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Abstract—Maximum Parsimony phylogenetic tree reconstruction is based on finding the breakpoint median, given a set of species,

and is represented by a bounded edge-weight graph model. This reduces the breakpoint median problem to one of solving multiple

instances of the Traveling Salesman Problem (TSP), which is a classical NP-complete problem in graph theory. Exponential time

algorithms that apply efficient runtime heuristics, such as branch-and-bound, to dynamically prune the search space are used to solve

TSP. In this paper, we present the design and performance evaluation of a network-on-chip (NoC)-based implementation for solving

TSP under the bounded edge-weight model, as used in the computation of breakpoint phylogeny. Our approach takes advantage of

fine-grain parallelism from the multiple processing elements (PEs) and uses efficient NoC architecture for inter-PE communication. To

accelerate the application on hardware, our PE design optimizes a particular lower bound calculation operation which typically tends to

be the serial bottleneck in computation of a TSP solution. We also explore two representative NoC architectures—mesh and quad-

tree—and show that the latter is more energy-efficient for this application domain. Experimental results show that this new

implementation is able to achieve speedups of up to three orders of magnitude over state-of-the-art multithreaded software

implementations.

Index Terms—Phylogenetics, breakpoint-median problem, maximum parsimony, traveling salesman problem.
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1 INTRODUCTION

PHYLOGENETICS is the study of evolutionary relationships
among organisms based on their underlying genetic

content. The term genome is a collective reference to all the
DNA in the living cell of an organism and phylogenetic tree
construction is the process of building an evolutionary tree
based on the similarities and differences observed among
the genomic DNA of a set of species. It is a fundamental
problem in computational molecular biology with impor-
tant applications that include drug discovery. In this tree,
the leaves represent species (known) and the internal nodes
represent common ancestral species (unknown). Until a
decade ago, only a handful of genome sequences were
available, and therefore, the knowledge regarding evolu-
tionary trees was limited. However, with the recent
advances in DNA sequencing technologies, sequence
information for more than a thousand species is now
available in public databases and more large-scale sequen-
cing efforts are currently underway. Owing to this deluge in
genomic information, the computational biology commu-
nity has embarked on a project called the Tree of Life, which
is an ambitious project to construct the evolutionary tree

connecting all known species. The single largest impedi-
ment to this project is, however, the high computational
costs associated with building phylogenetic trees [1].

The process of inferring the phylogeny of a set of k taxa
(or species) entails reconstructing a phylogenetic tree based
on distance or probability measures [2]. When the relative
ordering of genes on a genome is known, a specific type of
phylogeny called the breakpoint phylogeny can be com-
puted, based on the breakpoint distance. Given a reference set
of m genes fg1; g2; . . . ; gmg, any genome can be represented
by an ordering of the subset of genes that constitute it, as
they appear from end to end of the genomic DNA. The
breakpoint distance between any two genomes is defined as
the number of gene pairs that appear adjacent in one
genome but not in the other. It is a measure of how different
two genomes are by their gene ordering. Blanchette et al.
pioneered the work on breakpoint-based phylogeny [3].
They reduced the problem of constructing an optimal
phylogenetic tree of N genomes to one of solving numerous
instances of a version of the Traveling Salesman Problem
(TSP) [4] where edge weights of the input graph are
bounded to a fixed set of integer values. Put intuitively,
each instance of TSP tries to identify the gene order of a
hypothetical ancestral genome that is the closest represen-
tative to any three given genomes. This problem is called
the 3-median breakpoint problem and has been proven to be
NP-Hard [5]. A software suite called Genome Rearrange-
ments Analysis under Parsimony and other Phylogenetic
Algorithms (GRAPPA) [6] computes an exhaustive search
across all possible trees ð� 3�5�7� . . . �ð2k� 5Þ trees) and
iteratively runs multiple instances of a TSP solver for
scoring each tree. Given the large number of trees to
evaluate, phylogenetic reconstruction can easily become
heavily compute-intensive—taking days to weeks of com-
pute time—for even a modest number of taxa and genes.
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More importantly, over 99 percent of the total runtime gets
typically spent in computing TSP instances [7].

TSP is a widely studied NP-complete problem for which
several heuristics have been explored [8], [9], [10], [11], [12],
[13], [14] and the branch-and-bound-based methods [14], [15]
continue to be the most popular among accurate solvers,
owing to their effectiveness in reducing the exponential
search space. The runtime heuristic, which itself is
computationally intensive, is an ideal candidate for paralle-
lization. An array of processing elements (PEs) working in
parallel on distinct parts of the solution would naturally
enhance performance. However, these PEs cannot work
completely in isolation and need to communicate among
themselves. This communication needs to be efficient and
synchronized with the computation operation of the PEs. To
achieve this in an on-chip scenario, a platform possessing
inherent fine-grained, large-scale parallelism and an effi-
cient communication fabric needs to be chosen. A Network-
on-Chip (NoC) provides the best fit to this requirement. On
one hand, an NoC scales very well with increasing number
of PEs; on the other hand, it offers the user the freedom to
choose the communication architecture that is most apt for a
target application.

The principal motivating application for this paper is
accelerating the breakpoint median computation in Max-
imum Parsimony-based phylogenetic reconstruction. Each
breakpoint median computation is an instance of the TSP. To
solve the TSP for a graph with m vertices, a series of lower
bound calculations is used, each of which could be
implemented as a matrix reduction operation on the
associated adjacency matrix. This operation has a time
complexity of Oðm2Þ, and therefore, performing an over-
whelming number (possibly exponential) of such reduction
operations could severely limit the scalability of the compu-
tational kernel for large graphs. We have designed an
application-specific PE that can perform the matrix reduction
in O(m) time, which in turn renders the entire computation to
have a linear time complexity with graph size. Additionally,
we explore two major NoC architectures—mesh, shown in
Fig. 1a, and a 4-way hierarchical star or quad-tree, shown in
Fig. 1b—and demonstrate the superiority of the latter for our
application. This is based on a comparison of network latency
and power consumption across the two frameworks.

The organization of the paper is as follows: Section 2
outlines prior work on accelerating phylogenetic applica-
tions through the use of hardware and development of

heuristics for TSP. Section 3 describes the branch-and-bound
algorithm for solving TSP that we have used as the basis of
our hardware implementation. We describe the NoC design
in detail in Section 4, separately outlining the design of the
PEs, switches, network, communication protocol, and
application mapping. Experimental results are presented
in Section 5 for synthetic and real biological data. We
conclude the paper in Section 6.

2 RELATED WORK

Substantial work has been carried out in the field of
hardware acceleration targeted toward phylogenetics appli-
cations. These accelerators have been based on platforms like
FPGA, Graphics Processing Unit (GPU), Cell Broadband
Engine (CBE), and general-purpose multicores (traditional
Intel/AMD dual-core, quad-core platforms). A hybrid hard-
ware/software implementation proposed in [16] using a
Genetic Algorithm for Maximum Likelihood (GAML)
approach reports a speedup of 30 over software. The
phylogenetic likelihood function (PLF) has been accelerated
around eight times through the use of FPGA boards with
built-in DSP slices in [17]. A whole genome phylogenetic
reconstruction based on a parallelized version of the break-
point median algorithm has been shown in [7]. Using a
combination of software and FPGA, total execution has been
reduced by a factor of 417 over single-thread software
implementation. FPGA-based acceleration up to a factor of
10� has been demonstrated over software for Bayesian
inference with MrBayes 3 tool in [18]. In [19], a comparative
evaluation of a program for Bayesian inference of phyloge-
netic trees is presented. While CBE and GPU are shown to
have appreciable reduction in computation time, they
introduce significant communication time penalty. The
general purpose multicores have overall better performance.

There has been another body of work on efficiently
solving TSP. These algorithms can be classified into two
groups—1) approximation algorithms that could take
polynomial time [8], [9], [10], [11] and 2) accurate algo-
rithms that run in exponential time [14], [15]. Techniques
used in approximation methods include the Kernighan-Lin
heuristics, simulated annealing, and genetic algorithms [8],
[9], [10], [11], [12]. Among accurate methods, dynamic
programming [15] is strictly exponential in practice,
whereas branch-and-bound methods [14], [15] achieve
significant pruning of search space during computation
without affecting the optimality of the output. Coarse-level
parallelization of TSP has been explored using genetic
algorithms [12] and branch-and-bound [1], [13].

Currently, there are no custom multicore NoC architec-
tures targeting TSP or phylogenetics. Here, we present the
design of a custom NoC for TSP computations typical in
phylogenetic applications and evaluate its performance.

3 ALGORITHM

In this section, we present the core computation steps of the
branch-and-bound runtime heuristic to solve TSP [15] that
we used in our implementation. The input is a directed
graph, G ¼ ðV ;EÞ with m vertices and a nonnegative cost
associated with each edge. The m vertices of this graph
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Fig. 1. (a) Mesh NoC architecture. (b) Quad-tree NoC architecture.



correspond to the m reference genes and its edges have a
bounded weight—an integer cost between 0 and 3 or an
edge with cost 1 (representing nonexistent edges) [3]. The
output is a least cost cyclic tour that traverses all vertices
exactly once.

The overall algorithm has a worst case runtime complex-
ity that is exponential in the number of vertices (i.e., genes).
However, the use of a branch-and-bound technique reduces
this exponential search space significantly for most prac-
tical inputs.

Given this input graph G, the solution space can be
represented by a conceptual computation tree. An example
is shown in Fig. 2. The tree has a total of (m-1)! potential
paths to be explored before identifying the optimal TSP tour.
Every tree edge (u; v) from a parent node u to a child node v
corresponds to a graph edge ði; jÞ 2 E, and every path from
the root to a leaf node encodes a completed TSP tour with
cost equal to the sum of the edge weights along its path. An
optimal TSP tour represents a least cost path. Our algorithm
dynamically generates and explores this conceptual search-
space tree in the depth-first-search (DFS) order.

Initially, a global variable called best cost is initialized to
1; this variable is dynamically updated to keep track of the
least cost over all TSP tours examined so far at any stage of
the algorithm. At every step, the algorithm evaluates the
next eligible tree edge in the DFS order as explained below
and also shown in Fig. 3.

At any given step, consider the newly included tree
edge to be from node u to node v, and the cost of the
corresponding graph edge (i; j) to be cij. Let c�ðvÞ denote
the cost of the least cost TSP tour passing through node v.
There are two possibilities for v.

If v is a leaf, then c�ðvÞ is set equal to the net cost of the path
from the root node to v. Subsequently, if c�ðvÞ < best cost,
then best_cost is updated to c�ðvÞ.

If v is an internal node in the search tree, a lower bound
for c�ðvÞ is computed using a matrix reduction operation. If
the computed lower bound (lbc(v)) is observed to be greater
than or equal to best_cost, further exploration of the subtree
under v becomes unnecessary and so the subtree is pruned
and the computation returns to the parent node u; otherwise,
the DFS is continued under v’s subtree.

Lower bound calculation. We use the method shown in

[15] for lower bound computation at each tree edge. An

m�m matrix called the reduction matrix (R) is maintained

throughout execution. Initially, the matrix at the root node

is set equal to the cost matrix defined by E. At any step of

the DFS, lbc(v) is calculated as follows:

1. All entries in row i and column j of R are set to 1;
2. R½j; 1� is also set to 1;
3. All rows and columns that contain at least one

noninfinity value are reduced as follows:

a. given row i, compute mini ¼ minfR½i; j�g for all
1 � j � m;

b. then for all 1 � j � m;R½i; j� ¼ R½i; j� �mini;
c. similarly, given column j, compute minj ¼

minfR½i; j�g for all 1 � i � m;
d. then for all 1 � i � m;R½i; j� ¼ R½i; j� �minj. As

this is done, all subtracted values (i.e., the
minimum values) are accumulated into another
variable adjCost.

4. Subsequently, the lower bound is given by lbcðvÞ ¼
lbcðuÞ þR½i; j� þ adjCost.

4 NOC DESIGN

The problem of MP phylogenetic reconstruction using a

branch-and-bound technique naturally lends itself to paral-

lelization using a divide-and-conquer approach by subdi-

viding the solution-space tree into independent subtrees. A

PE computes one subtree at a time and considers pruning

based on the best cost available from its peers. As this

requires a good combination of parallelism and intercore

communication, NoC provides an ideal platform owing to its

inherent parallel architecture, customizability of its core, and

its efficient communication infrastructure. We designed and

implemented the PEs and the on-chip communication

network for this NoC. Two types of communication infra-

structure were explored. One is a regular mesh network. The

other is a hierarchical four-way tree or quad-tree. The

remainder of this section details the design of the PE,

switches, communication fabric, and application mapping.
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Fig. 2. An example showing (a) the exhaustive search tree correspond-
ing to the input graph (b). If the tree is computed in the Depth-First-
Search Order, then evaluation of the path that leads to a low cost (such
as u1-u2-u6-u7-u8) first may help in pruning the computation of a higher
cost path (such as u1-u9-u13-u14-u15). This idea is exploited in the
branch-and-bound technique.

Fig. 3. Flow diagram explaining a branch-and-bound algorithm for

solving the breakpoint median problem.



4.1 PE Design

The PE has a pipelined architecture optimized to handle the

computation along an edge as per the algorithm described in

Section 3. Since the PE carries out the most computationally

intensive part of the whole operation, our attempt has been to

optimize its architecture to ensure that the number of clock

cycles required scales nicely with increasing graph size

(number of vertices,m). The primary performance parameter

is timing, which aims at reducing application runtime and

overall latency. To achieve this, we designed our PE for

O(m) time complexity, as discussed further in Section 4.1.1.

The problem of reducing overall latency of the system has

been dealt within Section 4.5. Our PE has an integer data path

because breakpoint median computation for MP phyloge-

netic reconstruction consists entirely of integer operations.

The principal components of the PE are a reduce block and

peripheral control logic, each of which is described in detail

below. We use the short form lg k to denote log2k. The data

path consists of the following fields (m: number of vertices

and w: maximum edge weight):

1. x—the parent node (u) uses lg m bits.
2. y—the child node (v) uses lg m bits.
3. LBC—the lower bound cost (lbc(u)) estimate at an

edge; this requires lg mþ lg wþ 1 bits.
4. EPC—the exact path cost ðlbcðuÞ þR½i; j�Þ deter-

mined so far; it takes lg mþ lg wþ 1 bits.
5. TSP—the TSP adjacency matrix (R), flattened. Its

representation takes m2�lg w bits.
6. VLST—the current list of vertices traversed.

m�ðlg mÞ þ 1 bits are required to store this field.
7. CC—the candidate children at every stage. It takes

m bits.

As is evident, the data path complexity of the hardware is

Oðm2Þ. In our approach, breakpoint distances can range

from 0 to 3, which is the range of the valid weights we used.

We used the weight 4 to denote a nonexistent edge or1. A

different range of weights just changes the number of bits

for w. A block diagram of the PE is shown in Fig. 4.

Subsequent references to the subblocks in parentheses

(e.g., � ’, etc.) in this section refer to this figure.

4.1.1 Reduction Block

This block (�) carries out the matrix reduction operation
described in Section 3. Based on the algorithm, the runtime
of the operation is a function of the matrix size, i.e., Oðm2Þ.
This operation consumes the maximum fraction of the total
time required for an edge computation. Hence, a signifi-
cant amount of time is saved by suitably optimizing its
design. Our implementation achieves O(m) cycle time by
using microlevel parallelism inside the reduce block. This
has the effect of drastically reducing the total time as well
as providing better time scalability with increasing input
graph size, m.

The matrix is reduced using the new values of x and y in
stage2 (see Section 4.1.2 below for details on the operations
up to this stage) and the adjacency cost adjCost is obtained.
Fig. 5 shows the architecture of the reduce block. The
flattened TSP matrix is initially reorganized into rows and
columns in the component denoted as matrix. There are
m rows and m columns with each entry taking up lg w bits.
The register bank minval of width m�ðlg wÞ is initialized
with a bit pattern representing infinity (3’b100 as mentioned
earlier). A counter is used as a state machine controller.
There is an m-sized bank of comparators that compare one
element from every row or column in every cycle.
Minimum value calculation for all rows and the same for
all columns take m cycles each. Additional three cycles are
required for subtraction of the minimum values, for
calculation of the final adjCost, and for control operations
for each case (row and column blocks). The entire reduction
operation takes 2�ðmþ 3Þ cycles to complete under the
current implementation.
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Fig. 4. Internal architecture of processing element for edge reduction.



4.1.2 Peripheral Control Logic

The peripheral control logic is used for vertex selection, cost
comparison, and data management. The register bank for
the first stage is stage1, which has the same width as the
data path. The input control multiplexer initially switches to
select the current vertex data. The CC field is computed (’)
from VLST in m cycles in the worst case.

In the second stage, the candidate child is found by
scanning (�) CC of stage1. Again, this requires m clock
cycles in the worst case. Using this candidate child, VLST is
updated (B) for the child node in the graph. If it is not a leaf
node (A), the candidate child becomes the next child node,
while the current node (y of stage1) becomes the parent node
x of stage2. During the same stage, the data pertaining to the
best case obtained so far are fetched into stage1. The input
multiplexer now selects the lowest cost data (global best cost)
available to the PE at this time. At this stage, TSP of stage1
gets the original TSP matrix.

The current value of the exact cost of the path found so
far, EPC, is updated by adding to it the edge cost from x to y
in the original adjacency matrix. This is checked against
global best cost and reduce operation is started only if EPC is
lower. The sum of adjCost (obtained from reduce operation)
and EPC yields the lower bound cost, which is again
compared with the best cost found so far. If EPC or LBC is
larger than the current best cost, the tree is pruned (E), the
current child is aborted, and the path through another child
is explored. The data on stage2 are reloaded back to stage1
with the old value of x and a new calculation for the
candidate child. If LBC is smaller and we have not reached a
leaf node, normal operation (DFS) continues with the new
set of data. If we have hit a leaf node with an LBC lower
than the best cost globally found so far, this value (new
global best cost) is sent to the switch to be communicated
with other PEs in the network.

4.1.3 Memory

The memory is physically distributed across all PEs, and the
memory local to each PE has two logical partitions. One
part of the memory stores the TSP matrix corresponding to

the root of the subtree that is currently assigned to that PE.
Another part of the memory stores the intermediate matrix
data that result along the way of evaluating a path down
that subtree.

The part of the memory that stores intermediate matrix
data can be implemented as a stack. During DFS, the new
vertex data (path cost, vertex list, and associated adjacency
matrix) are pushed into the stack (Fig. 4). The stack is full
only when the leaf node is reached. If there is pruning (before
the leaf node is reached), the stack is popped. In this scheme,
every PE has a stack with m levels, where each level of the
stack needs to store ðmþ 1Þ�ðlgmÞ þ ðm2 þ 1Þ�ðlg wÞ þ 2 bits.
Since lg w is a constant, the total memory requirement is
Oðm2Þ�OðmÞ or Oðm3Þ. The total memory required per PE for
different values of m is shown in Table 1.

An improved scheme is explored, where the memory
requirement is reduced to Oðm2Þ. In this scheme, the entire
adjacency matrix at each level is not stored in the stack.
Instead, we store only the original values in the row i and
column j that are made 1, the row-wise minima and the
column-wise minima obtained during reduction at each
level. These data require 4m�ðlg wÞ þ 2m bits at each level.
In addition, the adjacency matrix only for the current child
level is stored. While going back to the parent, these data at
each level are used to backtrack and reconstitute the
adjacency matrix at the parent level. The reconstitution step
leads to a negligible runtime penalty of 1.8 percent. The total
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Fig. 5. Internal architecture of reduction block (�) for linear-time matrix reduction.

TABLE 1
Per PE Memory Requirement for Different Input Genome Sizes



reduction operation in the improved scheme takes 0:1832 �s
against 0:18 �s in the older scheme. However, the overall
memory requirement improves to ðmþ 1Þ�ðlg mÞ þ ð5m2 þ
1Þ�ðlg wÞ þ 2m2 þ 2 bits. This improves the memory scal-
ability of the design and enables implementation for higher
values ofm for the same per-PE memory as can be seen from
Table 1. We use this memory implementation for our
experiments.

A list of all subtrees to be computed is maintained in
memory. Once each PE completes one subtree reduction, it
picks up the next available subtree and removes it from the
list. This is achieved by maintaining a global array of flags
and a mutually exclusive semaphore.

4.2 Network Design

The choice of the network architecture is affected by
application modeling and traffic pattern analysis, as is
explained in the seminal paper on an NoC design
methodology [20]. Our application is mapped on a set of
homogeneous cores, each of which carries out reduction of
a subtree. The need for communication arises when a PE
needs to update the network with the best score it has
obtained. This is explained in detail in Sections 4.3 and 4.4.
The mode of communication involved in this case is a
conditional broadcast. We explored two different kinds of
network architecture—a mesh, shown in Fig. 1a, and a
quad-tree, shown in Fig. 1b. A mesh is the most appropriate
scalable topology for broadcast traffic. Its regularity
provides for easier timing closure and reduces dependence
on interconnect scalability [20]. The hierarchical nature of a
quad-tree minimizes the diameter of the network for the
same number of nodes, thereby amortizing the router
(switch) overhead and reducing latency [20]. Other com-
mon network architectures like point-to-point, full crossbar,
or ring do not scale well with increasing system size [21],
[22] and far exceed latency/area budgets. With increasing
system size (N), the number of interswitch links in a mesh
increases faster than that in a quad-tree. The expected
volume of inter-PE communication in our application is
relatively low. Hence, having fewer links in our network
can lead to potential savings in area and power without
incurring a risk of network congestion.

The diameter of a mesh architecture increases as OðpNÞ
where N is the system size or the number of PEs. The same
for a quad-tree increases as Oðlog4NÞ. In the worst case, the
mode of communication for our application involves some
form of broadcast as the best cost is written to all the PEs
except for the originating PE. Hence, the worst case hop
count is a linear function of the diameter. It should be
remembered that all links are not of the same length in a
quad-tree, where links higher up the tree are longer and
have a greater delay. Table 2 shows an estimate of the

number of clock cycles required per write in the worst case
in 65 nm CMOS technology with a clock period of 400 ps.
Quad-tree has an advantage over mesh in terms of
communication latency for N > 16. However, the key
advantage of a quad-tree comes from power savings
because the number of links and switches is drastically
reduced. These comparisons are provided in Section 5.

The problem of mapping the application on the nodes of
the NoC is also important in optimizing overall latency.
This is discussed in detail in Section 4.5.

4.3 Switch Design

Different switches are designed for each of the two network
architectures explored.

4.3.1 Mesh

A typical switch that is used on a mesh is shown in Fig. 6a.
Input buffers InN, InE, InS, and InW receive data from four
neighboring switches and an input buffer InLoc receives
data from the associated PE. There is a dedicated buffer
(BufOut) that provides data to the network as well as to the
associated PE.

Each set of input/output data consists of the fields
1) path cost, 2) vertex list, and 3) transmission control bits.
At every cycle, one of four transmission decisions is taken
by the Decision Making Unit (DMU) and the data are
written into an internal buffer (local). The same is
transmitted out in the next cycle through BufOut. The
transmission control bits are as follows:

. NOTX: No valid transmission.

. NORETX: No retransmission.

. DOTX: New best cost from local PE; transmit.

. TRWL: New best cost from other PE; transmit and
update local PE.

Fig. 7 shows the state diagram for the control states and
Fig. 8 shows a timing diagram for a typical situation. It is to be
noted that a switch receives data from each of its neighboring
switches in every cycle but the transmission control bits
determine whether the data are valid for consideration or
not. The data are considered if the control bits are DOTX or
TRWL but not if they are NOTX or NORETX.

4.3.2 Quad-Tree

There are different levels of switches for this network
architecture. The leaf level switches (refer to Fig. 1b) are
denoted L1, the next higher level L2, and so on. An L1 switch
consists of five buffered input/output ports (BufIn/BufOut):
four catering to the four leaf PEs and the fifth to the parent
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TABLE 2
Worst Case Write Latency in Clock Cycles

Fig. 6. Internal architecture of switch for (a) mesh and (b) quad-tree.



switch. For an L2 switch and upward, four children ports

cater to lower level switches and the parent port caters to the

higher level switch. The top level switch has only four

downlinks but no uplink. Each set of input/output data

consists of the fields 1) Path Cost, 2) Vertex List, and 3) Update

control bit (UCB). The switch architecture is shown in Fig. 6b.
UCB is a flag to indicate whether the status of the data is

valid (UPDT) or invalid (NOUP). The receiving parent or
child switch infers “no transmission” if UCB is set to NOUP.
In every cycle, the switch takes a decision based on the
following algorithm.

Let C1; C2; C3, and C4 be the four (children) downlinks
and P be the (parent) uplink and let us define the set
L ¼ fC1; C2; C3; C4; Pg. Let us suppose the best (lowest)
cost, PCi, for a decision cycle comes from i 2 L, i.e.,
PCi < PCj8j 6¼ i; j 2 L. Then, we have

BufOut½k�  PCi8k 2 L;
UCB½i�  NOUP;

UCB½j�  UPDT8j 6¼ i; j 2 L:

4.4 Communication Protocol

In the mesh architecture, every switch communicates with its
immediate neighbor and gets data in every cycle from at
most four neighboring switches. Based on the decision
mechanism described in Section 4.3, the switch places data
on BufOut with appropriate control bits. The neighboring
switches get this value in their input buffers in the next cycle.
Hence, at every cycle, data are sent in all four directions.

In the quad-tree, every switch communicates with its four
children and one parent in every clock cycle. It receives data
from its parent and/or one or more of its children and takes
a decision on the lowest cost available to it thus far. Once
found, these data are placed on four output buffers, except
the direction they came from along with appropriate UCB.
For the best cost data to propagate to the entire network,
they have to go through a maximum of H hops where H is
given by

H ¼ 2� log4 Nd e: ð1Þ

Note that H=2 is the height of the tree. One important
fact to keep in mind is that each hop does not consume the
same number of clock cycles as the wire length varies at
different levels.

The need for inter-PE communication arises when a
particular PE checks against the global best cost obtained so
far and finds out that its local best cost is lower than the
global best cost. At this stage, the PE should broadcast its
newly obtained value to the whole network. One way to
implement this is to use flooding. However, this could lead
to an unnecessary network congestion thereby affecting
scalability. Therefore, we devised an improved alternative
strategy where a PE conditionally broadcasts valid data only if

1. its local best cost is worse than the global best cost
but it has not yet participated in the broadcast of this
global cost or

2. its local best cost is better than the global best cost
(currently available to the rest of the network) and it
has not been previously transmitted.

The above scheme ensures elimination of redundant
communication, thus reducing communication overhead
and power consumption without compromising on the
correctness of the answer.

4.5 Application Mapping and Trade-Off

Application mapping significantly impacts the overall
latency and total energy consumption of the NoC. The PE
that finishes its share of reduction computations last limits the
performance of the entire system. The determining factor for
this is the load distribution among PEs, which is dependent
on input data. In our scheme, each PE picks a subtree
dynamically from a common pool of available uncomputed
subtrees, once it has finished computing its own subtree. This
can happen either when the PE has finished computing the
subtree exhaustively or when it has pruned it. This could
result in each subtree contributing to a different number of
reductions and each PE computing a different number of
subtrees. It is evident that we need to ensure that PEs are
evenly utilized to minimize the impact of a “bottleneck” PE
and achieve the best overall latency. Hence, application
mapping on the NoC needs to be optimized such that the load
distribution among PEs is even. We use the following
definitions to formulate the problem:

. fi: utilization factor of PE i,

. ti: application latency of PE i,
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. TPCIe: latency overhead of the system for loading
data through PCIe, and

. Tpick: cumulative latency overhead of each PE picking
subtrees from the pool of uncomputed subtrees.

Overall application latency, Toverall, is given by

Toverall ¼ TPCIe þ Tpick þmaxftig; ð2Þ

where maxftig is over all i. Note that the last term is the
latency of the “bottleneck” PE. ti is proportional to fi. TPCIe
and Tpick are related to fi as explained below.

Experiments showed that the load distribution among
PEs ðfiÞ becomes more balanced when the number of
subtrees in the common pool is much higher than the
number of PEs. For a graph with m vertices, the solution-
space tree with the starting node as root (level 0) has ðm� 1Þ
nodes at level 1, ðm� 1Þ�ðm� 2Þ nodes at level 2, ðm�
1Þ�ðm� 2Þ�ðm� 3Þ nodes at level 3, and so on (Fig. 9). So
partitioning the solution space by choosing subtrees rooted
at a deeper level generates more subtrees, helping to balance
load and thereby ensure maximum achievable parallel
speedup. Now, TPCIe, the overhead involved in loading the
entire set of subtrees to the system using PCIe increases with
the amount of data that needs to be transferred, which
increases with the number of subtrees. Tpick also increases
with the total number of subtrees handled by each PE. Hence,
it is clear that the dependence of ti on fi is opposite to that of
TPCIe and Tpick on fi. We need to optimize Toverall in (2) with
these constraints. As explained in Section 5, we have
considered m ¼ 110 in our experiments. In this case, we
resolved this trade-off by choosing to work on subtrees
rooted at level 2, which generated 109�108 subtrees and yet
kept the overhead to a manageable amount. Note that
109�108 is much larger than the largest system size (number
of PEs, N ¼ 64) we experimented with, which led to a
balanced load distribution.

5 EXPERIMENTAL RESULTS

5.1 Experimental Setup

The performance evaluation of the NoC was carried out
from the timing and power perspectives during phyloge-
netic reconstruction with varying data sets. Different
parameters associated with the NoC are as follows: the

system size, N , is the number of PEs in the NoC. N was set
to 4, 16, and 64 for evaluating the performance of the NoC
with scaling of system size. The number of vertices in the
input graph is denoted by m, which determines the width
of the data path. In practice, this value should be set to the
number of genes shared by the input genomes. For
example, chloroplast genomes of potato, tomato, and wheat
share 110 genes; hence, m ¼ 110 in this case. In our
experiments, we used two types of input data: 1) multiple
sets of synthetic genomes with m ¼ 110 used for exhaustive
system-wide parametric study; and 2) two sets of real input
genomes (as explained in Section 5.3). Note that the value of
m affects the size of the data path and the memory
requirements in the PE as per the discussion in Section 4.
Since we have dealt with three-median breakpoints, break-
point distance can vary between zero and three. Without
loss of generality, the maximum weight w has been taken to
be four to indicate1 or a nonexistent edge. As with m, this
choice affects the data path size but to a lesser degree.

Each PE with its corresponding switch constitutes one
node in the NoC. They were implemented by synthesizing
Verilog RTL using Synopsys Design Compiler followed by
place-and-route with Cadence SoC Encounter using stan-
dard cell library of 65 nm process [23]. Extracted parasitics
were used in Synopsys PrimeTime to determine postlayout
timing performance. The pipelined design could sustain a
clock frequency of 2.5 GHz in each PE and switch. This was
verified with m ¼ 110 and higher. The critical path delay
using 65 nm timing library is within 400 ps, as shown in
Fig. 5. In order to estimate the total power dissipation, it
becomes necessary to record the total communication events
involving all the PEs. For modeling the event statistics, we
implemented a multithreaded program to act as the software
driver, which recorded the number of reduction operations
performed by each thread, and the number of successful
write operations by that thread. Each individual thread of the
software driver functionally simulated a processing element
of the NoC. Thereafter, these statistics were used in
conjunction with Synopsys Power Compiler using the library
[23] for estimating the total computation power of all the PEs.
The switch power (also obtained from Synopsys Power
Compiler) was separately added to this component. Logic
gate count for one PE and associated network switch with
m ¼ 128 is 1.267 million.

Interconnect characteristics (delay, power) were deter-
mined using Cadence Spectre. Wire capacitance informa-
tion extracted from layout was used to determine delay and
energy dissipation of interconnects. Multiple clock cycle
delay in longer interconnects was accounted for.

PCI Express 2.0 is used as the interface for initially
loading the graph data into the NoC. For modeling this
interface, Synopsys Designware IP PCI Express 2.0 PHY
was used. It has been implemented on 65 nm process and
operates at 5.0 Gbps. We use a 32-lane PCIe 2.0 for our
simulation. Both mesh and quad-tree architectures were
considered for performance evaluation.

GRAPPA [6] was used as the software benchmark. It is a
standard and widely used program for MP phylogenetic
analysis. To achieve its best performance, GRAPPA was run
in its multithreaded mode on a quad-core 2.40 GHz Intel Xeon
E5530 processor with 16 GB of RAM. The runtime measured
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Fig. 9. Diagram showing the number of subtrees generated at different

levels after partitioning the search space tree.



through GRAPPA served as the basis in our speedup
calculations. Specifically, speedups reported are calculated
as the ratio of GRAPPA runtime over the total execution time
on anN-PE NoC. Note that different multithreaded GRAPPA
runs were found to yield different output sequences with the
same optimum score. Our NoC simulation also outputs a
sequence that matches this optimum score.

5.2 Performance on Synthetic Data

Five synthetic data sets were generated and used as input.
Each input consisted of three genomes with 110 genes each
such that m ¼ 110. Each data set was generated to have a
different common subsequence length and, hence, different
divergence. Pairwise divergence (�) is given by subtracting
the length of the longest common subsequence from m. We
have three values of � for each input. The standard
deviation of the pairwise divergences (��) was normalized
by dividing it by the mean (��) and used as the divergence
metric, � ¼ ð��=��Þ. This metric serves as a measure of the
skew among the three genomes and is made to vary across
the entire range of possible values, thereby covering the
entire range of the possible input spectrum. Low values of
� indicate that the genomes are equally far apart
irrespective of the actual magnitude of the breakpoint
distance. A high value of � indicates that two genomes are
closer to each other than they are to the third. Five synthetic
sets of three genomes each were generated such that the
values of � in these inputs are 0.731, 0.498, 0.274, 0.103, and
0.039, respectively; these inputs were labeled SynData 73,
SynData 50, SynData 27, SynData 10, and SynData 04,
respectively. It is also to be noted that the � values and ��
increase as we move from SynData 73 to SynData 04.

5.2.1 Timing Performance

Figs. 10a and 10b show the total execution times for NoCs
with system sizes (N) 4, 16, and 64 for all the synthetic inputs.
The total execution time includes the total computation and
communication cycles spent in the NoC and the time
required to load the data on the NoC using PCIe. It is
interesting to note that the absolute runtimes are heavily
dependent on the input data and the absolute divergences.
Since the execution times are a function of the bottleneck
number of reductions carried out by the PEs (see Section 4.5),
the execution times for SynData 10 and SynData 04 are

orders of magnitude higher than those for the other three
inputs. This is because of their larger absolute divergences
and, hence, a larger number of reductions performed by each
PE. There is not much difference in the overall runtimes on
mesh and quad-tree. This is because quad-tree helps reduce
only the write latency, which contributes a small fraction
to the total execution time in this case. Fig. 11 shows the
communication-only (write) latency for mesh and quad-tree
NoCs with different system sizes. The advantage offered by
the quad-tree topology in reducing communication-only
latency is evident from this plot. This is also similar to what is
expected for N ¼ 4; 16, and 64 from Table 2.

Fig. 12 shows the speedup over GRAPPA using a quad-
tree for these inputs. Since speedup is the ratio of
GRAPPA’s runtime to the execution time on our design,
the trends in speedup and execution time are not identical
across different inputs. For example, even though execution
time increases from SynData 10 to SynData 04 for all
system sizes, speedup is also observed to increase because
GRAPPA’s runtime increases by a larger factor. Speedup is
also dependent on �, which indicates that our design is able
to accelerate median computation of genomes that are
almost equally far apart (e.g., SynData 04) significantly
more compared to the case where two of the genomes are
very close to each other (e.g., SynData 73). This observation
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Fig. 10. Total execution time in hardware for (a) SynData 73, SynData 50, and SynData 27 and (b) SynData 10 and SynData 04.

Fig. 11. Variation on write latency with network topology and system

size.



is more clearly demonstrated in Fig. 13, where the speedup
on a quad-tree NoC with N ¼ 16 is plotted against values of
�. The best speedups of 1,241 (N ¼ 4), 3,598 (N ¼ 16), and
8,430 (N ¼ 64) are consistently obtained with SynData 04.
Our results compare favorably with the overall speedup of
417 or the application speedup of 1,005 achieved by FPGA-
based acceleration of GRAPPA in [7].

Note that the synthetic data encompass almost the full
range of possible inputs, with � varying from 0.039 to
0.731. Biological inputs can lie on either end of the spectrum
or anywhere in between. In particular, as we mention again
in Section 5.3, the two real genomic inputs that we use have
� values of 0.866 and 0.1092. It is also interesting to note
that we achieve significantly higher speedups in the cases
of genomes displaying greater absolute divergence
(SynData 10 and SynData 04). These are also the cases
where even highly optimized software implementations
such as GRAPPA take very long times to complete. Our
design provides better speedup when there is a greater
requirement and, hence, will be of more practical value.

5.2.2 Energy Performance

Several measures were used to evaluate the energy
performance of the NoC. The average power consumption
for mesh and quad-tree NoCs for N ¼ 4, 16, and 64 is
shown in Fig. 14. It will again be noticed that power
consumption is a function of the input data, especially for
N ¼ 64. There is a slight advantage of quad-tree over mesh
in terms of power efficiency. For example, a quad-tree NoC
consumes up to five percent less power than that based on a
mesh NoC. Note that the PEs in both configurations have

the same power consumption and the savings come entirely
from the communication architecture. Higher levels of
network activity would lead to greater power savings in
the quad-tree. However, since the execution time varies
widely across inputs, only power consumption provides a
partial picture. A more accurate rubric is the total energy
consumption, shown in Figs. 15a and 15b. Although these
figures show the advantage of quad-tree over mesh in terms
of energy performance, comparing only the communication
energy consumptions in Figs. 16a and 16b further highlights
this. Quad-tree consistently outperforms mesh by consum-
ing around 75 percent less communication energy. Both
average power and total energy are input dependent and
generally show a marked increase with increase in system
size (N). The most interesting observation on energy
efficiency, however, can be seen from Figs. 17a and 17b
that show the variation of the energy-delay product (EDP)
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Fig. 12. Absolute speedup over GRAPPA.

Fig. 13. Variation of speedup with skew of input data on quad-tree NoC

with N ¼ 16.

Fig. 14. Power consumption across various inputs, network architec-

tures, and system sizes.

Fig. 15. Energy consumption across different inputs.



with system size (N) across all inputs. EDP is observed to
decrease with increasing system size for most inputs. This is
because the increase in energy consumption is compensated
by the runtime reduction, thereby showing that paralleliza-
tion is indeed energy efficient in this case.

5.3 Performance on Real Genomic Data

Two real genomic inputs were used to evaluate the
performance on biological data. Genomic data were down-
loaded from the National Center for Biotechnology Informa-
tion’s organellar genome repository [24]. One input (PoToWh)
consisted of the chloroplast genomes of Solanum tuberosum
(potato, 141 genes), Solanum lycopersicum (tomato, 130 genes),
and Triticum aestivum (bread wheat, 137 genes). The other
input (AlAnFe) consisted of chloroplast genomes of Chlamy-
domonas reinhardtii (a unicellular green alga, 109 genes),
Brachypodium distachyon (purple false brome grass, an
angiosperm, 133 genes), and Adiantum capillus-veneris (black
maidenhair fern, 130 genes). These genomes were prepro-
cessed with Mauve [25] in order to determine the common
genes. The values of � for the inputs are 0.866 for PoToWh and
0.1092 for AlAnFe. This is indicative of the fact that PoToWh
represents a skewed data set, with potato and tomato being
much closer to one another than they are to wheat. This is
expected, as evolutionarily potato and tomato are closely
related and belong to the same genus. On the other hand,
AlAnFe represents a uniformly divergent scenario. The
speedups obtained with these inputs for N ¼ 4, 16, and 64
are shown in Fig. 12. Fig. 13 shows the speedup correlation
with synthetic data having similar values of �.

As mentioned in Section 5.1, speedup is calculated as
multithreaded GRAPPA runtime divided by the total
execution time on the NoC. As explained earlier, the total
execution time on NoC is proportional to the bottleneck
number of reductions. For example with N ¼ 16, the
bottleneck number of reductions for PoToWh is 6,286 and
that for AlAnFe is 46,958. The total execution times on a
quad-tree NoC are 1.14 and 8.46 ms, respectively, and have
the same ratio. In comparison, the GRAPPA runtimes are
5.55 ms and 9.22 s, respectively. Next, we turn our attention
to the variation of speedup with increasing N . It can be seen
from Fig. 12 that the speedup on PoToWh increases from
1.77 to 12.98 as we increase N from 4 to 64. For AlAnFe, the
speedup increases from 643.99 to 2,261.99. Table 3 shows
the mean, standard deviation, and the maximum (bottle-
neck) number of reductions per PE for PoToWh and AlAnFe.
It is evident that speedup is inversely proportional to the
maximum number of reductions per PE. Speedup also
varies inversely as the average number of reductions when
load is balanced among PEs. Finally, in order to investigate
the reason behind the widely different speedups obtained
with PoToWh and AlAnFe, we plot histograms (Figs. 18a and
18b) of the number of reductions per subtree for each of the
inputs. The larger skew (�) for PoToWh is evident from a
comparison of the two histograms. Due to the higher skew
in PoToWh, the best cost is obtained quickly and most
subtrees are pruned at the initial stage of the operation,
leading to few (<10Þ reductions per subtree. The lower
skew in AlAnFe leads to a more gradual update of the best
cost and subtrees are pruned to a lesser degree. Since the
reduction load is shared by several subtrees in the latter
case, parallelization provides greater speedup.
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6 CONCLUSION

In this paper, we have undertaken the design, implementa-
tion, and performance evaluation of an NoC-based multicore
architecture for accelerating the breakpoint median problem
in phylogeny. Our evaluation encompassed a wide spectrum
of inputs, including both synthetic and real genomes. We
show that the proposed NoC architecture provides a
speedup of up to 8,430 with respect to multithreaded
GRAPPA software. We also show how the relationship
among the input genomes affects the timing performance of
our design and we are able to provide greater speedup when
software methods incur a huge runtime penalty. On the
network architecture front, we demonstrate the superiority
of a quad-tree over a mesh in terms of energy efficiency for
this application class.

We believe that our current implementation provides
appreciable performance enhancement over comparable

hardware accelerators targeting breakpoint phylogeny, and
can serve as a basis for more NoC-based platforms with
applications to life sciences. In addition, our design
provides a paradigm for accelerating similar vector or
matrix-based applications like image processing.
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