
cuRipples: Influence Maximization on Multi-GPU Systems
Marco Minutoli∗

marco.minutoli@pnnl.gov
Pacific Northwest National Lab

Richland, WA

Maurizio Drocco
maurizio.drocco@ibm.com

IBM TJ Watson Research Center
Yorktown Heights, NY

Mahantesh Halappanavar
hala@pnnl.gov

Pacific Northwest National Lab
Richland, WA

Antonino Tumeo
antonino.tumeo@pnnl.gov

Pacific Northwest National Lab
Richland, WA

Ananth Kalyanaraman
ananth@wsu.edu

Washington State University
Pullman, WA

ABSTRACT
Influence maximization is an advanced graph-theoretic operation
that aims to identify a set of k most influential nodes in a network.
The problem is of immense interest in many network applications
(e.g., information spread in a social network, or contagion spread
in an infectious disease network). The problem is however com-
putationally expensive, needing several hours of compute time on
even modest sized networks. There are numerous challenges to
parallelizing influence maximization including its mixed workloads
of latency- and throughput-bound steps, frequent and irregular
access to graph data, large memory footprint, and potential load
imbalanced workloads. In this work, we present the design and
development of a new hybrid CPU+GPU parallel influence maxi-
mization algorithm (CuRipples) that is also capable of running on
multi-GPU systems. Our approach uses techniques for efficiently
sharing and scheduling of work between CPU and GPU, and data
access and synchronization schemes to efficiently map the different
steps of sampling and seed selection on a heterogeneous system.
Our experiments on state-of-the-art multi-GPU systems show that
our implementation is able to achieve drastic reductions in the time
to solution, from hours to under a minute, while also significantly
enhancing the approximation quality.

KEYWORDS
Influence Maximization, Iterative Graph Algorithms, Multi-GPU
Systems, Distributed Memory Implementation

ACM Reference Format:
Marco Minutoli, Maurizio Drocco, Mahantesh Halappanavar, Antonino
Tumeo, and Ananth Kalyanaraman. 2020. cuRipples: InfluenceMaximization
on Multi-GPU Systems. In 2020 International Conference on Supercomputing
(ICS ’20), June 29-July 2, 2020, Barcelona, Spain. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3392717.3392750

∗Also with Washington State University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICS ’20, June 29-July 2, 2020, Barcelona, Spain
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7983-0/20/06. . . $15.00
https://doi.org/10.1145/3392717.3392750

1 INTRODUCTION
Given a graph G = (V , E,ω), an information diffusion model, and a
seed set size k , the goal of influence maximization is to identify a
set of k “seed” nodes that maximize the influence inG . The problem
is of interest to a number of application domains including in social
network analysis, and in the study of infectious disease spread.
While the problem is known to be NP-hard [14], methods such as
the greedy hill-climbing algorithm of Kempe et al. [14] can compute
(1 − 1/e − ϵ) approximate solutions in polynomial time. However,
even with these efficient approximations, the computational cost
can be prohibitively high for medium-scale problems—for instance,
with current tools, processing real-world networks with millions
of nodes could take several hours. While the problem has several
traits to benefit from parallelism, it also poses numerous challenges
and consequently, there are hardly any efficient parallel implemen-
tations available (see §8 for a discussion of related work).

In this work, we target the IMM algorithm of Tang et al. [30] for
parallelization. The IMM algorithm is a state-of-the-art approxima-
tion algorithm for influence maximization. The two main kernels
of this algorithm are: (i) Sampling, which involves the construction
of a set of θ random reverse reachable (RRR) sets; and (ii) Seed
selection, where k most influential nodes are iteratively selected
from the RRR sets. Since RRR sets can be constructed independently,
the sampling kernel is amenable to parallelization, although the ir-
regularity within the randomized path enumeration procedure can
introduce load imbalances. On the other hand, the seed selection
phase necessitates synchronized access to data and serialization,
making it a challenging step for parallelization. Furthermore, the
choice of different information diffusion models can also affect
performance.

The emergence of heterogeneous systems, consisting of multiple
multicore CPUs and graphics processing units (GPUs), introduces
an additional layer of complexity to the set of challenges associated
with scaling up influence maximization on modern platforms. In
fact, the future exascale architectures are expected to comprise
billions of GPU threads and tens of thousands of CPU threads
necessitating a fundamental rethinking of graph algorithms and
their parallel implementations (§3).

Contributions: This paper presents a new hybrid CPU+GPU
parallel influence maximization implementation (CuRipples). We
target pre-exascale systems comprising of multiple GPU units
per node with significant amounts of CPU threads and memory

https://doi.org/10.1145/3392717.3392750
https://doi.org/10.1145/3392717.3392750

ICS ’20, June 29-July 2, 2020, Barcelona, Spain Minutoli et al.

Figure 1: Our new CPU+GPU implementation, CuRipples,
achieves a speedup of 790× over a state-of-the-art serial im-
plementation (left), while also significantly improving the
approximation factor (to ϵ = 0.13) and doubling the number
of seeds (right). The input network is com-Orkut. See Table 2
and §7 for more details.

per node. We also target standalone systems featuring substan-
tial amounts of GPUs threads per node that are interconnected by
specialized networking devices.

Our approach consists of three key components: (i) paralleliza-
tion of the sampling kernel, where optimization arises from ef-
ficiently sharing and scheduling work between the participating
heterogeneous (CPU and GPU) processors (§4); (ii) parallelization
of seed selection, where data access and efficient movement of
data, and synchronization between heterogeneous processors be-
come important (§5); and, (iii) merging parallelization of sampling
and seed selection kernels, where several trade-offs between work
distribution and data movement become critical for performance.
Using an array of real-world networks, we conduct a thorough
empirical evaluation of CuRipples on three classes of multi-GPU
systems and present the results in §7. The results demonstrate both
significant speedups and significant improvements in the level of
approximation that can be achieved. For instance, as shown in Fig.1,
on the com-Orkut social network with 3M nodes and 117M edges,
CuRipples was able to achieve a speedup of over 790× against
the serial implementation of Tang et al., while also significantly
improving the approximation factor (from ϵ = 0.5 to ϵ = 0.13) and
doubling k (from 100 to 200). The work also represents a significant
improvement over the recent (state-of-the-art) MPI-based parallel
implementation [25]. Our contribution enables the use of hundreds
of GPUs alongside CPUs—exposing a different set of challenges and
yielding a fundamentally different implementation in the process.

To the best of our knowledge, this work represents the first effort
in designing and building efficient multi-GPU implementations
for the execution of influence maximization algorithms at scale.
Furthermore, the influence maximization algorithms targeted in
this work are prototypical of iterative graph computations that
are commonly used to implement various other graph operations
(e.g., shortest path, community detection). Consequently, we expect
this work to benefit the porting of many other graph algorithms
on heterogeneous platforms involving a combination of CPUs and
GPUs.

2 INFLUENCE MAXIMIZATION
Definition 2.1 (The Influence Maximization Problem). Given a

graphG = (V , E), a diffusion modelM , and a positive integer k , the
goal of influence maximization is to identify a set S ⊆ V of k nodes
such that E[I (S)] is maximized.

Here, I (S) denotes the influence of the seed set S on G—i.e., the
number of nodes in G that are likely to be activated by the nodes
in S , as given by the diffusion model M . Two models of diffusion
are used in most current implementations.
i) Independent Cascade (IC) model: Each edge e ∈ E is associ-

ated with a probability p(e) of activation. The diffusion process
proceeds as follows: at every time step t , each node u that was
activated at time step t − 1 gets a single opportunity to trigger
the activation of its neighbors with their respective (u,v) edge
probabilities, to reveal the next frontier of activated nodes. The
number of time steps is bounded by the diameter of G.

ii) Linear Threshold (LT)model: Each edge (u,v) ∈ E is associ-
ated with a weight that reflects the degree of influence of node
u onv , and each vertexv ∈ V is associated with a node-specific
threshold θv

1. The diffusion process proceeds as follows: at
each time step, any vertex v ∈ V is activated if the sum of the
influence from all activated neighbors of v exceeds θv . Once
activated, the node stays activated for all remaining time steps.
The number of time steps is bounded by |V |.

Relation to Other Graph Operations: We note here that the iter-
ative computation structure described in the above two diffusion
processes of IC and LT, are not necessarily unique to influence
maximization, and are in fact commonly observed in other graph
codes that are used in the parallel implementations of several other
graph operations. More specifically, the wavefront computation
pattern described in the IC model is similar to the data-driven algo-
rithmic abstraction [16]—for which examples include topological
sort, breadth first search (BFS), the Dijkstra’s algorithm for single
source shortest path (SSSP), and greedy heuristics for distance-1
coloring [5, 20]. On the other hand, the repeated neighborhood
querying computation pattern described in the LT model resem-
bles the topology-driven algorithmic abstraction [16]—for which
examples include the Bellman-Ford SSSP algorithm [2, 12, 26], and
heuristics for modularity-based community detection [3, 21].

However, what distinguishes influence maximization from these
other iterative graph abstractions is the stochasticity that is involved
in the underlying diffusion process, which introduces an additional
layer of complexity in the way the information spread over the
graph is accessed and updated as the algorithm proceeds.

2.1 IMM Algorithm
We use the IMM algorithm by Tang et al. [30] as our serial base-
line for parallelization. The IMM algorithm provides (1 − 1/e − ϵ)-
approximate solutions. It is an extension of the Reverse Influence
Sampling (RIS) algorithm [4], which uses a notion called reverse
reachability. While the IMM algorithm and our parallel implementa-
tion presented in this paper are defined for both models of diffusion
(LT and IC), we use the probability notation of the IC model here
simply to ease exposition of the core concepts.
1The values for θv are an i.i.d. collection of random variables over [0, 1].

cuRipples: Influence Maximization on Multi-GPU Systems ICS ’20, June 29-July 2, 2020, Barcelona, Spain

Definition 2.2 (Reverse Reachable (RR) Set). Let д denote a graph
obtained by removing each edge e in G(V , E) with a probability
of 1 − p(e), and let v denote an arbitrary node in G. The reverse
reachable set for v in д is given by:

RRд(v) = {u | ∃ a (directed) path from u to v in д}

Definition 2.3 (Random Reverse Reachable (RRR) Set). A random
reverse reachable (RRR) set forv , denoted by Rv , is an RRд(v)where
д is randomly sampled graph, drawn from a distribution of graphs
induced by the randomness of edge removals.

In other words, if a node u appears in Rv , then it implies that
u has a chance to influence v , and therefore, nodes appearing in
many RRR sets are candidates for highly influential seeds. The IMM
algorithm formalizes this intuition into a three step algorithm, as
shown inAlgorithm 1. Themain idea is to generate a certain number
(θ) of RRR sets as “samples”, and then compute a set of k nodes that
provide maximum coverage over the set of samples, as the seed set
S . To determine θ , the algorithm runs an estimation procedure that
internally calls the sampling and seed selection routines iteratively
(up to log |V | times). For more details on the estimation procedure,
refer to Tang et al. [30]. Overall, the dominant contributors to the
total runtime are the sampling and seed selection routines (called
from either within the estimation procedure or subsequently).

Algorithm 1: IMM Algorithm
Input :G, k, ϵ
Output :S
begin
⟨R, θ⟩ ← EstimateTheta(G, k, ϵ)
R← Sample(G, θ − |R|, R)
S← SelectSeeds(G, k, R)
return S

3 PARALLEL MULTI-GPU SYSTEMS
We focus our work on the following three state-of-the-art multi-
GPU systems: (i) DGX-1v, (i) Newell, and (i) Summit. All the three
systems feature multiple NVIDIA Tesla V100 boards, based on the
NVIDIA Volta architecture (GV100 GPU) and second generation
NVLINK interconnect but connected with different topologies.

The GV100 version used in the Tesla V100 implements 80 Stream-
ing Multiprocessors (SMs). Each SM includes: 64 floating point
single precision (FP32) cores, 64 integer cores (INT32), 32 floating
point double precision cores (FP64), 8 Tensor Cores, and four texture
units. Each SM has a combined L1 cache, texture cache, and shared
memory of 128 KB. Up to 96 KB of this memory can be sequestered
as shared memory (on-chip scratchpad). A key innovation of the
Volta SMs is the way warps are executed. While instructions for
threads are still issued in warps (group of 32 threads), their exe-
cution is now independently controlled, speeding up those cases
where they diverge. The design provides a total of 6144 KB of L2
cache and 8 memory controllers at 512-bit width (4096-bit in total)
to interface with 4 High Bandwidth Memory 2 (HBM2) stacks. The
GPU runs at 1333 MHz but supports (boost) clocks up to 1530 MHz.
All the boards in our multi-GPU systems implement NVLINK2,

which provides six links with an aggregate 300GB/s bidirectional
bandwidth and support for remote atomic memory operations.

DGX-1v. consists of 8 Tesla V100 with 16 GB of HBM2 memory
(1750 MHz) each, and two Intel Xeon E5-2698 v4 (Broadwell archi-
tecture) at 2.20GHz. The CPUs host 20 HyperThreaded cores (for a
total of 80 threads) and 50MB of L3 cache. In the NVIDIA DGX-1
Server design, the GPUs only use point-to-point communication.
Each GPU directly communicates with only 4 other GPUs (follow-
ing the original NVLINK design in Pascal with only 4 links: with
NVLINK2 and Volta two connections benefit of an additional link
for higher interconnect speed, i.e., 100 GB/s instead of 50 GB/s),
while reaching the remaining 3 needs an additional hop. This cre-
ates 2 blocks of 4 fully interconnected GPUs, each of which connects
to a different CPU socket through PCI-e. Communication across
the two CPUs happens through QuickPath Interconnect (QPI). This
organization does not allow peer-to-peer memory access and thus
remote atomic memory operations for some of the GPUs across the
two blocks. The system integrates a total of 512 GB of DDR4 RAM
memory at 2133 MHz.

Newell. It is a testbed cluster (5 nodes) hosted at Pacific North-
west National Laboratory mimicking the configuration of the De-
partment of Energy Sierra Leadership-class machine hosted at
Lawrence Livermore National Laboratory. Each node is based on
the IBM Power AC922 node design and hosts two IBM POWER9
processors and 4 Tesla V100 GPUs with 16 GB of HBM2 memory.
The POWER9 processors used in Newell present 16 cores each with
4 threads per core, run at 2.9 GHz and host a 80 MB L3 cache build
with eDRAM. A group of 2 GPUs connects each other and with one
of the processors using three NVLINK2 channels in peer-to-peer
fashion (thus, 150 GB/s to and from CPUs and the other GPU). The
two CPUs connects each other through IBM’s X-Bus at 64 GB/s,
which however allows to route NVLINK packets between sockets.
Each node integrates a total of 1 TB of DDR4 memory, and a dual-
rail Mellanox Infiniband EDR interconnect (up to 12.5 GB/s for each
rail, for a total of 25 GB/s bidirectional).

Summit. It is a Department of Energy Leadership-class machine
hosted at the Oak Ridge National Laboratory. The system presents
a similar configuration to Livermore’s Sierra and the Newell testbed
nodes. However, instead of 4, it uses 6 GPUs per node. The two
POWER9 Processors are slightly different as well, integrating 22
cores (technically, the processor has 24 cores, but 2 are disabled)
with 4 threads each at 3.07 GHz and 110 MB of L3 cache. Each CPU
socket thus connects to 3 GPUs. Each block of 3 GPUs and CPUs
is fully interconnected with 2 NVLINK2 channels towards each
component, reaching 100 GB/s of peer-to-peer bandwidth. Each
node has 512 GB of DDR4 memory, and dual rail Infiniband EDR
interconnect. Summit has a total of 4,608 nodes, and at the time of
this writing is listed as the #1 machine on the TOP500 list2.

4 PARALLELIZATION OF SAMPLING
The goal of the sampling phase is to generate a predetermined
number (say, θ) of RRR sets (for use as samples). As defined in §2,
each RRR set (Rv) is defined for some nodev inG , and it represents a

2https://www.top500.org/resources/top-systems/

https://www.top500.org/resources/top-systems/

ICS ’20, June 29-July 2, 2020, Barcelona, Spain Minutoli et al.

collection of other nodesu that have a (directed) path tov , where the
path is composed of nodes activated using one of the two diffusion
models.

While the generation of RRR paths are independent of one an-
other, there are multiple challenges that underlie parallel design.
First, since both diffusion models incorporate stochasticity in their
node activation schemes, the computation of RRR sets corresponds
to performing θ randomized “visits” of the graph. In the case of IC,
this visit corresponds to a probabilistic breadth-first search (BFS),
whereas for LT, it corresponds to a random walk. The resulting
workloads associated with these visits could vary due to the ran-
domness, and therefore the granularity of tasks to execute between
the CPU and GPU resources can impact parallel performance. Sec-
ond, even within the same visit, the growing and shrinking of
frontier nodes can generate non-uniformity. Furthermore, the im-
plementation needs a stable pseudo-random number generator to
ensure reproducibility (regardless of the number of CPU and GPU
resources used).

To overcome the above challenges, we present a dynamic work
scheduling-based task parallel design, in which each task performs
a subset of the visits. The progress is based on an integer variable,
shared by the tasks. Once scheduled, each task increments this
variable atomically, until θ is reached. This simple coordination
scheme reduces potential load imbalances due to the random nature
of visits, and allows tasks to perform arbitrary number of visits.

4.1 Mixed CPU/GPU Workloads
We split tasks into two categories, to match the heterogeneous
CPU/GPU hardware configurations: i) CPU-only tasks exploit a
single CPU to perform the visits; and ii) CPU+GPU tasks exploit
both a CPU and aGPU. Correspondingly, the code executed by a task
is either mapped to a (logical) CPU, or in case of CPU+GPU tasks,
is also offloaded to a GPU. We leverage OpenMP parallel regions
for multi-threading and thread-to-CPU mapping, and CUDA for
GPU processing.

We tune the configuration with respect to specific hardware
features (e.g., number of physical CPU cores and GPU boards) by
setting the maximum numbers of CPU-only and CPU+GPU tasks
that can be in execution at the same time. Allowingmore CPU+GPU
tasks than physical GPU boards enables the exploitation of parallel
offloading to a single GPU (Hyper-Q) —a hardware-accelerated
mechanism on recent CUDA boards [9]—to maximize the utilization
of GPU devices.

4.2 Parallel Sampling for the IC Model
We design the algorithm for IC visits in CPU+GPU tasks as a minor
variant of a classical top-down BFS. More specifically, after selecting
a node v from the frontier at level t , we randomly select a subset of
its unvisited neighbors—rather than all of them, as in a full BFS—
to populate the next frontier at level t + 1. On the GPU side, this
is implemented as a modification of the optimized BFS included
in the CUDA nvgraph library[10]. For the generation of pseudo-
random number sequences, we perform a parallel generation using
the Leapfrog technique[1], which guarantees reproducibility of the
sequence over varying number of threads. Moreover, we keep track

of how many threads are active within a visit3, and we rotate the
sub-sequences among the threads, between consecutive visits, to
balance the overall consumption and avoid periodic repetitions.

Each CPU+GPU task performs a single IC visit, since the execu-
tion time for visiting a non-trivial graph is sufficient to avoid gran-
ularity issues. The visit on GPU produces a binary visited/unvisited
mask. Once the mask has been transferred back to the CPU, the
task performs a scan to compact it into the list of visited nodes, as
requested by the selection phase.

4.3 Parallel Sampling for the LT Model
We designed a similar scheme to implement LT-based sampling
using GPU processing. The main difference lies in the random
variables associated with nodes (as opposed to edges); however
the nature of probabilistic activation is similar to that of IC. The
depths of random walks produced in LT are dictated by the prob-
abilities in the diffusion model. However, it is expected that if a
simulation with both LT and IC reaches similar depths, the one
with the IC model can activate more than one vertex at each level
of the spanning tree. For this reason, in practice, we expect LT to
yield a non-uniform and sparser coverage of nodes in the graph
across the iterations, compared to IC. This was corroborated in our
experiments (§7)—while visits for the IC model yielded sets with
size uniformly distributed, the LT visits yielded very skewed size
distribution with mostly small sets, containing less than 10 nodes
in more than 99% of them. Consequently, both the execution time
and memory footprint for a single LT visit are extremely limited.
To tackle this challenge, we exploit the massive number of GPU
cores by performing multiple BFS in parallel, where each search is
performed on a given GPU thread. Note that this coarser parallelism
is in contrast to the IC model where a single search is performed in
parallel by a set of threads.

Each GPU thread performs an LT visit if the visited set does not
contain more than 8 nodes. With this constraint, all the working
memory, including the output set, fits in the thread’s registers on
the GPU boards we consider in this work (§3). If the set being visited
exceeds 8 nodes, the thread invalidates the visit by producing an
empty set and marking down the value of the root, so that the CPU
will be able to re-compute the visit. Therefore, the post-processing
on CPU of the sets produced by the GPU is more complex than in
the IC case. Once the results are transferred back to the CPU—8x
64-bit integers for each GPU thread—the CPU scans the sets and
re-computes the visits corresponding to the empty sets, starting
from the marked roots.

The implementation of the pseudo-random generation step is
similar to that of IC, except that we store an additional sub-sequence
for each CPU thread executing CPU+GPU tasks (since they could
recompute visits exceeding the 8-node limit).

Note that the overall memory requirements of the algorithm
is dictated by the space required to store all the RRR sets in the
sampling phase. Consequently, the worst-case space complexity is
O(θ × |V |), which tends to be a loose upper bound in practice.

3The BFS implementation from nvgraph spawns a fixed number of threads, indepen-
dently of input size.

cuRipples: Influence Maximization on Multi-GPU Systems ICS ’20, June 29-July 2, 2020, Barcelona, Spain

5 PARALLELIZATION OF SEED SELECTION
The IMM algorithm selects the set of seeds S of cardinality k by
solving a maximum coverage problem over the collection of re-
verse reachable sets (R) produced as the output of the sampling
phase. The method uses a simple greedy iterative approach with
k iterations [31]. At each iteration i , the algorithm performs three
steps: It counts the number of occurrences of every vertex in R.
Next, it adds a/the node with the highest frequency into the seed
set S . Next, it updates R by removing any RRR set that contains this
most frequent node. The iterative procedure stops after k iterations,
when |S | = k .

The greedy strategy to select the next most frequent node at each
iteration, makes the algorithm harder to parallelize. To overcome
this challenge, we devised a combination of efficient schemes to
access and update data (with reuse from previous iterations where
possible)—as described below.

5.1 Seed selection on CPUs
We perform counting in parallel, by partitioning the vertex space
across all the threads, such that a given CPU thread updates the
counts for only those nodes that fall in its interval. This strategy
avoids the use of expensive atomic memory operations, but at the
expense of scanning the entire R sequence from each CPU thread.
The added advantage, however, is that it makes the memory access
more regular across CPU threads, and thus helps improve cache
utilization. The computation of the most frequent node is achieved
using a simple reduction.

The iterative greedy selection requires that at each iteration i a
new seed vi is to be selected by considering only R(i−1)+ , which is
the subset of RRR sets in R that do not contain any node selected
so far (i.e., until iteration i − 1). Obtaining the updated counters
for the selection of vi can be done in two ways: either by building
a new histogram from R(i−1)+ ; or by starting from the histogram
used to select vi−1 and decrementing the counters for those nodes
contained in R(i−1)− , which is the subset of paths that contained
vi−1. We designed a dynamic adaptive scheme that is aimed at min-
imizing the number of RRR sets that need to be examined at every
iteration; more specifically, by reorganizing R so that R(i−1)+ and
R
(i−1)
− are contiguous and by only examining the smallest of these

two subsets. The corresponding two sequences are built using an
in-place parallel partitioning algorithm that uses a divide and con-
quer approach—where, the divide phase is used to compute partial
solutions on each CPU thread, and a parallel merging procedure is
used to combine these solutions. At each step of the merge tree, the
CPU threads that are not directly involved in the reduction help
the other threads to perform data movement as needed.

5.2 Seed Selection on CPU+GPU
For the hybrid CPU+GPU execution, we first note that the compu-
tation of histograms is data parallel and therefore well suited for
the acceleration on GPUs. However, executing solely on GPUs may
become challenging due to large memory constraints. As we will
see in the experiments (§7), the IMM algorithm can produce very

large R collections requiring terabytes of memory. To better nego-
tiate this large memory requirement, we implemented an efficient
hybrid CPU+GPU parallel approach.

For our hybrid CPUs+GPU implementation, we dedicate one
CPU thread per available GPU to perform data movement and
the kernel launch on the device. The remaining CPU threads will
co-operate as described in §5.1 on their portion.

At the start of seed selection, the R collection is divided equally
among the GPUs. Each of the correspondingmanager (CPU) threads
will then move as much of the chunk as possible into the device
memory. Once data movement is complete, the leftovers are merged
into a contiguous sequence using the parallel merge procedure
(§5.1). Then, CPUs and GPUs build their local histograms: one
shared among all CPU threads, and one per GPU. The local his-
tograms are then reduced into a global histogram by performing a
tree reduction on the GPUs. Our implementation uses peer-to-peer
communication to reduce the GPU histograms, and uses overlap-
ping movement of the CPU histogram to GPU memory. To cope
with the fact that in some of the systems (i.e., DGX-1) not all GPUs
are directly connected, we first build a graph of the peer-to-peer
connections by asking the CUDA runtime the availability of atomic
memory operations between GPUs, and then follow it to perform
the tree reduction. On POWER9-based architectures, IBM X-Bus
allows GPUs without a direct NVLINK2 link to still perform direct
atomic memory operations. Finally, the next seed is selected on the
root GPU of the reduction tree.

The portion of R processed on the GPUs is represented in Coor-
dinate List (COO) format, which allows the alignment of memory
accesses from neighboring threads on the GPUs, and helps the
memory controller to coalesce memory reads.

6 EXPERIMENTAL SETUP
Implementation. The implementation of CuRipples, our hy-

brid CPU+GPU parallel approach, uses: i) OpenMP + CUDA pro-
gramming model in the single node implementation; and ii) MPI +
OpenMP + CUDA for the distributed implementation. The imple-
mentation will be made publicly availableas part of the Ripples
framework from Minutoli et al. [24] .

Input data. For all our experiments, we used a collection of
seven real-world networks, representing a wide range in size, from
the SNAP data set [17]. Table 1 shows the basic size and degree sta-
tistics of these input networks. In our setup, we randomly assigned
the node or edge probabilities (as determined by the model) from
the interval [0, 1]. Since the input graph is small compared to the
RRR set collection that the algorithm produces, we replicate the
graph on each node in the distributed implementation.

Platforms. Experiments were conducted on three machines:
DGX-1v, Newell, and Summit (described in §3). CuRipples on
Newell and Summit were compiled using GCC 8.1 and CUDA 10.1
with optimization enabled using “-O3“ switch. The parallel im-
plementations on Summit uses the default MPI implementation
(spectrum-mpi 10.3). The implementations on DGX-1v use GCC 6
and CUDA 9.0.

ICS ’20, June 29-July 2, 2020, Barcelona, Spain Minutoli et al.

2 4 8 16 32 64
Number of Nodes

3

10

30

100

300

Ti
m

e
(s

)

Sample SeedSelection Total

(a) web-Google

2 4 8 16 32 64
Number of Nodes

1

10

100

Ti
m

e
(s

)

Sample SeedSelection Total

(b) web-BerkStan

2 4 8 16 32 64
Number of Nodes

10

30

100

Ti
m

e
(s

)

Sample SeedSelection Total

(c) wiki-topcats

2 4 8 16 32 64
Number of Nodes

10

30

100

Ti
m

e
(s

)

Sample SeedSelection Total

(d) soc-pokec-relationships

2 4 8 16 32 64
Number of Nodes

30

50

100

Ti
m

e
(s

)

Sample SeedSelection Total

(e) soc-LiveJournal1

2 4 8 16 32 64
Number of Nodes

10

30

100

Ti
m

e
(s

)

Sample SeedSelection Total

(f) com-orkut.ungraph

Figure 2: Scaling on Summit with the IC Model. Parameters: ϵ = 0.13, k = 100.

Table 1: Input Graphs

Graph Nodes Edges Avg. Degree Max Degree

cit-HepTh 27,770 352,807 12.70 2,468
web-Google 875,713 5,105,039 11.66 6,353
web-BerkStan 685,230 7,600,595 22.18 84,290
wiki-topcats 1,791,489 28,511,807 31.83 3,907
soc-Pokec 1,632,803 30,622,564 37.51 20,518
soc-LiveJournal1 4,847,571 68,993,773 28.47 22,889
com-Orkut 3,072,441 117,185,083 76.28 33,313

7 EXPERIMENTAL RESULTS
7.1 Comparative Evaluation
We first compare CuRipples against state-of-the-art serial and par-
allel implementations. More specifically, the implementations we
use are as follows:
• IMMseq: the original IMM algorithm by Tang et al. [30];
• IMMopt: hand-tuned and optimized CPU implementation
[25] of IMMseq;
• IMMmt: OpenMP multithreaded implementation of IMM
[25]; and
• IMMedison: distributed implementation using MPI/OpenMP
and running on the NERSC Edison supercomputer [25];

We used two configurations of parameters: (ϵ = 0.5, k = 100)
and (ϵ = 0.13, k = 200). Note that the latter configuration was
beyond the memory limit of single node implementations (IMMseq,
IMMopt, and IMMmt).

Table 2 summarizes the results of our comparative evaluation,
for the two largest inputs. Our evaluation shows that CuRipples
achieves speedups of 790× and 251×, respectively on com-Orkut
and soc-LiveJournal1, compared to IMMseq. Against the state-of-
the-art single node parallel implementation (IMMmt), CuRipples
delivers up to 37.19× on com-Orkut and up to 15.72× on soc-
LiveJournal1.

As for the distributed implementations, we observe from Table 2
that CuRipples, when run on 2.6KCPU cores + 384 GPUs, generates
a time-to-solution which is roughly comparable to the time-to-
solution achieved by IMMedison on 48K CPU cores. In fact, when
run on a similar configuration of 64 nodes, CuRipples is able to
achieve speedups of 8.31× and 1.79× over IMMedison (for the two
inputs respectively).

Collectively, these comparative results show that our new hybrid
CPU+GPU parallel implementation, CuRipples, is able to achieve
one to two orders of magnitude performance improvement over
state-of-the-art single node implementations, while also able to

cuRipples: Influence Maximization on Multi-GPU Systems ICS ’20, June 29-July 2, 2020, Barcelona, Spain

Table 2: Comparative evaluation of cuRipples relative to pre-
vious implementations of IMM—both serial (IMMseq) [30]
and parallel (IMMopt/mt/edison) [25]. Abbreviations used: No.
Cores (C), GPUs (G), Nodes (N).

System Time (s) Speedup Scale

com-Orkut (ϵ=0.5,k=100)

IMMseq 28024.56 1.00× 1C
IMMopt 9027.50 3.10× 1C
IMMmt 1319.21 21.24× 20C (1N)
CuRipplesdgx-1v 35.47 790.09× 80C+8G (1N)
CuRipplesnewell 43.72 641.00× 128C+4G (1N)

com-Orkut (ϵ=0.13,k=200)

IMMedison 294.51 95.16× 3,072C (64N)
IMMedison 47.77 586.61× 49,152C (1024N)
CuRipplessummit 36.30 772.03× 2,688C+384G (64N)

soc-LiveJournal1 (ϵ=0.5,k=100)

IMMseq 16434.81 1.00× 1C
IMMopt 3954.59 4.16× 1C
IMMmt 1026.21 16.02× 20C
CuRipplesdgx-1v 70.23 234.01× 80C+8G (1N)
CuRipplesnewell 65.26 251.84× 128C+4G (1N)

soc-LiveJournal1 (ϵ=0.13,k=200)

IMMedison 190.94 86.07× 3,072C (64N)
IMMedison 55.12 298.16× 49,152C (1024N)
CuRipplessummit 106.43 154.42× 2,688C+384G (64N)

demonstrate highly competitive results both in terms of perfor-
mance and quality (approximation factor, seed set size) on dis-
tributed platforms. The results also show that CuRipples is able to
process a real-world graph with millions of nodes in just over (or
under) a minute.

7.2 IMM versus Greedy Hill Climbing
Since this work is the first to consider performance of IMMonGPUs,
we provide a brief comparative assessment of our performance in
the context of prior work [19, 27] that is limited to variations of
the greedy Hill Climbing algorithm of Kempe et al. [14]. While
our work focuses on state-of-the-art multi-GPU systems, prior
work is limited to the use of a single GPU for accelerating the
computation [19, 27]. However, to the best of our efforts, we were
unable to find publicly available GPU-based implementations of
these prior works to enable a direct comparison of performance.
Consequently, we provide a qualitative assessment in this section
to demonstrate the superior performance of IMM relative to the
greedy Hill Climbing method. Our observations corroborate the
observations of Tang et al. [30] in demonstrating the work efficiency
of IMM.

We use implementations of greedy Hill Climbing and IMM al-
gorithms in open source tool provided by Minutoli et al. [25] for
this comparison. Due to code availability, we only performed CPU-
based comparisons using a shared-memory system. The largest

input that we were able to process with parallel Hill Climbing algo-
rithm is cit-HepTh. We set the edge weights uniformly at random
distributed between [0; 1], and the seed set size is 100 seeds. Using
1000 samples, the total time for Hill Climbing algorithm is 6804s ,
while IMM completed the execution in 140s (a speedup of 48.6×)
with the same edge weights and ϵ = 0.13.

Based on a set of smaller inputs (not presented here due to space
limitation), our observations corroborate the results obtained in the
experimental evaluation of Tang et al. [30]. We further observed
that relative to the Hill Climbing algorithm, IMM is not only faster
but also provided solutions with better approximation guarantees,
for the sample sizes we used due to limitations of compute time.
The best known theoretical bounds for the number of samples
indicate that over a million samples will be required for cit-HepTh
to match with the approximation guarantees provided by IMMwith
ϵ = 0.13 [28]. Consequently, such sampling efforts would render
the Hill Climbing method impractical for large scale inputs with
any meaningful levels of approximation guarantees.

7.3 Performance Evaluation of the IC Model
Single Node Evaluation (on DGX-1v). Next, we evaluate the scala-

bility of CuRipples, on DGX-1v. Since the choice of the diffusion
model also impacts performance, in this section we present the
results of analyzing CuRipples using the IC model.

Figure 3 shows the runtime as a function of the number of CPU
cores used. Note that for our hybrid CPU+GPU executions, we
used all of the available GPUs4. Furthermore, while the sampling
procedure was always run in the CPU+GPU hybrid mode, the seed
selection kernel has two variants, one using the hybrid mode, and
another using the CPU-only mode—as described in §5. Therefore
we present both sets of results, with Figure 3a-f showing the results
where the seed selection was also run in the hybrid mode, while
Figure 4a-f showing the results where the seed selection was run
in the CPU-only mode.

The experimental results show that with the exception of the
two smallest inputs (web-Google and web-BerkStan), for the IC
model, CuRipples generally runs faster when the seed selection
kernel is run in the CPU-only mode as opposed to the hybrid mode.
This shows the effectiveness of our data access and update mech-
anisms, while also exposing some of the data movement related
challenges inherent in seed selection in the hybrid mode. When
the computation is dominated by seed selection, the results show
the effectiveness of our hybrid CPU+GPU implementation. In fact
for web-Google and web-BerkStan in the IC model (and also all the
results for the LT model), a significant boost in performance was
observed once the GPU-accelerated seed selection is enabled. The
seed selection line then stays flat because the number of GPUs used
remains fixed.

Evaluation of Distributed Implementation (on Summit). Next, in
Figure 2, we present strong scaling results for running our dis-
tributed implementation for CuRipples on Summit using the IC
model, with a production-scale setting for ϵ(=0.13). We note that

4Note that the zero “CPU threads pushing work to GPUs” means that no work is done
on the GPUs and therefore corresponds to a CPU-only execution.

ICS ’20, June 29-July 2, 2020, Barcelona, Spain Minutoli et al.

40C-0G 32C-8G 24C-16G 16C-24G 8C-32G 0C-40G
Configuration

1

10

100

Ti
m

e
(s

)

Sample SeedSelection Total

(a) web-Google

40C-0G 32C-8G 24C-16G 16C-24G 8C-32G 0C-40G
Configuration

1

3

10

30

Ti
m

e
(s

)

Sample SeedSelection Total

(b) web-BerkStan

40C-0G 32C-8G 24C-16G 16C-24G 8C-32G 0C-40G
Configuration

1

10

100

Ti
m

e
(s

)

Sample SeedSelection Total

(c) wiki-topcats

40C-0G 32C-8G 24C-16G 16C-24G 8C-32G 0C-40G
Configuration

1

10

100

Ti
m

e
(s

)

Sample SeedSelection Total

(d) soc-pokec-relationships

40C-0G 32C-8G 24C-16G 16C-24G 8C-32G 0C-40G
Configuration

1

10

100

Ti
m

e
(s

)

Sample SeedSelection Total

(e) soc-LiveJournal1

40C-0G 32C-8G 24C-16G 16C-24G 8C-32G 0C-40G
Configuration

1

10

100

Ti
m

e
(s

)

Sample SeedSelection Total

(f) com-orkut.ungraph

Figure 3: DGX-1v IC Model (ϵ = 0.5, k = 100). The configuration reports the number of CPU workers(C) and GPU workers(G)

while running the input soc-LiveJournal1 on 2 nodes, the experi-
ments ran out of memory (over 1TB). As can be observed in Fig-
ure 2, the distributed CuRipples scales considerably well on up
to 64 nodes of Summit, generating speedups between 4× and 23×
relative to the performance on two nodes of Summit.

7.4 Performance Evaluation of the LT Model
In this section, we present the results of evaluating CuRipples
using the LT model.

Single Node Evaluation (on DGX-1v). Figure 5a-c show the per-
formance of CuRipples on the DGX-1 using the LT model. While
we have observed that both seed selection and sampling can be po-
tentially dominating for the IC model, the seed selection algorithm
is the clear dominating factor in the case of the LT model. This is
because of the sparsity in the set of vertices activated in LT.

We also noticed that by enabling the hybrid CPU+GPU algorithm
for seed selection brings a significant (∼ 10×) improvement in
performance for LT (charts for CPU-only seed selection not shown
due to space limitations). Figure 5 also shows that after enabling
the use of the hybrid mode (happens after number of CPU cores
pushing work to GPU is greater than zero), the performance largely
plateaus. In fact, the seed selection portion does not use the same

over-subscription mechanism used by the sampling phase because
the algorithm tries to maximize the data stored in GPU memory
and the steps become data parallel in nature.

Evaluation of Distributed Implementation (on Summit). For the
LT model, the runtime results of executing CuRipples on up to 64
nodes of Summit are shown in Figure 5d-f. The results show almost
linear scaling for the sampling step; however, the overall scaling
is affected by the poor performance scaling of the seed selection
step. In our experiment, we observed that the LT model tends to
produce significantly fewer reverse reachable paths (than IC). Due
to the limited size that is peculiar to the LT model, the algorithm
performs more iterations of the sampling-seed selection loop. Con-
sequently, the algorithm incurs a much higher communication cost
needed for the global reduction to select the next seed, without
producing enough work during the sampling phase to amortize the
communication cost.

8 RELATEDWORK
The seminal work by Kempe et al. [14] formalized the problem of
influence maximization. The approach used in their work involves
a greedy hill-climbing optimization (submodular maximization)

cuRipples: Influence Maximization on Multi-GPU Systems ICS ’20, June 29-July 2, 2020, Barcelona, Spain

40C-0G 32C-8G 24C-16G 16C-24G 8C-32G 0C-40G
Configuration

1

10

100

Ti
m

e
(s

)

Sample SeedSelection Total

(a) SS-CPU: web-Google

40C-0G 32C-8G 24C-16G 16C-24G 8C-32G 0C-40G
Configuration

1

3

10

30

Ti
m

e
(s

)

Sample SeedSelection Total

(b) SS-CPU:web-BerkStan

40C-0G 32C-8G 24C-16G 16C-24G 8C-32G 0C-40G
Configuration

1

10

100

Ti
m

e
(s

)

Sample SeedSelection Total

(c) SS-CPU:wiki-topcats

40C-0G 32C-8G 24C-16G 16C-24G 8C-32G 0C-40G
Configuration

1

10

100

Ti
m

e
(s

)

Sample SeedSelection Total

(d) SS-CPU:soc-pokec-relationships

40C-0G 32C-8G 24C-16G 16C-24G 8C-32G 0C-40G
Configuration

1

10

100

Ti
m

e
(s

)

Sample SeedSelection Total

(e) SS-CPU:soc-LiveJournal1

40C-0G 32C-8G 24C-16G 16C-24G 8C-32G 0C-40G
Configuration

1

10

100

Ti
m

e
(s

)

Sample SeedSelection Total

(f) SS-CPU:com-orkut.ungraph

Figure 4: DGX-1v IC Model with Seed Selection on CPU (ϵ = 0.5, k = 100). The configuration reports the number of CPU
workers(C) and GPU workers(G).

procedure operating on an oracle that computes the expected reach-
ability from a set of candidate nodes over a given network. The
expectation itself is computed by harnessing a large number of
Monte Carlo trials (∼ 10K) while reachability computations involve
BFS kernels. Thus, the combined complexity of the overall method
meant that it could be run only on small networks (< 10K nodes).
Thus, one of the main themes of the research on the topic of in-
fluence maximization following [14] is addressing the scalability
aspects of the overall method. Two sub-themes along this line of re-
search focus on accelerating the submodular optimization approach
and accelerating the oracle computation.

Leskovec et al. [18] adopt a lazy-greedy submodular maximiza-
tion approach called CELF (Cost-Effective Lazy Forward), which
was later extended into CELF+ by Goyal et al. [13]. By exploiting
the submodular property, these works reduce wasteful computa-
tions and improve performance [23]. To improve performance and
to extend problem size reach to graphs with hundreds of thousands
to millions of nodes, heuristic approaches were also introduced
(e.g., [6, 7]).

The concept of per-node summary structures called combined
reachability sketches are leveraged by Cohen et al. [8] to speedup
the influence computations. Borgs et al. [4] introduced the concept

of collections of reverse reachable paths; in conjunction with the
greedy algorithm operating on the hyper-edges constructed as re-
verse reachable sets, they provide a near-linear time algorithm to
mine for influential nodes. This concept was further developed by
Tang et al. [29] where they provide an efficient practical implemen-
tation of the algorithm presented in [4] resulting in the ability to
analyze billion-edge graphs in hours.

One particular area of research along the lines of scalable in-
fluence maximization that has not received much interest is the
parallelization of the underlying components. Kim et al. [15] pro-
pose a new algorithm called the Independent Path Algorithm and
leveraging OpenMP pragmas, they demonstrate scalability ranging
from 3×–6× on 8 cores. Du et al. [11] report parallel running times
of their improved continuous-time influence maximization algo-
rithm but they do not provide any details on the scaling behavior.
Lucier et al. [22] use sampling approaches to provide for scalable
implementations of influence maximization that are amenable to
distributed processing paradigms such as MapReduce; and Wu et al.
[32] propose a parallel algorithm using k-shell decomposition. How-
ever, a thorough evaluation of the parallel performance is missing.
Liu et al. [19] and Pal et al. [27] have explored the acceleration of
Hill Climbing algorithm from Kempe et al. [14] using a single GPU.

ICS ’20, June 29-July 2, 2020, Barcelona, Spain Minutoli et al.

40C-0G 32C-8G 24C-16G 16C-24G 8C-32G 0C-40G
Configuration

1

10

100

Ti
m

e
(s

)

Sample SeedSelection Total

(a) DGX-1v: soc-pokec-relationships

40C-0G 32C-8G 24C-16G 16C-24G 8C-32G 0C-40G
Configuration

1

10

100

Ti
m

e
(s

)

Sample SeedSelection Total

(b) DGX-1v: soc-LiveJournal1

40C-0G 32C-8G 24C-16G 16C-24G 8C-32G 0C-40G
Configuration

1

10

100

Ti
m

e
(s

)

Sample SeedSelection Total

(c) DGX-1v: com-orkut.ungraph

2 4 8 16 32 64
Number of Nodes

0.3

1

3

10

30

Ti
m

e
(s

)

Sample SeedSelection Total

(d) Summit: soc-pokec-relationships

2 4 8 16 32 64
Number of Nodes

1

10

100

Ti
m

e
(s

)

Sample SeedSelection Total

(e) Summit: soc-LiveJournal1

2 4 8 16 32 64
Number of Nodes

1

3

10

30

Ti
m

e
(s

)

Sample SeedSelection Total

(f) Summit: com-orkut.ungraph

Figure 5: LT Model: Top row: DGX-1v (ϵ = 0.5, k = 100). The configuration for labels in the x-axis reports the number of CPU
workers(C) and GPU workers(G). Bottom row: Scaling on Summit (ϵ = 0.13, k = 100). Each node has 6 GPUs and 42 CPU cores.

Please refer to §7.2 for a qualitative comparson between the work
presented in this paper and the work of Liu et al. [19] and Pal et al.
[27]. Recently, Minutoli et al. [25] developed a parallel CPU-only
multithreaded and distributed implementations for the IMM algo-
rithm. The work presented in this paper extends this line of work
and presents the first generation of parallel implementations for
multi-GPU and CPU/GPU heterogeneous platforms.

9 CONCLUSION AND FUTUREWORK
We presented efficient hybrid CPU+GPU parallel implementations
for influence maximization for execution on multi-GPU systems.
Through a combination of scheduling techniques, our approach bal-
ances the workload between CPUs and GPUs, and with improved
data access and synchronization techniques it reduces the burden
of irregular data movement. The results show that we are able to
execute influence maximization at scale on multi-GPU systems on
large real-world input graphs—reducing the time to solution from
several hours to a few minutes, while significantly improving preci-
sion and increased number of seeds. To the best of our knowledge,

this is the first hybrid CPU+(multi)GPU implementation for influ-
ence maximization, and consequently, will benefit future research
in porting of applications to extreme scale architectures.

Future research directions include: i) designing learning-based
schemes to better exploit precision-performance tradeoffs exposed
by the influence maximization operation, and to improve the effi-
cacy of dynamic schemes for balanced distribution of work between
CPUs and GPUs; ii) characterization and comparative evaluation
of the two diffusion models; iii) improved implementation for op-
timizing the seed selection kernel; and, iv) large-scale real-world
application study in key scientific domains.

ACKNOWLEDGMENTS
We used resources of the Oak Ridge Leadership Computing Facility
at the Oak Ridge National Laboratory (Contract No. DE-AC05-
00OR22725) and the National Energy Research Scientific Computing
Center (Contract DE-AC02-05CH11231). The research is supported
by the U.S. DOE ExaGraph project at the Pacific Northwest National
Laboratory (PNNL) and by NSF awards CCF 1815467 and OAC
1910213 at Washington State University (WSU). PNNL is operated
by Battelle Memorial Institute under Contract DE-AC06-76RL01830.

cuRipples: Influence Maximization on Multi-GPU Systems ICS ’20, June 29-July 2, 2020, Barcelona, Spain

REFERENCES
[1] Heiko Bauke. Tina’s random number generator library, 2011.
[2] Richard Bellman. On a routing problem. Quarterly of applied mathematics, 16(1):

87–90, 1958.
[3] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-

vre. Fast unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment, 2008(10):P10008, 2008.

[4] Christian Borgs, Michael Brautbar, Jennifer T. Chayes, and Brendan Lucier. Max-
imizing social influence in nearly optimal time. In Chandra Chekuri, editor, Proc.
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 946–957. SIAM,
2014.

[5] Ümit V Çatalyürek, John Feo, AssefawHGebremedhin, Mahantesh Halappanavar,
and Alex Pothen. Graph coloring algorithms for multi-core and massively multi-
threaded architectures. Parallel Computing, 38(10):576–594, 2012.

[6] Wei Chen, Yajun Wang, and Siyu Yang. Efficient influence maximization in social
networks. In Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Paris, France, June 28 - July 1, 2009, pages
199–208. ACM, 2009.

[7] Wei Chen, Chi Wang, and Yajun Wang. Scalable influence maximization for
prevalent viral marketing in large-scale social networks. In Proc. ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 1029–
1038. ACM, 2010.

[8] Edith Cohen, Daniel Delling, Thomas Pajor, and Renato F. Werneck. Sketch-
based Influence Maximization and Computation: Scaling up with Guarantees. In
Proc. ACM International Conference on Conference on Information and Knowledge
Management, CIKM, pages 629–638. ACM, 2014.

[9] Nvidia Corporation. Nvidia Tesla V100 GPU Architecture. Technical report,
Nvidia Corporation, 2017.

[10] Nvidia Corporation. nvGRAPH, last accessed 2020. URL https://developer.nvidia.
com/nvgraph.

[11] Nan Du, Le Song, Manuel Gomez-Rodriguez, and Hongyuan Zha. Scalable
Influence Estimation in Continuous-Time Diffusion Networks. In Advances in
Neural Information Processing Systems 26, pages 3147–3155, 2013.

[12] Lester Randolph Ford Jr and Delbert Ray Fulkerson. Flows in networks. Princeton
university press, 2015.

[13] Amit Goyal, Wei Lu, and Laks V. S. Lakshmanan. CELF++: optimizing the greedy
algorithm for influence maximization in social networks. In Proc. International
Conference on World Wide Web, WWW, pages 47–48. ACM, 2011.

[14] David Kempe, Jon M. Kleinberg, and Éva Tardos. Maximizing the spread of
influence through a social network. In Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Washington,
DC, USA, August 24 - 27, 2003, pages 137–146. ACM, 2003.

[15] Jinha Kim, Seung-Keol Kim, and Hwanjo Yu. Scalable and parallelizable pro-
cessing of influence maximization for large-scale social networks? In Proc. IEEE
International Conference on Data Engineering, ICDE, pages 266–277. IEEE Com-
puter Society, 2013.

[16] Andrew Lenharth, Donald Nguyen, and Keshav Pingali. Parallel graph analytics.
Communications of the ACM, 59(5):78–87, 2016.

[17] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

[18] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne M.
VanBriesen, and Natalie S. Glance. Cost-effective outbreak detection in networks.

In Proc. ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 420–429. ACM, 2007.

[19] Xiaodong Liu, Mo Li, Shanshan Li, Shaoliang Peng, Xiangke Liao, and Xiaopei
Lu. IMGPU: GPU-Accelerated Influence Maximization in Large-Scale Social
Networks. IEEE Trans. Parallel Distrib. Syst., 25(1):136–145, 2014. doi: 10.1109/
TPDS.2013.41. URL https://doi.org/10.1109/TPDS.2013.41.

[20] Hao Lu, Mahantesh Halappanavar, Daniel Chavarría-Miranda, Assefaw Ge-
bremedhin, and Ananth Kalyanaraman. Balanced coloring for parallel com-
puting applications. In 2015 IEEE International Parallel and Distributed Processing
Symposium, pages 7–16. IEEE, 2015.

[21] Hao Lu, Mahantesh Halappanavar, and Ananth Kalyanaraman. Parallel heuristics
for scalable community detection. Parallel Computing, 47:19–37, 2015.

[22] Brendan Lucier, Joel Oren, and Yaron Singer. Influence at Scale: Distributed Com-
putation of Complex Contagion in Networks. In Proc. ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 735–744. ACM, 2015.

[23] Michel Minoux. Accelerated greedy algorithms for maximizing submodular set
functions. Optimization Techniques, pages 234–243, 1978.

[24] Marco Minutoli, Mahantesh Halappanavar, and Ananth Kalyanaraman. Ripples:
Open source software. https://github.com/pnnl/ripples, 2019.

[25] MarcoMinutoli, Mahantesh Halappanavar, Ananth Kalyanaraman, Arun V. Satha-
nur, Ryan Mcclure, and Jason McDermott. Fast and Scalable Implementations
of Influence Maximization Algorithms. In 2019 IEEE International Conference
on Cluster Computing, CLUSTER 2019, Albuquerque, NM, USA, September 23-
26, 2019, pages 1–12. IEEE, 2019. doi: 10.1109/CLUSTER.2019.8890991. URL
https://doi.org/10.1109/CLUSTER.2019.8890991.

[26] Edward F Moore. The shortest path through a maze. In Proc. Int. Symp. Switching
Theory, 1959, pages 285–292, 1959.

[27] Koushik Pal, Zissis Poulos, Edward Kim, and Andreas G. Veneris. Fast GPU-Based
Influence Maximization Within Finite Deadlines via Node-Level Parallelism. In
Petra Perner, editor,Advances in Data Mining. Applications and Theoretical Aspects
- 17th Industrial Conference, ICDM 2017, New York, NY, USA, July 12-13, 2017,
Proceedings, volume 10357 of Lecture Notes in Computer Science, pages 151–165.
Springer, 2017. doi: 10.1007/978-3-319-62701-4_12. URL https://doi.org/10.1007/
978-3-319-62701-4_12.

[28] Gal Sadeh, Edith Cohen, and Haim Kaplan. Sample Complexity Bounds for
Influence Maximization. In Thomas Vidick, editor, 11th Innovations in Theoretical
Computer Science Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington,
USA, volume 151 of LIPIcs, pages 29:1–29:36. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020. doi: 10.4230/LIPIcs.ITCS.2020.29. URL https://doi.org/10.
4230/LIPIcs.ITCS.2020.29.

[29] Youze Tang, Xiaokui Xiao, and Yanchen Shi. Influence maximization: near-
optimal time complexity meets practical efficiency. In International Conference
on Management of Data, SIGMOD, pages 75–86. ACM, 2014.

[30] Youze Tang, Yanchen Shi, and Xiaokui Xiao. Influence Maximization in Near-
Linear Time: A Martingale Approach. In Proc. 2015 ACM SIGMOD International
Conference on Management of Data, pages 1539–1554. ACM, 2015.

[31] Vijay V. Vazirani. Approximation algorithms. Springer, 2001.
[32] Hong Wu, Kun Yue, Xiaodong Fu, Yujie Wang, and Weiyi Liu. Parallel Seed

Selection for Influence Maximization Based on k-shell Decomposition. In Collab-
orate Computing: Networking, Applications and Worksharing - 12th International
Conference, CollaborateCom 2016, Beijing, China, November 10-11, 2016, Proceed-
ings, volume 201 of Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, pages 27–36. Springer, 2016.

https://developer.nvidia.com/nvgraph
https://developer.nvidia.com/nvgraph
http://snap.stanford.edu/data
https://doi.org/10.1109/TPDS.2013.41
https://github.com/pnnl/ripples
https://doi.org/10.1109/CLUSTER.2019.8890991
https://doi.org/10.1007/978-3-319-62701-4_12
https://doi.org/10.1007/978-3-319-62701-4_12
https://doi.org/10.4230/LIPIcs.ITCS.2020.29
https://doi.org/10.4230/LIPIcs.ITCS.2020.29

	Abstract
	1 introduction
	2 Influence Maximization
	2.1 IMM Algorithm

	3 Parallel Multi-GPU Systems
	4 Parallelization of Sampling
	4.1 Mixed CPU/GPU Workloads
	4.2 Parallel Sampling for the IC Model
	4.3 Parallel Sampling for the LT Model

	5 Parallelization of Seed Selection
	5.1 Seed selection on CPUs
	5.2 Seed Selection on CPU+GPU

	6 Experimental Setup
	7 Experimental Results
	7.1 Comparative Evaluation
	7.2 IMM versus Greedy Hill Climbing
	7.3 Performance Evaluation of the IC Model
	7.4 Performance Evaluation of the LT Model

	8 Related Work
	9 Conclusion and Future Work
	Acknowledgments
	References

