
PREEMPT: Scalable Epidemic Interventions Using
Submodular Optimization on Multi-GPU Systems

Marco Minutoli∗, Prathyush Sambaturu†, Mahantesh Halappanavar∗‡,
Antonino Tumeo∗ Ananth Kalyananaraman‡∗ and Anil Vullikanti†

∗Pacific Northwest National Laboratory, Richland, WA; Email: {marco.minutoli, hala, antonino.tumeo}@pnnl.gov
†University of Virginia, Charlottesville, VA; Email: pks6mk@virginia.edu, vsakumar@virginia.edu

‡Washington State University, Pullman, WA; Email: ananth@wsu.edu

Abstract—Preventing and slowing the spread of epidemics
is achieved through techniques such as vaccination and social
distancing. Given practical limitations on the number of vaccines
and cost of administration, optimization becomes a necessity.
Previous approaches using mathematical programming methods
have shown to be effective but are limited by computational
costs. In this work, we present PREEMPT, a new approach for
intervention via maximizing the influence of vaccinated nodes on
the network. We prove submodular properties associated with the
objective function of our method so that it aids in construction
of an efficient greedy approximation strategy. Consequently, we
present a new parallel algorithm based on greedy hill climbing
for PREEMPT, and present an efficient parallel implementation
for distributed CPU-GPU heterogeneous platforms. Our results
demonstrate that PREEMPT is able to achieve a significant
reduction (up to 6.75×) in the percentage of people infected
and up to 98% reduction in the peak of the infection on a city-
scale network. We also show strong scaling results of PREEMPT
on up to 128 nodes of the Summit supercomputer. Our parallel
implementation is able to significantly reduce time to solution,
from hours to minutes on large networks. This work represents
a first-of-its-kind effort in parallelizing greedy hill climbing and
applying it toward devising effective interventions for epidemics.

Index Terms—Epidemic networks, vaccination, submodular,
influence maximization, CPU-GPU, parallel algorithms.

I. INTRODUCTION

Social distancing and vaccination are the primary strategies
(or public health interventions) for controlling the spread of
an epidemic [1]–[3]. Such interventions are very expensive
to implement, as the current COVID-19 outbreak has al-
ready demonstrated. Therefore, designing optimal intervention
strategies is a fundamental public health challenge. Due to the
complexity of disease spread, large agent-based models have
been used [2], [3]. These models are compartmental models
that simulate a Susceptible-Infectious-Recovered (or SIR) or
other similar stochastic diffusion processes, on a network (§II).
The problem of designing an efficient intervention (which
we refer to as the EPICONTROL problem) is equivalent to
removing nodes (in the case of vaccination) or edges (in the
case of social distancing) within a given budget, so that most
lives are saved. For the purpose of this paper, we focus on the
harder problem of vaccination; the methods extend to social
distancing as well.

The EPICONTROL problem for vaccination-based interven-
tion is NP-hard [4], and prior work either lacks any sound

Portland-141k Portland-295k Portland-415k
0

5

10

15

20

25

30

35

P
er

ce
nt

ag
e

of
p

op
ul

at
io

n
in

fe
ct

ed

Without Preempt

Preempt(1000)

Preempt(5000)

Fig. 1: A comparison of the percentages (%) of population
infected with and without our proposed method PREEMPT, for
three contact networks of Portland taken from [15], [16] (§V).
Even with relatively low budgets for vaccination (1000 and
5000 nodes), we obtain anywhere between 2.61× to 6.75×
reduction in the percentages of infected nodes over WITHOUT
PREEMPT.

theoretical support (e.g., strategies which choose nodes based
on degree or centrality [5]–[7]), or uses spectral graph theory
methods [8]–[11], or math programming techniques [12]–[14],
which give approximation guarantees, but can take hours to
even days to complete on even moderate size graphs (∼105

nodes). Our focus is to find effective interventions that can
scale to networks with well over millions of nodes.
Contributions: In this paper, we present a novel formulation
to address the EPICONTROL problem. Our formulation maps
the problem to one of identifying an optimal set of nodes (or
“seeds”) for vaccination so that the effective number of infec-
tions on the network can be minimized. This formulation al-
lows us to leverage principles from influence maximization—
a well known problem in network science [17]. Based on
this new formulation and provable properties, we devise an
algorithm and present its parallel implementation.

More specifically, we make the following contributions:
• Starting from an observation that EPICONTROL is submodu-

lar on a forest, and the intuition that good vaccination strate-
gies must have high reachability, we design our PREEMPT
strategy based on influence maximization (§III). We show

SC20, November 9-19, 2020, Is Everywhere We Are
978-1-7281-9998-6/20/$31.00 ©2020 IEEE

that PREEMPT involves maximizing a submodular function.
• We propose a greedy hill-climbing based algorithm called

PREEMPT-HC, to approximately implement PREEMPT, and
yield a solution to EPICONTROL, for a given budget
(§III-C);

• We present an efficient parallel algorithm targeted to run on
distributed CPU-GPU heterogeneous platforms.

• Our experiments demonstrate strong scaling on networks
with millions of vertices, on the current fastest supercom-
puter, Summit with CPU-GPU nodes; effectively reducing
time to solution from hours to minutes on up to 128
nodes of Summit (§VI). The performance improvements are
more pronounced for contact networks, owing to significant
speedups achieved during the dominant step of the algorithm
(e.g., up to 155×); and

• Our application on a synthetic social contact network for the
population for Portland, OR, which has been used in public
health analysis [15], [16] shows significant reductions in the
number of infections achieved by our method PREEMPT, as
shown in Fig. 1.
To the best of our knowledge, this work represents the

first effort in parallelizing a simulation of optimal intervention
methods for controlling the spread of epidemics using submod-
ular optimization, which can scale to networks with millions
of nodes. Our approach using hill climbing is motivated by
a need to support scalable implementations that are better
equipped to generate high quality seed sets, and to better
handle dynamically evolving needs in seed selection [18] and
incorporation of additional constraints (such as fairness) [19].
The work is also the first of its kind to scale greedy hill
climbing algorithm on heterogeneous CPU-GPU platforms.
Also to the best of our knowledge, PREEMPT type of strategies
have not been studied for containing epidemics, especially in
the context of uncertainties or lack of prior information—
making the work relevant to researchers, practitioners, and
decision and policy makers in the epidemics domain.

II. PRELIMINARIES

SIR process. We consider the SIR (Susceptible (S), Infected
(I), Recovered (R)) model of epidemic spread on a net-
work [17]. Let G(V,E, ω) be a directed graph representing the
contact network. V is a set of vertices representing people; E
is a set of edges representing direct contact between pairs of
vertices modeling the spread of a disease, so that (u, v) ∈ E
represents an opportunity for an infection to spread from node
u to node v; and, ω(.) is a weight function, with ωuv denoting
the conditional probability that node v gets infected, if u is
infected1. In this model, each node u ∈ V is in one of S, I
or R states. The disease process starts when a small subset of
nodes (sources) is in state I, and the rest of the nodes are in
state S. A node u in state I attempts to infect each neighbor v
in state S independently with probability wuv; if the infection
is successful, v switches to state I. Note that if node v has

1If the input network is undirected, we treat each edge as a bidirectional
edge with the same weight.

multiple infected neighbors u1, u2, then, v gets infected with
probability 1 − (1 − wu1v)(1 − wu2v). For simplicity, here
we assume an infectious duration of one time step, so a node
in state I at time t switches to state R at time t + 1. The
SIR process ends when all the nodes are in states S or R.
Fig. 2 illustrates the SIR process on a contact network with
five nodes, with a single node as the source.

Fig. 2: The SIR process on a graph G, along with two samples
(Gi and Gj) drawn from it. Consider Gi, in which a is initially
in state I at time t = 0. At t = 1, c changes to state I, while a
changes to R. At t = 2, d changes to state I, while c changes
to state R. At t = 3, d also changes to state R. Red edges
represent the corresponding random sample; for instance, Gi
occurs with probability wacwcd(1−wab)(1−wbd)(1−wce).

Diseases such as COVID-19, HIV, chicken pox, and dengue
hemorrhagic fever, require additional disease states such as
”Exposed (E)” and ”Asymptomatic (A)”. The resulting models
can accordingly be named as SEIR [20], SEIRS [21], and
SEAIR [22]—as surveyed in [23], [24].

Table I summarizes some of the key notation used in this
paper.

TABLE I: Notation used in this paper.

Symbol Description

G(V,E, ω) Directed graph with edge weights
B Initial set of infected nodes
S, k Set of nodes to vaccinate and a corresponding budget
Gi One of the η graph samples generated from G
σG(B) Influence of set B in G
σ̃Gi

(B,S) Influence of B in G when S is removed
λ̃Gi

(B,S) Number of nodes saved (from B’s influence)
when S is removed from G

Random samples and influence. Following the work of
Kempe et al. [17], we use the term “influence” to represent the
infections caused by a node. Given G and η random numbers
r1uv ...rηuv for each edge in E (for a total of η × |E| random
numbers), we generate η random samples of G, represented
by set SG = {G1, G2, . . . , Gη}, such that an edge (u, v) is
part of Gi iff its weight ωuv ≥ riuv . Furthermore, we define
σGi

(B) as the total number of infected (influenced) vertices
in Gi for a given set of initially infected vertices B. Formally,

σGi
(B) =

∣∣∣∣ ⋃
b∈B
R(b, V)

∣∣∣∣, (1)

where R(b, V) is the set of vertices in V that can be reached
when source vertex b ∈ B is activated (infected) in Gi. For
the example shown in Fig. 2, if B = {a}, then the number of
infected nodes in Gi is σGi

({a}) = 3. Henceforth, we refer
to set B as the source set, and use EGi

[σGi
(B)] to denote the

expected number of infections due to the source set B.
Vaccination as an intervention to save nodes. In this paper,
we consider interventions in the form of vaccinations. More
specifically, a node that is in the vaccinated state can no longer
participate in disease transmission with a probability of q—
therefore, this is equivalent to removal of that node and all
its incident edges from the network with the same probability.
For the purpose of this paper, we use the setting of q = 1.0,
although our approach itself can be extended to the arbitrary
value setting. Let S denote a set of vaccinated nodes. As
before, let B denote the source set (of initially infected nodes).
We define a new metric, σ̃Gi

(B,S) that denotes the number
of infections given B and S, as follows:

σ̃Gi(B,S) =

∣∣∣∣ ⋃
b∈B
R(b, S, V)

∣∣∣∣, (2)

where R(b, S, V) is the set of nodes in Gi that can be reached
from the source nodes (B) after all nodes in S are removed.

Given the above definitions, we define the number of nodes
saved to be:

λ̃Gi
(B,S) = σ̃Gi

(B, ∅)− σ̃Gi
(B,S), (3)

and the resulting outbreak size (i.e., when S is vaccinated) is
EGi

[σ̃Gi
(B,S)]. In the example of Fig. 2, for random sample

Gj , suppose B = {a}, and S = {c}. Then, σ̃Gj
(B,S) = 2

(as R(a, S, V) = {a, b}), and λ̃Gj
(B,S) = 2.

III. PROBLEM FORMULATION AND ALGORITHMS

In this section, we formulate the problem and prove related
properties that will help us to subsequently design efficient
algorithms (§III-C). Our main motivation is to determine the
vaccination set S, that maximizes the number of nodes saved,
subject to a budget constraint that |S| ≤ k. This is formally
defined as problem EPICONTROL below.

Definition III.1 (EPICONTROL). Given a graph G, a set of
initially infected nodes B, and a budget k, find a set of nodes
S ⊆ V to vaccinate, such that |S| ≤ k, and E[λ̃G(S)] is
maximized.

In §III-A, we show that EPICONTROL in rooted trees is
submodular. However, maximizing the number of lives saved
in a general graph is not submodular and therefore a harder
optimization problem. Consequently, we aim to maximize
the impact of a vaccination campaign. More specifically, we
consider a preemptive scenario where at the anticipated onset
of an outbreak in a country (or region), agencies need to decide
which k nodes to vaccinate in order to minimize the expected
spread of infections post-onset (or equivalently maximize the
number of saved lives post-onset). If an arbitrary node v is to
be saved, then it means every path that connects any infected

node to v should have at least one vaccinated node along the
way. In other words, all paths from the infected nodes to v
need to be broken. The goal then becomes one of computing
S, a target set of nodes to vaccinate, which collectively has
the maximum reachability into the network.

We observe that this goal is indeed what the classical influ-
ence maximization formulation [17] also intends to address.
More specifically, if we treat the set of vaccinated nodes S
as the initial set of “activated” nodes, then a solution for
influence maximization can help us identify the maximum
influential seed set of size ≤ k that can become targets
for a preemptive vaccination campaign. In other words, this
strategy would allow us to leverage existing solutions for
influence maximization for devising a preemptive solution
to EPICONTROL. We label this strategy as PREEMPT and
formulate it the following manner:

Definition III.2 (PREEMPT). Given a graph G and a budget
k, determine a set of nodes S ⊆ V to vaccinate such that
E[σG(S)] is maximized, and that |S| ≤ k, treating S as the
initial set of activated nodes.

We provide the algorithmic details for PREEMPT in §III-C
and empirical evaluation in §VI. In what follows, with the goal
of designing efficient greedy solutions for the above defined
optimization problems, we aim to prove the submodularity
property for a specific instance of EPICONTROL, and for
PREEMPT. Submodularity can be defined as follows:

Definition III.3 (SUBMODULAR). Let S be a finite set. A
function f : 2S → R is submodular if for any subsets X ⊆
Y ⊆ S and x ∈ S \ Y , f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})−
f(Y).

Simply put, the function f is such that adding x into a
smaller subset X is expected to generate a larger gain than
adding x into a larger set Y that contains X . Therefore, this
gives us a greedy incentive to find and add the best possible x
at any given point during an incremental seed set construction.

In what follows, we prove a submodular function for
EPICONTROL for the special case when Gi is a rooted tree,
and subsequently prove the property for the generalized setting
for PREEMPT.

A. Submodularity for EPICONTROL in Rooted Trees

Theorem III.1. If Gi is a rooted tree, then λ̃Gi(B,S) is a
submodular function of S.

Proof. Recall from Eqn. 3 that λ̃(B,S) is the number of
nodes saved2 (from the influence of B) when nodes in S are
vaccinated (i.e., removed from Gi). We use Λ(u) to denote the
set of nodes in the subtree rooted at any node u (inclusive of
u). Let us consider subsets X and Y such that X ⊆ Y ⊆ V ,
and a node x ∈ V \ Y .

If x is added to X , then λ̃(B,X∪{x})−λ̃(B,X) ≤ |Λ(x)|.
Specifically, let u ∈ Λ(x) ∩X—i.e., any node in the subtree

2For convenience, we ignore the subscript corresponding to the graph
sample in this proof.

of x that already exists in X . We define Ux,X =
⋃
u Λ(u).

Then, λ̃(B,X ∪ {x})− λ̃(B,X) = |Λ(x)| − |Ux,X |.
Alternatively, let us evaluate the impact of adding x to Y ,

by considering the corresponding term Ux,Y for Y . Since any
node u ∈ X is also a member of Y , |Ux,Y | ≥ |Ux,X |. It
follows, λ̃(B,X∪{x})−λ̃(B,X) ≥ λ̃(B, Y ∪{x})−λ̃(B, Y).

Since λ̃Gi
(B,S) is submodular in this case and non-

negative linear combinations of submodular functions are
still submodular, it follows (as in [17]) that E[λ̃Gi

(B,S)] is
submodular, and a greedy algorithm gives a constant factor
approximation to EPICONTROL. However, as can be noted,
the proof for Theorem III.1 is predicated on the assumption
that Gi is a rooted tree. If not, then there could exist additional
paths to node u that bypass x thereby breaking the submodular
guarantee. This motivates the idea of PREEMPT.

B. Submodularity for PREEMPT in Graphs

We now show that PREEMPT in a general graph is submod-
ular. Let G be an arbitrary contact graph and Gi be one of its
random samples.

Theorem III.2 (Submodularity theorem). Given a graph G,
a budget k and diffusion process based on the SIR model, the
optimization function of PREEMPT, which is to maximize the
influence of set S in G, is submodular, and S ≤ k.

Proof. Recall from Eqn. 1 that σGi
(S) is the number of all

reachable nodes in Gi (i.e., R(s, V)) from all nodes s ∈ S.
Consider any two subsets X and Y such that X ⊆ Y ⊆ V , and
a node s ∈ V \Y . If s is added to X , then the number of new
nodes added will be that subset of R(s, V) that are not already
included in

⋃
x∈X R(x, V). Now, consider the contribution

of adding s to set Y . Since X ⊆ Y , the number of new
nodes contributed by the addition of s to Y can be at most as
large as the number of nodes in R(s, V) that are not already
included in

⋃
x∈X R(x, V). Thus, σGi

(X ∪{s})−σGi
(X) ≥

σGi
(Y ∪ {s})− σGi

(Y).
The expected number of nodes activated in G is given by

the weighted average over all the samples:

E[σG(S)] =
∑

Gi∈SG
Prob[Gi] · σGi(S). (4)

Since a non-negative linear combination of submodular func-
tions is also submodular, E[σG(S)] is submodular.

As shown in Kempe et al., the influence maximization
problem is NP-hard for the independent cascade model [17].
We therefore present approximation algorithms for PREEMPT.

C. A Greedy Algorithmic Framework for PREEMPT

We present a greedy strategy to exploit the submodular
property of PREEMPT. We begin with the greedy approxi-
mation algorithmic framework based on influence maximiza-
tion, as summarized in Algorithm GREEDYIM. The algorithm
begins with an empty set for S and iterates until k seeds

Algorithm 1: GREEDYIM: Selects a set of nodes S
of size at most k that maximize the influence, σ(·).
Input : (G = (V,E, ω), k)
Output: S

1 S ← ∅
2 while |S| < k do
3 sbest ← arg maxs∈V \S(σG(S ∪ {s})− σG(S))

4 S ← S ∪{sbest}

have been identified by selecting a vertex (sbest) at each
step (Line 3) that provides the maximum marginal gain for
the influence function, σ(·). Algorithm GREEDYIM can be
shown to be approximate if σ(·) is a non-negative monotone
submodular function (§III).

Theorem III.3 (Approximation Bound [17], [25], [26]). Let
S be the set of size k computed iteratively by Algorithm
GREEDYIM by selecting the vertex with largest marginal gain
in the value of a non-negative monotone submodular function
σ(·). Let S∗ be the set that maximizes the value of σ(·) over all
possible set of k elements in G. Then, σ(S) ≥ (1−1/e)·σ(S∗).

We refer the reader to [17] for the proof of Theorem III.3.
The approximation guarantee of (1 − 1/e) relies on the fact
that GREEDYIM can compute the exact value of σ(·), which
is hard to compute in a probabilistic setting.

An alternative approach is to use multiple simulations of the
diffusion process and sampling to provide close approxima-
tions of σ(S). To this end, the Greedy Hill Climbing algorithm
of Kempe et al. [17] becomes relevant, as it provides an
approximation guarantee of (1 − 1/e − ε), for any ε > 0.
This algorithm is known to be computationally more expensive
compared to modern algorithms such as IMM from Tang
et al. [27], that are applicable to specific models of diffu-
sion such as SIR. However, there are significant motivating
reasons to still aim at a scalable implementation for greedy
hill climbing (“HC”). Besides providing an approximation
guarantee, this algorithm has the added advantage of being
able to generalize to a broader range of diffusion models (such
as SEIR [20], SEIRS [21], and SEAIR [22]) that are used in
epidemic simulations. The algorithm is also better equipped
to incorporations of constraints during selection (e.g., fairness)
that become important for epidemic simulations [19]. From an
algorithmic standpoint, the HC algorithm also has the desired
property of being able to subselect seed sets of smaller sizes,
without having to recompute [18], in contrast to an approach
like IMM which computes solutions for a pre-specified seed
set size. The requirement for dynamically varying seed set
sizes (incrementally) can emerge in the context of vaccination,
due to manufacturing uncertainties and availability, as well as
potential fairness constraints.

IV. DISTRIBUTED CPU-GPU IMPLEMENTATION

In what follows, we present PREEMPT-HC—our parallel
algorithm based on greedy hill climbing, to exploit the sub-
modular property of PREEMPT. Our algorithm is a CPU-GPU
algorithm that targets heterogeneous clusters.

Algorithm 2 shows the main steps of the parallel algorithm.
It proceeds in three steps: sampling, counting, and seed selec-
tion. The Sampling step computes SG, a set of η subgraphs
(random samples) of G obtained by probabilistically removing
edges as per the targeted diffusion process. In the case of
the SIR model, edges (i, j) will be removed with probability
1−ωij . After sampling, the counting step proceeds iteratively
by computing the expected gain in spread that can be achieved
by the addition of any node v ∈ V \ S, over the collection of
samples in SG. In the SIR model, this quantity can be com-
puted as the number of visited nodes in a breadth-first search
(BFS) from the vertices in S. Finally, S is greedily extended
by including a vertex v that provides the maximum marginal
gain in spread. The algorithm terminates when cardinality of
S reaches k. This leads to the computational complexity of
O(kη|V |(|V | + |E|), where the cost of a BFS is given by
O(|V | + |E|). In an ideal parallel setting, the cost becomes
O((kη|V |(|V |+ |E|)/p), by partitioning SG over p processes
and ignoring communication costs or other overheads.

Algorithm 2: PREEMPT-HC: Selects a set of nodes
S of size at most k that maximize the influence, σ(·).

Input : (G = (V,E, ω), k, η)
Output: S

1 SG←Sampling (G, η)
2 S ← ∅
3 while |S| ≤ k do
4 ∀v∈V (count[v] = 0)
5 for v ∈ V \ S do in parallel

// Counting Phase
6 for Gi ∈ SG do
7 count[v]← σGi

(S ∪ {v})− σGi
(S)

// SeedSelect Phase
8 sbest ← arg maxv∈V (count[v])
9 S ← S ∪ {sbest}

Implementation. At the high-level, implementing Algorithm 2
on a heterogeneous distributed system needs careful design
consideration, as each processing element requires differ-
ent optimizations and, sometimes, different algorithmic ap-
proaches to provide optimal performance. Code running on
multicore CPUs needs to exploit task parallelism; especially
for an algorithm like PREEMPT-HC which uses a large number
of BFS passes on different samples of the graph, it also needs
to account for reduced effectiveness of the cache hierarchy.
Code running on GPUs needs to exploit data parallelism,
reducing as much as possible branch divergence in vector-like
computation, and align/coalesce memory accesses to exploit
the massive memory bandwidth. Heterogeneous implementa-

tions also need to efficiently exploit the bandwidth between the
different types of processing element, which is significantly
lower than the bandwidth between a processing element and
its own memory. This is achieved generally by minimizing
the amount of data moved, but also by making sure that,
if there is frequent communication, each transaction packs
enough data to account for the transfer overheads. Because
CPU and GPU tasks execute at different speeds and with
different data volumes, load balancing is also required. The
same communication challenges also arise when parallelizing
across the nodes of the distributed system. PREEMPT-HC starts
by storing the input graph G (replicated across nodes) in the
CPU memory in compressed sparse row format (CSR).
Sampling: The sampling step of Algorithm 2 (Line 1) produces
a collection of subgraphs from the input graph G. There are
two possible approaches: explicitly storing each subgraph as
a new graph data structure or implicitly storing it through
a bit mask that disables the inactive edges. While explicitly
storing the graph has the advantage that the counting step will
only access active edges, it is more storage expensive and
can become a significant cause for data movement between
the host and the device memory. In our implementation, we
choose to implicitly store the subgraphs using an edge-wise bit
mask (see §VI-B for more details on the memory footprint).
Counting: The counting step of Algorithm 2 (Line 5) is
implemented with a custom dynamic scheduling engine to
support our hybrid implementation. Upon creation, the engine
will instantiate a number of CPU and GPU worker threads
according to the configuration requested by the user. The GPU
workers will build a dedicated CSR graph data structure, inside
their respective local device memory. There can be multiple
GPU worker threads for a single GPU device. We found
that implementing the counting step on each CPU worker as
a sequential BFS, and on each GPU worker as a parallel
BFS provides the best performance for the SIR model. This
allows exploiting task parallelism with CPU cores, and data
parallelism with the GPUs. Our implementation of the GPU
workers use a modified version of the state-of-the-art parallel
BFS provided in nvGRAPH[28]. This allows accounting, for
a good extent, of branch divergence and memory coalescence.
Our modifications include: allowing the BFS to start from
multiple sources (by providing a frontier rather than a single
source node), changing the edge mask into a bit mask to
minimize data movement from the host, and adding the
pruning strategy presented in PREEMPT.

As we will see in the results (Section VI), computing
σ(.) for the counting step is the most expensive step of
computation. We highlight that recomputing the reachability
information (σGi(S ∪ {v})) from scratch is highly inefficient.
In fact, the reachability information of what is already covered
by S (σGi

(S)) would be computed O(η|V \ S|) times. Our
implementation avoids this duplicated work by caching visited
nodes from S over the collection SG. The cache is later used
to prune work in the BFS kernels so that they explore the
portion of Gi that is contributed by the addition of v.
Dynamic scheduling: The cache building process and the

Sampling step also take advantage of the custom dynamic
scheduling engine. Our dynamic scheduler serves two pur-
poses: load balancing across the CPU cores and GPU devices,
and pushing enough work to the GPUs to keep them fully
utilized. The scheduler leverages a work queue (optimized
using a single atomic counter) shared among all workers.
GPU workers perform non-blocking calls to the GPU through
streams to overlap computation with communication. The lat-
est GPU architectures, such as Volta, allow parallel execution
of kernels in different streams (HYPER-Q) if enough resources
are available. Section VI evaluates the effectiveness of our
dynamic scheduling approach.
Seed selection: The seed selection step of Algorithm 2 (Line 8)
is one of finding a vertex v that provides the maximum
marginal increment to the rechability of S. In distributed
settings, this step requires a collective operation. In our perfor-
mance study, we tried two different approaches: one based on
one-sided communication with count distributed across the
nodes, and the other using an AllReduce. Both methods
yield a net communication cost of O(k|V | lg p), where p is the
number of allocated ranks. At the scale of our experiments,
we did not observe any significant difference in performance
and therefore we have decided to leave the choice to the user
to enable one or the other.

Algorithm 3: PREEMPT-RR: Selects a set of nodes
S of size at most k that maximize the influence, σ(·).
The set of reverse reachable paths is denoted by R.

Input : (G = (V,E, ω), k, ε)
Output: S

1 while |S| ≤ k do
2 〈R, θ〉 ← EstimateTheta(G, k, ε)
3 R ← ExpandR(G, θ − |R|, R)
4 S ← CountAndSelectSeeds(G, k, R)
5 return S

Reverse Reachable Algorithm. While PREEMPT-HC can be
generalized to several diffusion models, its cost can be a limit-
ing factor for several application. The algorithm of Tang et al.
[27], shown in Algorithm 3, provides excellent speedup when
the diffusion model is SIR. Intuitively, a reverse reachable
method works by asking the reverse question for a given
vertex: Who can activate me? Tang et al. improve the original
work of Borgs et al. [29] with a better bound on the number
of reverse reachable sets computed, and consequently the
amount of work done, by exploiting the statistical properties
of the problem. This is shown as the EstimateTheta
function in Algorithm 3, which includes both an ExpandR
and a CountAndSelectSeeds step in a martingale loop.
The ExpandR step now includes sampling of edges as well
as the computation of reverse reachability information from
randomly selected targets. The CountAndSelectSeeds
picks k seeds from V by solving a maximum coverage
problem over the collection or reverse reachable sets (R).
Minutoli et al. [30] recently developed a distributed, as

well as a distributed multi-GPU, implementation of [27].
Algorithm 3 runs in O((k + l)(|V | + |E|) log |V |/ε2) and
returns a (1 − 1/e − ε)-approximation, for some ε > 0, with
probability 1− 1/|V |l. The communication cost of a parallel
implementation is O(k|V | lg p), where p is the number of
processes. We provide scaling results of Algorithm PREEMPT-
RR in §VI-B for comparison with PREEMPT-HC.
Software Implementation and Availability. We implemented
PREEMPT-RR and PREEMPT-HC using C++ and the MPI,
OpenMP, and CUDA programming models. Their source code
is distributed as part of Ripples[31].

V. EXPERIMENTAL SETUP

Testbed: Distributed Multi-GPU Supercomputer. We ex-
ecute our implementation on Summit, a US Department of
Energy’s Leadership-class machine hosted at Oak Ridge Na-
tional Laboratory [32]. As of this writing, Summit is ranked
number 1 in the TOP500 list[33]. The system consists of 4, 608
nodes, each equipped with two POWER9 CPUs, 6 NVIDIA
Tesla V100 GPUs, 512 GB of DDR4 RAM, and two Infiniband
EDR network interfaces. A POWER9 CPU hosts 22 cores (1
is reserved for system software) with 4 threads each, has a
frequency of 3.07 GHz and hosts 110 MB of L3 cache. Each
Volta GPU hosts 80 Streaming Multiprocessors (64 FP32, 64
INT, 32 FP64 and 8 Tensor Cores running at 1.333 GHz)
with 16 GB of HBM2 memory (1750 Mhz on a 4096-bit
bus, providing 900 GB/s of bandwidth). Group of 3 GPUs
are directly connected with a POWER9 CPU and among each
other with NVLINK2 connections. Each connection uses 2
of the 6 NVLINK2 channels of a Volta GPU, offering up to
100 GB/s of bidirectional bandwidth. A group, composed of 3
GPUs and a CPU, communicates with the other one through
the X-Bus between the two CPUs, with a maximum bandwidth
of 64 GB/s. Our code was compiled with gcc 8.1.1 and CUDA
10.1.243; we use the spectrum MPI library 10.3.1.2.

TABLE II: SNAP (top) and Contact Networks (bottom)

Graph Nodes Edges Avg. Degree Max Degree

HepPh 34,546 421,578 24.41 846
Slashdot 77,360 905,468 23.41 5,048
Epinions 75,879 508,837 13.41 3,079
DBLP 317,080 1,049,866 6.62 343
Google 875,713 5,105,039 11.66 6,353
BerkStan 685,230 7,600,595 22.18 84,290
LiveJournal 4,847,571 68,993,773 28.47 22,889
Orkut 3,072,441 117,185,083 76.28 33,313

Portland 1,501,209 21,155,681 13.78 487
Portland-141k 63,543 141,450 2.23 25
Portland-295k 131,624 295,281 2.24 25
Portland-415k 182,967 415,434 2.27 26

Input Datasets. We use two types of datasets for empirical
evaluations. The first type of networks, listed in Table II,
constitutes social contact graphs for Portland, OR, and Mont-
gomery county, VA, built using agent-based models and a first
principles approach [15], [16]. Such networks are commonly
used in public health analyses, since they capture several
attributes of the underlying population [2], [34]–[38]. The

other type of networks, listed in Table II, are from the SNAP
collection [39]. These inputs originate from a variety of appli-
cation contexts and therefore provide a means for performance
expectation for submodular optimization that goes beyond the
epidemiology use-case. The weights on the edges of these
inputs were randomly generated from a uniform distribution
between [0; 1]. Ripples [31] and our experimental setup [40]
contain all the necessary information to reproduce the results
presented in this paper.

VI. EXPERIMENTAL RESULTS

We first present a thorough qualitative evaluation of PRE-
EMPT by examining various output attributes and comparing
them with the mathematical programming based approach
of Sambaturu et al. [12]. We then provide scaling results
for PREEMPT on Summit. All results for PREEMPT were
generated using PREEMPT-HC, unless otherwise stated.

A. Qualitative Evaluation of PREEMPT

0 50 100 150 200

Number of days from the first infection

0

50

100

150

200

250

300

A
ve

ra
ge

nu
m

b
er

of
in

fe
ct

io
ns

fo
r

a
gi

ve
n

da
y

No action

Preempt-RR(1000)

Preempt-HC(1000)

Preempt-RR(5000)

Preempt-HC(5000)

SaaRound(1239)

Fig. 3: Time series of infections (“epicurve”) comparison
for PREEMPT-HC, PREEMPT-RR and SAAROUND[12] for
Portland-141k. We note that the peak moves earlier in the
process, but optimization for the peak is a different problem.

We use the solution computed by PREEMPT as the in-
tervention in an SIR simulation on the contact networks,
and determine the number of infections in the simulation.
Better qualitative performance corresponds to lesser number
of infections (i.e., more lives saved). For the SIR simulation,
we assume that the disease starts at a small set (size≈10) of
random initial nodes, and a uniform transmission probability
wuv=p for each edge (u, v) is chosen so that in the no-
action case (i.e., WITHOUT PREEMPT), the expected number
of infections is at least 25% of the network. With PREEMPT,
a vaccination budget (k) is used. Fig. 1 shows that even with
relatively low budgets of 1000 and 5000 (0.4% and 2% of
the population resp.), PREEMPT is able to achieve signifi-
cant reductions over WITHOUT PREEMPT, in the number of
infections—between factors of 2.33× (for Portland-295k) to
6.75× (Portland-141k).

Fig. 3 shows the effectiveness of the different schemes
PREEMPT-HC, PREEMPT-RR, SAAROUND[12] compared to

the baseline which represents no-action/intervention. The
curves suggest a clear value in intervention, yielding between
2× and 9× reductions in the number of infections. Also, it
can be seen that PREEMPT-HC outperforms PREEMPT-RR by
reducing the number of infections significantly—for instance,
on a budget of 5000, the total number of infections can be
decreased by 98.57% for PREEMPT-HC, compared to the no-
action baseline; whereas the decrease is 83.89% for PREEMPT-
RR. As expected PREEMPT-RR is significantly faster than
PREEMPT-HC (see §VI-B) and SAAROUND. Furthermore, the
performance of PREEMPT-HC is comparable to SAAROUND,
both in terms of quality and runtime (3-5 hours) for a moder-
ately sized input such as Portland-141K—for instance, the total
number of infections under PREEMPT-HC(5000) was 271,
compared to the 869 infections under SAAROUND(1239). Note
that we were not able to run SAAROUND for the larger inputs
with millions of nodes because of time limitations. Fig. 3 also
shows the temporal value of intervention (via vaccination) as
the peak of infections clearly move left (i.e., earlier in time)
compared to the curve with no intervention. The peak height
and the timing of the peak, can profoundly impact treatment
as both are linked to hospitalization and hospital capacities.
Demographic characteristics of PREEMPT. Fig. 4 shows the
age and degree of the nodes picked in the solution, and their
correlation. We note that there is a significant spread in the
ages of the nodes selected. This spread is interesting because
it suggests that the common public health strategies that tend
to focus on specific age groups (particularly children) may not
be the most effective for EPICONTROL.
Node characteristics of PREEMPT. As mentioned in §VII, a
number of network properties have been used for selecting
nodes to intervene, including degree, clustering coefficient,

Fig. 4: Degree vs. Age for the seeds selected by PREEMPT
on Portland 415k with their degree (top) and age (right)
distribution.

0 10 20 30 40 50 60 70 80

triangles

0.0

0.5

1.0

1.5

2.0

2.5

pa
ge

ra
nk

×10−5

Preempt(5000)

2.5 5.0 7.5 10.0 12.5 15.0 17.5

Degree

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

B
et

w
ee

nn
es

s
ce

nt
ra

lit
y

×108

Preempt(5000)

0.0 0.2 0.4 0.6 0.8 1.0

Clustering Coefficient

0.0

0.1

0.2

0.3

0.4

E
ig

en
ce

nt
ra

lit
y

Preempt(5000)

Fig. 5: Correlations between different measures of graph structural characteristics of the nodes picked by PREEMPT: (Left)
#Triangles vs. Pagerank; (Middle) Degree vs. Betweenness Centrality; and (Right) Clustering Coefficient vs. Eigenvector
Centrality.

and various notions of centrality. Fig. 5 shows different node
characteristics in the solutions computed by PREEMPT, and
correlations between them. The results show that there is no
single node characteristic that could be used as a “surrogate” to
design good interventions in synthetic social network models
used in public health. In particular, there is a wide spread
in both the degree and clustering coefficient (Fig. 5, middle
and right). This contrasts with the performance of the degree
heuristic for scale free networks [7], [41]. Some of the com-
mon centrality measures—pagerank, betweenness centrality,
and eigen centrality, also do not show a significant dominance;
among these, the pagerank of the selected nodes seems to be
somewhat high, and that could serve as a promising surrogate,
though even that has a fairly large spread.

B. Performance Evaluation on Summit

We present performance results and evaluation for executing
PREEMPT-HC on Summit. We also present strong scaling
results on Summit for PREEMPT-RR.
Single Node Performance of PREEMPT-HC. In order to
understand the performance on a single node, we study the be-
havior of task execution on CPU versus GPU as the algorithm
progresses reflecting varying degrees of computational load.
We measured the execution time of the first 100 tasks executed
by 84 workers (6 GPU workers and 78 CPU workers) for each
of the 50 iterations used to select 50 seeds (one per iteration).
The results are presented in Fig. 6. We observe that tasks
from early iterations (dark blue color) of the algorithm are
relatively more expensive than tasks from later iterations (light
blue color). The runtime behaviour reflects the effectiveness
of the pruning strategy that we incorporated in PREEMPT (as
described in §IV).

We further observe that the inputs from the SNAP collection
and the two Contact Networks have contrasting execution
profiles. We show one representative instance from each in
Fig. 6—DBLP on the left and Portland on the right. Tasks
for the Contact Networks run very quick and the overheads
of offloading the computation to the accelerator negate the
potential benefits. The total number of tasks is given by
(η·|V |)/p, where p is the number of processing units (threads).
In contrast, the inputs from the SNAP collection have the
opposite behavior as the early iterations (dark blue) run
considerably faster on the GPUs than on the CPUs (on average

on DBLP first iteration: 6.91×). However, these gains on
GPUs are reversed during the final iterations of the algorithm
were CPUs become faster than GPUs. In fact during the
last iteration on DBLP, CPU tasks execute on average in
0.03ms while GPU tasks execute on average in 8.6ms. The
loss of efficiency for GPUs can be attributed to the overhead
of offloading the computation to GPUs when not enough
computation remains. Thus, dynamic task scheduling between
CPU and GPU workers becomes an important strategy to adapt
to variations in computational load and data movement.

In order to provide a better insight on the execution behav-
ior, we present a portion of the data using violin plots [42]. We
opted for the violin plots due to their versatility in capturing
variability in data, not only from the execution times on CPUs
versus GPUs, but also across different measurements on CPUs
and GPUs by themselves, as well as the differences between
different inputs. Ridges in the figure show multimodal distribu-
tion, and the long tails characteristic of lognormal distribution
show the skewedness of the execution time distribution (we
note that a normal distribution produces a smooth violin plot).
In Fig. 7, we show the distribution of the execution times of the
tasks obtained by profiling the counting phase in Algorithm 2
during the first 10 iterations of the algorithm. Measurements
were taken with 84 total threads (78 CPU workers and 6
GPU workers). We observe a more skewed distribution for the
Portland dataset than for the DBLP dataset (Fig. 7a and 7d),
and up to four orders of magnitude difference between the
fastest and the slowest tasks in each iteration (long tail).
Similar observations emerge also from analyzing CPU and
GPU tasks in isolation (Fig. 7b, 7c, 7e and 7f). DBLP shows
a clear shift of regimen between the first iteration and the
subsequent iterations, which is caused by the pruning strategy
included in PREEMPT-HC (which leads to potential reduction
in work where applicable). In fact, while the pruning strategy
is shifting the distribution towards faster execution times, there
is still great variability in runtime time that can be attributed
directly to the structural and numerical properties of a given
input. For Portland, we do not observe a similar reduction after
the first iteration. We can in fact observe a scenario where the
pruning strategy is less effective when the edge probabilities
are considerably low; peculiar to this dataset. We conclude that
dynamical scheduling of tasks on computing resources is not

(a) DBLP (b) Portland

Fig. 6: PREEMPT-HC Task Execution Time for the first 100 tasks executed by 84 worker threads (Rank 0 to Rank 77 on CPUs
on the bottom; Rank 78 to Rank 83 on GPUs on the top) for 50 iterations of the algorithm, for two inputs (DBLP on the left
and Portland on the right) on Node Zero of Summit. Each iteration selects one seed. There is a significant difference in the
performance behavior for the two inputs, and in the performance on CPUs versus GPUs for early versus later iterations.

(a) DBLP-all (b) DBLP-cpus (c) DBLP-gpus

(d) Portland-all (e) Portland-cpus (f) Portland-gpus

Fig. 7: An illustration of execution time variability using violin plots for PREEMPT-HC. The plot highlights a portion of the
data presented in Section VI-B for the first 100 tasks executed by 84 worker threads (78 on CPUs and 6 on GPUs). Top row
is DBLP and the bottom row is Portland, on Node Zero of Summit. We report the distribution for all tasks aggregated together
(left column), and a detailed view considering only CPU tasks (center column) and GPU tasks (right column) separately.
Iteration number (from one to ten) is plotted along the X-axis, and execution time (in log scale) is plotted along the Y-axis.

only important to address when there is a difference between
processing elements on heterogeneous platforms (e.g., CPUs
and GPUs), but is also fundamental to adapt to scenarios where
the execution time is critically dependent on the data, such as

the execution of PREEMPT-HC.
Strong Scaling of PREEMPT-HC. We present scaling results
with up to 128 nodes on Summit that amount to a total of
5, 376 CPU cores and 768 GPUs. For the experiments we set

0

500

1000

1500

2000

2 4 8 16 32 64 128
Summit Nodes (#)

E
xe

cu
tio

n
T

im
e

(s
)

Sampling Counting SeedSelect Total

(a) HepPh

0

1000

2000

3000

2 4 8 16 32 64 128
Summit Nodes (#)

E
xe

cu
tio

n
T

im
e

(s
)

Sampling Counting SeedSelect Total

(b) Epinions

0

2000

4000

6000

2 4 8 16 32 64 128
Summit Nodes (#)

E
xe

cu
tio

n
T

im
e

(s
)

Sampling Counting SeedSelect Total

(c) Slashdot

0

1000

2000

3000

4000

2 4 8 16 32 64 128
Summit Nodes (#)

E
xe

cu
tio

n
T

im
e

(s
)

Sampling Counting SeedSelect Total

(d) DBLP

0

2000

4000

6000

2 4 8 16 32 64 128
Summit Nodes (#)

E
xe

cu
tio

n
T

im
e

(s
)

Sampling Counting SeedSelect Total

(e) Portland

0

50

100

150

200

2 4 8 16 32 64 128
Summit Nodes (#)

E
xe

cu
tio

n
T

im
e

(s
)

Sampling Counting SeedSelect Total

(f) Montgomery

Fig. 8: Strong Scaling for PREEMPT-HC on the SNAP networks (a-d) and the Contact Networks (e-f). Please note that the
missing data points are executions that did not complete under two hours.

the number of samples (η) to 1000 and number of seeds (k)
to 50. Fig. 8 show the results for both the SNAP collection
and Contact Networks. We report the total execution time
including the break down of the three phases for the entire
execution with 50 iterations. We observe that the Counting
step dominates the runtime. There are few exceptions where
the cost of seed selection becomes larger. The variability
in seed selection’s performance is caused by the network
communication (AllReduce) that is required during the step.
However, on production runs where the number of samples (η)
used will be set beyond 10000, the impact of this variation in
performance of seed selection diminishes because the compu-
tation is likely to be dominated by the Counting step (§IV) that
scales with large speedups (e.g., Slashdot: 63×, Montgomery:
155×). Overall, we observe that our implementation is able to
scale well on up to 128 Summit nodes, on both data sets,
generating speedups between 20× and 33× relative to the
configuration with two nodes of Summit. Notably, we are able
to significantly reduce time to solution from hours to minutes
(e.g., for Slashdot it takes 6,424 seconds on two Summit nodes
vs. 192 seconds on 128 Summit nodes).
Strong scaling of PREEMPT-RR. Due to recent advances

in algorithms, PREEMPT-RR provides the best performance
both in serial and in parallel [27], [30]. However, the idea
of reverse reachability is not easily generalized to different
models of diffusion that are needed in practice, but will be
beneficial for simpler models such as SIR. In order to provide
a relative comparison with PREEMPT-HC, we provide results
from the execution of CURIPPLES from Minutoli et al. on
Summit; illustrated in Fig. 9. We configured the parameters of
CURIPPLES to provide a 1/2-approximate solution (ε = 0.13),
and therefore representative of what to expect in production
runs. We note that LiveJournal has a missing data point for
the configuration with two nodes since the aggregated 1TB
of memory was not sufficient to store the intermediate infor-
mation generated. Our results demonstrates that CURIPPLES
scales considerably well up to 128 nodes on Summit, with
speedups between 2× and 25× relative to the performance
using two nodes. CURIPPLES is also considerably faster than
PREEMPT-HC. This is to be expected as greedy hill climbing
is computationally more expensive than the reverse reachable
approach implemented in CURIPPLES. However, PREEMPT-
HC has two advantages over CURIPPLES: it is more memory-
efficient (as described below), and it is more generic and

extensible to other models (as described in §III-C).

Fig. 9: Strong Scaling for CURIPPLES on the SNAP networks.
We are investigating the BerkStan run on 128 nodes.
Memory Footprints. Memory requirements for PREEMPT-
RR is a function of the input graph characteristics such
as connectivity and edge probabilities, as well as the input
parameters that specify accuracy (ε) and number of seeds (k).
In particular, memory footprint depends on the number of
reverse reachable sets (R) that need to be computed, which
grows nonlinearly with respect to k and ε. We refer you to
Minutoli et al. [43] for further details.

In contrast, the memory footprint of PREEMPT-HC is pre-
dictable from the input parameters. PREEMPT-HC needs to
store η subgraphs sampled from the input. Each subgraph
can be compactly stored using a bitmap that enables/disables
edges in a given sample instead of explicitly storing them
as real numbers or by creating separate adjacency lists. In
such implementation, the storage (in bits) required for the
sampled graphs is bounded Θ(η|E|), where η and E are both
known a priori. Minutoli et al. [43] report that the reverse
reachability method requires more that 3TB of memory to
solve an instance of the problem on the Orkut graph (ε = 0.13,
k = 200). PREEMPT-HC on same instance using 10000
samples (standard settings in the literature) will require only
about 146GB.

VII. RELATED WORK

In the traditionally studied area of ordinary differential
equations (ODE) based epidemic models, it is possible to find
optimal solutions using brute force search methods, e.g., [1].
However, designing effective interventions for network (graph
theoretic) based models is a much harder problem. The meth-
ods under these discrete models can be broadly classified into
the following three categories:
(1) Interventions based on static network structure: These
involve picking nodes in rank order of properties, such as
degree, pagerank, and centrality, e.g., [5]–[7]. In many power
law network models, degree based strategies have been shown

to work very well empirically [7], and with rigorous guaran-
tees [41]. Centrality based strategies are computationally much
more expensive, and harder to analyze.
(2) Algorithms using spectral properties: there are interesting
connections between epidemic dynamics and spectral prop-
erties, namely the spectral radius and the spectral gap [44]–
[46]. There has been a lot of work on reducing the spectral
radius [8]–[11]. However, these algorithms do not scale very
well to large networks.
(3) Algorithms based on math programming: this line of work
has involved using linear relaxations of integer programming
formulations, and then rounding them to get near-optimal
solutions with rigorous guarantees [12]–[14]. Only the work
of [12] presents empirical evaluation, but these methods do
not, in general, scale to very large networks.

The problem of influence maximization is a closely related
topic that can be seen as the inverse of epidemic containment.
Beginning with the seminal work of Domingos and Richardson
[47] and Kempe et al. [17], it has been studied extensively.
The key contribution in these works is the demonstration
that the influence function is submodular, meaning that it can
be maximized by greedy approximation algorithms [48]. An
extensive body of recent work has focused on reducing the
super quadratic time complexity through a variety of statistical
and data structure techniques [29], [49], [50]. While many
works look at optimizing and applying the serial influence
maximization algorithms to diverse domains, there are only a
few very recent works on parallelizing these algorithms. [30],
[43], [51]. Particularly relevant for our work is the implemen-
tation of the IMM algorithm on multi-GPU systems presented
in [30]. However, given the limited applicability of IMM, in
this work we consider the parallelization of the Greedy Hill
Climbing algorithm. To the best of our knowledge, our effort
is the first to scale this algorithm on modern clusters with
multiple GPUs per node.

VIII. CONCLUSION AND FUTURE WORK

Under the context of epidemic control of a disease, we
presented an efficient distributed algorithm based on influence
maximization targeting state-of-the-art heterogeneous CPU-
GPU supercomputers. The key contributions of this work
are: i) Efficient implementation of the greedy hill climb-
ing algorithm through a combination of custom kernels for
each processing element; scheduling techniques to balance
the workload between CPUs and GPUs varying amounts of
computational loads; improved synchronization and reduction
of data movement overheads. ii) A novel formulation for
epidemic control when the initial set of infected nodes are not
known through submodular optimization, and the proofs of
submodularity under special cases. The formulations and par-
allel implementations show that we can successfully compute
solutions at scale on Summit for large real-world inputs. To the
best of our knowledge, this is the first distributed hybrid CPU-
(multi)GPU implementation for greedy hill climbing algorithm
and its application for epidemic control. We therefore believe
that this work will benefit the epidemiology researchers and

practitioners, as well as impact the future research in influence
maximization and porting of applications to extreme scale
architectures.

Future research directions include: i) adapting the influence
maximization based approach for efficient testing for an epi-
demic outbreak, and for designing efficient vaccination under
fairness constraints; ii) extensive testing of the current methods
on different datasets including data specific for COVID-19
outbreak; iii) implementation of different diffusion models
such as SI and SEIR to address novel outbreaks; iv) modifying
the breadth-first search kernel to enable efficient execution of
shorter searches under specific conditions; v) perform empir-
ical analysis on carefully chosen inputs to identify realistic
values for the number of samples (η); and, vi) performing
larger production runs for specific models of contact networks
to assist in decision making under uncertainties.

ACKNOWLEDGMENT

We used resources of the Oak Ridge Leadership Computing
Facility at the Oak Ridge National Laboratory (Contract No.
DE-AC05-00OR22725). The research is in parts supported
by the U.S. DOE ExaGraph project at the Pacific Northwest
National Laboratory (PNNL), by the U.S. National Science
Foundation (NSF) grants CCF 1815467, OAC 1910213, and
CCF 1919122 to Washington State University, and by National
Institutes of Health (NIH) Grant 2R01GM109718-07 and
NSF grant numbers IIS-1955797, IIS-1633028, CCF-1918656,
and DTRA subcontract/ARA S-D00189-15-TO-01-UVA, and
a collaborative seed grant from the UVA Global Infectious
Disease Institute. PNNL is operated by Battelle Memorial
Institute under Contract DE-AC06-76RL01830. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the funding agencies.

REFERENCES

[1] J. Medlock and A. P. Galvani, “Optimizing influenza
vaccine distribution,” Science, vol. 325, no. 5948,
pp. 1705–1708, 2009.

[2] M. E. Halloran et al., “Modeling targeted layered con-
tainment of an influenza pandemic in the United States,”
in Proceedings of the National Academy of Sciences
(PNAS), 2008, pp. 4639–4644.

[3] E. Lofgren et al., “Opinion: Mathematical models: A
key tool for outbreak response,” Proceedings of the Na-
tional Academy of Sciences (PNAS), pp. 18 095–18 096,
2014.

[4] S. Finbow and G. MacGillivray, “The firefighter prob-
lem: A survey of results, directions and questions.,”
Australasian J. Combinatorics, vol. 43, pp. 57–78,
2009.

[5] R. Cohen et al., “Efficient immunization strategies
for computer networks and populations,” Phys. Rev.
Lett., vol. 91, p. 247 901, 24 2003. DOI: 10 . 1103 /
PhysRevLett.91.247901.

[6] J. C. Miller and J. M. Hyman, “Effective vaccination
strategies for realistic social networks,” Physica A:
Statistical Mechanics and its Applications, pp. 780–785,
2007.

[7] A.-L. Barabási and R. Albert, “Emergence of scaling in
random networks,” Science, vol. 286, no. 5439, pp. 509–
512, 1999. DOI: 10.1126/science.286.5439.509.

[8] V. M. Preciado et al., “A convex framework to con-
trol spreading processes in directed networks.,” in An-
nual Conference on Information Sciences and Systems
(CISS), IEEE, 2014.

[9] V. M. Preciado et al., “Optimal vaccine allocation to
control epidemic outbreaks in arbitrary networks.,” in
IEEE Conference on Decision and Control, IEEE, 2013.

[10] S. Saha et al., “Approximation algorithms for reducing
the spectral radius to control epidemic spread,” in SIAM
SDM, 2015.

[11] Y. Zhang et al., “Controlling propagation at group scale
on networks,” in Data Mining (ICDM), 2015 IEEE
International Conference on, IEEE, 2015, pp. 619–628.

[12] P. Sambaturu et al., “Designing effective and practical
interventions to contain epidemics,” in Proc. AAMAS,
2020.

[13] J. Aspnes et al., “Inoculation strategies for victims of
viruses and the sum-of-squares partition problem,” in
Proceedings of the sixteenth annual ACM-SIAM sympo-
sium on Discrete algorithms, ser. SODA ’05, Vancouver,
British Columbia, 2005, pp. 43–52, ISBN: 0-89871-585-
7.

[14] A. Hayrapetyan et al., “Unbalanced graph cuts,” in ESA,
2005, pp. 191–202.

[15] S. Eubank et al., “Modelling disease outbreaks in real-
istic urban social networks,” Nature, vol. 429, pp. 180–
184, 6988 2004.

[16] C. L. Barrett et al., “Generation and analysis of large
synthetic social contact networks,” in Winter Simula-
tion Conference, Winter Simulation Conference, 2009,
pp. 1003–1014.

[17] D. Kempe et al., “Maximizing the Spread of Influence
Through a Social Network,” in Proceedings of ACM
SIGKDD, Washington, D.C.: ACM, 2003, pp. 137–146.
DOI: 10.1145/956750.956769.

[18] E. Cohen et al., “Sketch-based influence maximization
and computation: Scaling up with guarantees,” in Pro-
ceedings of the 23rd ACM International Conference on
Conference on Information and Knowledge Manage-
ment, 2014, pp. 629–638.

[19] A. Tsang et al., “Group-Fairness in Influence Maxi-
mization,” in ArXiv, vol. abs/1903.00967, 2019.

[20] J. C. Blackwood and L. M. Childs, “An introduction
to compartmental modeling for the budding infectious
disease modeler,” Letters in Biomathematics, vol. 5,
no. 1, pp. 195–221, 2018. DOI: 10 . 1080 / 23737867 .
2018.1509026.

[21] L. R. Lopez and X. Rodo, “A modified SEIR model
to predict the COVID-19 outbreak in Spain and Italy:

simulating control scenarios and multi-scale epidemics,”
medRxiv, 2020. DOI: 10.1101/2020.03.27.20045005.

[22] R. N. Thompson et al., “Detecting Presymptomatic
Infection Is Necessary to Forecast Major Epidemics in
the Earliest Stages of Infectious Disease Outbreaks,”
PLoS Comput. Biol., vol. 12, no. 4, 2016. DOI: doi :
10.1371/journal.pcbi.1004836.

[23] M. Marathe and A. Vullikanti, “Computational Epi-
demiology,” Communications of the ACM, vol. 56,
no. 7, pp. 88–96, 2013.

[24] R. Anderson and R. May, Infectious Diseases of Hu-
mans. Oxford: Oxford University Press, 1991.

[25] M. L. Fisher et al., “An analysis of approximations for
maximizing submodular set functions—ii,” in Polyhe-
dral Combinatorics: Dedicated to the memory of D.R.
Fulkerson, M. L. Balinski and A. J. Hoffman, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1978,
pp. 73–87. DOI: 10.1007/BFb0121195.

[26] G. L. Nemhauser et al., “An analysis of approximations
for maximizing submodular set functions—I,” Mathe-
matical programming, vol. 14, no. 1, pp. 265–294, 1978.

[27] Y. Tang et al., “Influence Maximization in Near-Linear
Time: A Martingale Approach,” in Proc. 2015 ACM
SIGMOD International Conference on Management of
Data, ACM, 2015, pp. 1539–1554.

[28] NVIDIA, Nvgraph. [Online]. Available: https : / /
developer.nvidia.com/nvgraph.

[29] C. Borgs et al., “Maximizing social influence in
nearly optimal time,” in Proceedings of the Twenty-
Fifth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, ser. SODA ’14, Portland, Oregon: SIAM, 2014,
pp. 946–957.

[30] M. Minutoli et al., “cuRipples: Influence maximization
on multi-GPU systems,” in Proceedings of the Inter-
national Conference on Supercomputing 2020 (ICS20),
2020.

[31] M. Minutoli et al., Ripples: Source code. DOI: 10.5281/
zenodo . 3942724. [Online]. Available: https : / / github.
com/pnnl/ripples.

[32] S. S. Vazhkudai et al., “The design, deployment, and
evaluation of the coral pre-exascale systems,” in Pro-
ceedings of the International Conference for High Per-
formance Computing, Networking, Storage, and Analy-
sis, ser. SC ’18, Dallas, Texas: IEEE Press, 2018.

[33] TOP500: The list, 2020. [Online]. Available: https : / /
www.top500.org/resources/top-systems/.

[34] T. C. Germann et al., “Mitigation strategies for pan-
demic influenza in the united states,” Proceedings of
the National Academy of Sciences, vol. 103, no. 15,
pp. 5935–5940, 2006. DOI: 10.1073/pnas.0601266103.

[35] M. F. C. Gomes et al., “Assessing the international
spreading risk associated with the 2014 West African
Ebola outbreak,” English, PLoS Currents, vol. 6, 2014,
PMCID: PMC4169359. DOI: 10 . 1371 / currents .
outbreaks . cd818f63d40e24aef769dda7df9e0da5. [On-

line]. Available: http://currents.plos.org/outbreaks/?p=
40803.

[36] N. Ferguson et al., “Strategies for mitigating an in-
fluenza pandemic,” Nature, vol. 442, pp. 448–452, Apr.
2006, PMID: 16642006.

[37] J. J. Grefenstette et al., “Fred (a framework for recon-
structing epidemic dynamics): An open-source software
system for modeling infectious diseases and control
strategies using census-based populations,” BMC Pub-
lic Health, vol. 13, no. 1, p. 940, 2013, PMCID:
PMC3852955.

[38] F. Liu et al., “The role of vaccination coverage, indi-
vidual behaviors, and the public health response in the
control of measles epidemics: An agent-based simula-
tion for california,” BMC Public Health, vol. 15, no. 1,
p. 447, 2015, PMCID: PMC4438575, ISSN: 1471-2458.
DOI: 10.1186/s12889-015-1766-6. [Online]. Available:
https://doi.org/10.1186/s12889-015-1766-6.

[39] J. Leskovec and A. Krevl, SNAP Datasets: Stanford
Large Network Dataset Collection, http://snap.stanford.
edu/data, Jun. 2014.

[40] M. Minutoli et al., PREEMPT: Experimental setup
and script generator. DOI: 10.5281/zenodo.3949293.
[Online]. Available: https : / / github . com / mminutoli /
preempt-experimental-setup.

[41] B. Bollobás and O. Riordan, “Robustness and vulnera-
bility of scale-free random graphs,” Internet Mathemat-
ics, vol. 1, pp. 1–35, 2003.

[42] J. L. Hintze and R. D. Nelson, “Violin Plots: A Box
Plot-Density Trace Synergism,” The American Statisti-
cian, vol. 52, no. 2, T. A. Statistician, Ed., pp. 181–184,
1998. DOI: 10.2307/2685478.

[43] M. Minutoli et al., “Fast and Scalable Implementations
of Influence Maximization Algorithms,” in 2019 IEEE
International Conference on Cluster Computing, CLUS-
TER 2019, Albuquerque, NM, USA, September 23-26,
2019, IEEE, 2019, pp. 1–12. DOI: 10.1109/CLUSTER.
2019.8890991.

[44] B. A. Prakash et al., “Threshold conditions for arbitrary
cascade models on arbitrary networks,” in ICDM, 2011.

[45] A. Ganesh et al., “The effect of network topology on
the spread of epidemics,” Proceedings of INFOCOM,
2005.

[46] Y. Wang et al., “Epidemic spreading in real networks:
An eigenvalue viewpoint,” Proceedings of SRDS, 2003.

[47] P. Domingos and M. Richardson, “Mining the network
value of customers,” in Proceedings of ACM SIGKDD,
ACM, 2001, pp. 57–66.

[48] L. Wolsey, “An analysis of the greedy algorithm for
the submodular set covering problem,” Combinatorica,
385–393, 1982.

[49] W. Chen et al., “Scalable influence maximization for
prevalent viral marketing in large-scale social net-
works,” in Proceedings of ACM SIGKDD, ACM, 2010,
pp. 1029–1038.

[50] J. Leskovec et al., “Cost-effective outbreak detection
in networks,” in Proceedings of ACM SIGKDD, ACM,
2007, pp. 420–429.

[51] M. Halappanavar et al., “Accelerating the mining of in-
fluential nodes in complex networks through community
detection,” in Proceedings of the ACM International
Conference on Computing Frontiers, CF’16, Como,
Italy, May 16-19, 2016, ACM, 2016, pp. 64–71.

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We execute our implementation on Summit, a US Department of
Energy’s Leadership-class machine hosted at Oak Ridge National
Laboratory. The system consists of 4,608 nodes, each equipped with
two POWER9 CPUs, 6 NVIDIA Tesla V100 GPUs, 512 GB of DDR4
RAM, and two Infiniband EDRNetwork interfaces. A POWER9 CPU
hosts 22 cores (1 is reserved for system software) with 4 threads
each, has a frequency of 3.07 GHz and hosts 110 MB of L3 cache.
Each Volta GPU hosts 80 Streaming Multiprocessors (64 FP32, 64
INT, 32 FP64 and 8 Tensor Cores running at 1.333 GHz) with a 16
GB of HBM2 memory (1750 MHz on a 4096-bit bus, providing 900
GB/s of bandwidth). Group of 3 GPUs are directly connected with a
POWER9 CPU and among each other with NVLINK2 connections.
Each connection uses 2 of the 6 NVLINK2 channels of a Volta
GPU, offering up to 100 GB/s of bidirectional bandwidth. A group
composed of 3 GPUs and a CPU communicates with the other one
through the X-Bus between the two CPUs, providing a maximum
bandwidth of 64 GB/s. Our code was compiled with gcc 8.1.1 and
CUDA 10.1.243, and we used the spectrum MPI library 10.3.1.2.

We have performed scalability studies 2 to 128 nodes of the
machine as detailed in the paper. PREEMPT-HC was configured to
used 1000 samples and 50 seeds while cuRipples was configured to
use epsilon=0.13 and k=100.

As part of the available artifacts, we have provided the Portland
contact network used in the strong scaling study in Figures 6-8.
The experimental setup repository contains all the data collected
during our experiments and the needed scripts to regenerate the
figures included in the paper.

Our experimental setup artifact also provides details about ex-
perimenting with other publicly available data sets. The tool will
generate similar figures that can be used to validate the obtained
results.

ARTIFACT AVAILABILITY
Software Artifact Availability: All author-created software arti-

facts are maintained in a public repository under an OSI-approved
license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: There are no author-created data
artifacts.

Proprietary Artifacts: No author-created artifacts are proprietary.

Author-Created or Modified Artifacts:

Persistent ID: 10.5281/zenodo.3942724,

https://github.com/pnnl/ripples↪→

Artifact name: Ripples v2.0 (PREEMPT)

Persistent ID: 10.5281/zenodo.3949293, https://githu ⌋

b.com/mminutoli/preempt-experimental-setup↪→

Artifact name: PREEMPT Summit experimental setup

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Power9, NVIDIA Tesla V100 GPUs

Operating systems and versions: Linux 4.14.0-
115.14.1.el7a.ppc64le

Compilers and versions: GCC 8.1.1, CUDA 10.1.243

Libraries and versions: spectrum MPI library 10.3.1.2

Key algorithms: PREEMPT-HC, cuRipples

Input datasets and versions: Stanford Large Network Dataset
Collection

