For a contiguous partition, any network switch on the
partition boundary has channels leading out of the partition
marked as disallowed. For noncontiguous partitions, all net-
work switches have all directions marked as allowed. In other
words, traffic emanating from a contiguous partition always
remains within the partition boundary and traffic emanating
from a noncontiguous partition is free to move in any direction
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Fig. 8. Examples of different paths taken while routing A-type and B-type
traffic.

dictated by the routing policy. At each network switch, an
A-type message is restricted to make the next hop in one of
the allowed directions. However, since B-type messages have
unrestricted access, they follow torus routing, which is similar
to XY routing but includes the torus loopback information to
determine the shortest path. A-type messages take the X di-
rection if that direction is allowed, and Y direction otherwise.
Fig. 8 shows an example. A message in an A-type partition
going from node 4 to node 7 follows the path indicated. In
the B-type partition, there is one message going from node 6
to node 11 via node 7 outside the partition. Another message
from node 0 to node 15 goes through node 3, which is outside
the partition, and makes use of the torus loopback.

It can be noted from the above routing mechanism that
switches internal to a contiguous partition will face A-type
traffic from that partition and may face B-type traffic from
any noncontiguous partition(s). On the other hand, switches
internal to a noncontiguous partition will face only B-type
traffic from noncontiguous partition(s). When there is more
than one message competing for the same port at any switch,
the following arbitration policy is used. The remaining hop-
count of the message is determined by looking up the pre-
calculated Manhattan distance from the current node to the
destination. The message with the maximum remaining hop-
count, i.e., the one farthest from its destination, is granted
the channel. In case of a tie, B-type is given preference. The
remaining hop-count is also used as the arbitration parameter
while routing in 3D−torus. This policy ensures that traffic with
a higher potential latency is routed earlier, thereby reducing
worst-case latency.

Since B-type messages in 2D−serial and 2D−parallel
follow XY routing on torus (as described above), any
noncontiguous partition is automatically deadlock-free. For

contiguous partitions of sizes 2 and 3, there is no possibility of
a cycle in the channel dependence graph because the message
is always contained within the partition and two or three nodes
cannot form a cycle on a torus. Hence, deadlock is avoided in
this case. For contiguous partitions of size 6, we can have a
partition like the A-type partition (nodes 1, 2, 3, 4, 5, and 7)
in Fig. 8 or a partition comprising of nodes 8, 9, 10, 12, 13,
and 14 in Fig. 5. In the former case, we do not have a cycle
and hence deadlock cannot arise. In the latter case, because
we follow XY routing, deadlocks are avoided. For routing in
3D−torus and 3D−sttorus, we follow XYZ (dimension-order)
routing. Therefore, our routing and arbitration policy for each
architecture is deadlock-free.

IV. Experimental Results

A. Experimental Setup

The computation core has a datapath width of 64 bits and
provides a number representation accuracy of 2−52. We synthe-
sized Verilog RTLs for the computation core, the instruction-
decoding wrapper, the routers and MasterController with
65 nm standard cell libraries from CMP [25]. The NoC inter-
connects are laid out and their physical parameters (power dis-
sipation, delay) are determined using the extracted parasitics
(resistances and capacitances). Use of folded torus topology
prevents occurrence of long warp-back wires. The critical
path occurs in the PE datapath as mentioned in Section III-
A, following which we used a clock with 1 ns period. We
simulated 2D−serial NoCs with system sizes N = 16, and
2D−serial, 2D−parallel, 3D−torus and 3D−sttorus NoCs with
N = 64 using the NoC simulator used in [28]. Recall that there
are four PEs per NoC node in the system.

The NoC-based multicore platform is modeled as a co-
processor connected using a PCIe interface. We modeled a
PCI Express 2.0 interface using Synopsys Designware IP PCI
Express 2.0 PHY. This IP has been implemented on 65 nm
process and operates at 5.0 Gb/s. We use a 32-lane PCIe 2.0
for our simulation.

We ran RAxML-VI-HPC (version 7.0.4) [6] on three inputs
that are provided with the suite. These inputs comprised of
DNA sequences originally derived from a 2177-taxon 68-gene
mammalian dataset described in [32]. We ran RAxML in
single and multithreaded modes on a Pentium IV 3.2 GHz
dual-core CPU, and used the best software runtimes (four
threads or 4T) as our baseline. Furthermore, to measure
the relative computation intensities of each function kernel,
we profiled RAxML on all inputs using the GNU gprof
utility. The results consistently showed that the functions
coreGTRCAT (f3) (48%), newviewGTRGAMMA (f6) (21%),
and newviewGTRCAT (f2) (17%) collectively account for more
than 85% of the total runtime. The average CPU times spent in
the invocation of each of the three functions were also noted;
these times are labeled Tf2, Tf3, and Tf6. We generated 100
bootstrap trees using RAxML for each input and used them
for subsequent likelihood calculation.

We compared the numerical results produced in our PEs
with the ones produced while running RAxML on the above-
mentioned CPU using eight decimal places of precision and
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Fig. 9. Variation of partition dispersion and function communication latency across different NoC architectures.

verified that the average percentage of deviation was below
0.1%, which was within tolerable limits and did not hamper
the stability of RAxML or the likelihood computation.

B. Test Case Design

The function kernels whose acceleration we target are
invoked during generation of bootstrap trees and computation
of likelihood of the generated trees to find out the best tree.
Working on each tree in parallel helps us work around the
sequential dependence among functions within one execution
thread. Target function kernels originate from different parallel
execution threads and hence can be allocated to different
nodes of the NoC-based platform. Allocation of nodes to
each function is based on the policy in Section III-E. We
designed test cases for 2D−serial (N = 16 and N = 64),
2D−parallel (N = 64), 3D−torus (N = 64), and 3D−sttorus
(N = 64). Each test case represents a combination of the
three target functions (f2, f3, f6). In order to compare the
different NoC architectures, we use the same test cases on
each. However, the allocation of a test case can result in
different mixtures of contiguous and noncontiguous partitions
depending on the underlying architecture and system size. Test
cases have been captured from a wide range of real-world
scenarios, including the best and the worst case. The mean
execution time of each function is estimated by averaging
over all the test case scenarios. During the execution of a
function, internode exchange of intermediate results occurs
simultaneously with intranode computation (in the PEs within
the subnet). This allows masking of communication latency
by computation delay. We observed that newviewGTRCAT (f2)
requiring two nodes per invocation is generally computation-
intensive, while coreGTRCAT (f3) and newviewGTRGAMMA
(f6) requiring three and six nodes, respectively, are generally
communication-intensive.

C. Communication Latency

Total communication latency indicates the amount of time
spent in executing the function. Since computation and com-
munication are pipelined, we define residual communication

latency as the number of clock cycles spent in performing
only internode communication. The average lifetime of each
partition is closely related to the total communication latency.
The contiguity (or noncontiguity) of an allocated partition has
a direct bearing on the communication latency (total or resid-
ual) for executing the function. The effect is most pronounced
in the case of newviewGTRGAMMA (f6) and also affects
coreGTRCAT (f3). On the other hand, newviewGTRCAT (f2)
has a net zero residual communication latency. This is because
this function is spread across only two nodes and computation
and communication cycles complement each other. We use
average partition dispersion (diameter) as a measure of the
noncontiguity of the allocated partition. We observe (Fig. 9)
a gradual decline in average partition dispersion moving from
2D−serial to 2D−parallel to 3D−torus. The average communi-
cation latency involved in function execution displays a similar
trend across architectures. The role of the interconnection
topology here is to reduce the average partition dispersion and
hence the residual communication latency. B-type messages
originating from noncontiguous partitions as a percentage of
the total number of messages reduce from 34% in 2D−serial
to 24% in 2D−parallel, further demonstrating the impact of
contiguity of partitions on latency performance. Partitions
on 3D−sttorus have much lower dispersion than the other
architectures owing to the presence of a bus in the vertical
dimension, which provides one-hop transit between any two
layers. However, this does not translate to lower communica-
tion latency because of bus and destination contention. In fact,
latencies for 3D−sttorus are observed to be slightly higher than
those in 3D−torus (most pronounced for f6 as shown in Fig. 9).

D. Speedup
We used two different measures to evaluate the acceleration

performance of our design. The first measure is function-level
speedup, which assesses the level of fine-grained parallelism
achieved by our PE design. The second measure is aggregate
speedup of the accelerated kernels, which measures the degree
of acceleration achieved by integrating the PEs in the NoC
framework.
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Fig. 10. Function-level speedup across different NoC architectures.

1) Function-Level Speedup: In order to determine
function-level speedup, the total execution time for each
function, consisting of computation and communication com-
ponents, was averaged over all test cases on each archi-
tecture (2D−serial, 2D−parallel, 3D−torus, and 3D−sttorus)
and compared with the baseline CPU times consumed by
the function while running the software (Tf2, Tf3, Tf6).
The speedup obtained for the functions on each architec-
ture is shown in Fig. 10. 3D−torus consistently provides
the best function-level speedup for all three functions. Note
that the best speedup (on 3D−torus) of 847x is obtained
for coreGTRCAT (f3), which accounts for 48% of the total
software runtime. The least speedup (on 3D−torus) of 390x is
obtained for newviewGTRCAT (f2), because it is the small-
est function kernel and requires only two NoC nodes (or
eight PEs) by design. As expected, function-level speedup
has an inverse relationship with communication latency
(Fig. 9).

2) Aggregate Speedup of the Target Function Kernels: This
is a measure of the acceleration achieved on the targeted
function kernels, and is the ratio of the CPU runtimes of
the test cases consisting of these kernels to the runtimes
of these test cases on our NoC-based platform of a given
system size (N) and architecture (2D−serial, 2D−parallel,
3D−torus, and 3D−sttorus). Each test-case configuration rep-
resents a typical snapshot of the system during the course of
execution of parallel RAxML threads, with our NoC-based
platform handling the three phylogenetic kernels. Several in-
stances of newviewGTRGAMMA (f6), coreGTRCAT (f3), and
newviewGTRCAT (f2) occupying contiguous and noncontigu-
ous partitions are present in each such test-case. The total time
spent in one test case also includes the time required to allocate
all partitions (allocation time) and to load the input vectors to
the function in 64-bit FXP-HNS format [24] (interface time)
on the NoC using the PCIe interface described earlier.

On average, 2D−serial with N = 16 provides a speedup
of ∼2200x, whereas a larger system size (N = 64) provides
∼4300x speedup. The ideal increase (4x) in speedup with sys-
tem size was not obtained because of higher penalties incurred
in allocation time and interface time, and higher noncontiguity
of partitions leading to increased communication latency. This

Fig. 11. (a) Total dispersion across different NoC architectures. (b) Average
aggregate speedup of the accelerated kernels across different NoC architec-
tures. (c) Total system energy consumption across different NoC architectures.

is where the benefits provided by 2D−parallel, 3D−torus, and
3D−sttorus become evident.

We classified test cases on systems with N = 64 on the
basis of the number of constituent functions (or partitions).
Test cases with a lower number of partitions (average 15.67)
have more instances of f6. Such instances occur mainly during
the likelihood evaluation phase. Test cases with higher number
of partitions (average 23.33) have significantly more instances
of f2 and f3. These scenarios are prominent during generation
of bootstrap trees. Fig. 11(a) shows the observed dispersion
as a function of the underlying architecture and the number
of partitions. A test case with fewer partitions is expected
to result in a higher degree of dispersion because there are
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TABLE I

Total Runtimes for Different Inputs Using Different NoC-Based Platforms Vis-a-Vis Only Software

more instances of f6. This is generally true for all the archi-
tectures except for 3D−sttorus because of the bus. Fig. 11(b)
shows the aggregate speedups of the accelerated kernels as
a function of the underlying architecture and the number
of partitions. 2D−parallel, 3D−torus, and 3D−sttorus NoCs
provide higher speedup than 2D−serial because they reduce al-
location time while improving partition contiguity. For all test
cases, 3D−torus provides the best aggregate speedup (6594x)
followed by 3D−sttorus (6428x), 2D−parallel (4937x), and
2D−serial (4326x). 3D−torus outperforms 3D−sttorus because
bus and destination contention in 3D−sttorus leads to higher
communication latency (as described earlier in Section IV-C).

E. Total Execution Time

In order to determine the overall reduction in runtime,
the runtime of the nonaccelerated portion of the software
is considered along with the accelerated portion running on
the NoC-based platform. The total execution time takes into
account all overheads involved in offloading a part of the
computation to the NoC-based platform. Table I shows the
total runtimes for two representative input datasets, 50−5000
containing 50 DNA sequences with 5000 columns each and
500−5000 containing 500 DNA sequences with 5000 columns
each. Table I shows the total runtime using our 2D−serial,
2D−parallel, 3D−torus, and 3D−sttorus architectures vis-a-
vis software. The best runtime reduction is obtained using
3D−torus NoC-based platform and is highlighted in the table.
It can be observed that most of the runtime that results
from the use of the NoC-based platform comes from the
unaccelerated portion. Even so, the overall runtime is reduced
by more than 3x for 50−5000 and more than 5x for 500−5000.
This proves the immense potential of such hardware ac-
celerator platforms in the field of phylogeny reconstruction
applications.

F. Energy Consumption

Fig. 11(c) shows the total energy consumed across different
test cases and architectures. Test cases with larger number of
partitions consume more energy than those with fewer parti-
tions on the same architecture. However, there is a significant

reduction (up to 37.7%) of energy going from 2D−serial to
3D−torus. This follows a trend similar to that observed for
total test case dispersion [Fig. 11(a)]. Lower dispersion leads
to lower average hop-count of internode messages and hence
lower energy consumed in communication. Also, in the case
of 3-D (both 3D−torus and 3D−sttorus), substitution of longer
horizontal links with much shorter vertical links leads to lower
energy consumption. 3D−sttorus has a slightly higher overall
energy consumption over 3D−torus because of the higher
capacitance of the buses and higher application runtimes.

V. Conclusion

In this paper, we presented a novel design and implemen-
tation of a NoC-based multicore platform for accelerating
ML-based phylogeny reconstruction, which is an important,
compute-intensive application in bioinformatics. The NoC-
based accelerator targeted the three most time-consuming
function kernels that collectively account for the bulk of
the runtime in the widely used RAxML software suite. Our
implementation achieved parallelization at different levels—
both within a function kernel and across several invocations
of these function kernels in parallel execution threads. Conse-
quently, our contributions include: 1) the design of a fine-
grained parallel PE architecture; 2) a novel algorithm to
dynamically allocate nodes to tasks based on Hilbert space-
filling curves; and 3) the design and extensive evaluation
of different NoC architectures, both in 2-D and 3-D, in the
context of this application. The overarching purpose of our
experimental study was to evaluate the feasibility and merits of
a NoC-based hardware accelerator for ML-based phylogenetic
kernels. To this end, our experimental results showed that our
NoC-based accelerators are capable of achieving a function-
level speedup of ∼847x, aggregate speedup of the accelerated
portion up to ∼6500x, and overall runtime reduction of more
than 5x over multithreaded software. Comparative evaluation
across NoC architectures showed that the best performances in
terms of speedup and energy consumption were obtained from
3-D NoC platforms. Our speedup performance represented
considerable improvement over existing hardware accelerators
for this application.



1072 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 7, JULY 2012

Although this paper targeted the RAxML implementation
of ML phylogeny, the design methodology and ideas for node
allocation and routing are generic enough to be carried forward
to other scientific applications which have a similar computa-
tional footprint, i.e., the need to execute a large volume of a
fixed number of function kernels, for example, other statistical
estimation methods in phylogenetic inference such as BI.
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