
Approximate Computing Techniques for Iterative Graph Algorithms

Ajay Panyala1, Omer Subasi1, Mahantesh Halappanavar1, Ananth Kalyanaraman2,

Daniel Chavarrı́a-Miranda3, and Sriram Krishnamoorthy1

E-mail: {FirstName.LastName}@pnnl.gov, ananth@eecs.wsu.edu, daniel@trovares.com
1Pacific Northwest National Laboratory 2Washington State University 3Trovares Inc.

Abstract—Approximate computing enables processing of
large-scale graphs by trading off quality for performance.
Approximate computing techniques have become critical not
only due to the emergence of parallel architectures but also due
to the availability of large scale datasets enabling data-driven
discovery. Using two prototypical graph algorithms, PageRank
and community detection, we present several approximate
computing heuristics to scale the performance with minimal
loss of accuracy. We present several heuristics including loop
perforation, data caching, incomplete graph coloring and
synchronization, and evaluate their efficiency. We demonstrate
performance improvements of up to 83% for PageRank and
up to 450× for community detection, with low impact on
accuracy for both the algorithms. We expect the proposed
approximate techniques will enable scalable graph analytics
on data of importance to several applications in science and
their subsequent adoption to scale similar graph algorithms.

I. INTRODUCTION

Approximate computing methods trade off quality for
performance. Approximate computing covers a wide range
of techniques based on modifications in algorithms, runtime
systems, compilers, and hardware [1]. The need for ap-
proximate computing is driven from the need to efficiently
process large-scale data emerging from all aspects of science
and technology, as well as the fundamental changes in
computer architecture with stringent restrictions on power
consumption and massive parallelism.

In this paper, we present multiple approximate computing
techniques as applied to graph algorithms that have an
iterative structure to them, where in each iteration all vertices
(alternatively, edges) of the graph are processed. This is
a common feature in many graph algorithms that fit the
vertex-centric programming model [2]. We propose multi-
ple generic approximate computing techniques (Section II)
aimed at significantly improving performance with minimal
impact on output quality. Key techniques include loop per-
foration, vertex/edge ordering, and threshold scaling.

For the purpose of implementation and testing, we con-
sider two prototypical iterative graph algorithms—one for
PageRank (Section III) and another for community detec-
tion (Section IV)—and show how the proposed techniques
manifest themselves in practice. Our work is motivated from
the emerging importance of graph algorithms for analytics
workloads with an increasing need to perform analytics
on dynamic data of unwieldy sizes, where approximate
computing often becomes imperative.

Given a directed graph G = (V,E), PageRank of a
vertex notionally represents its relative importance in the
graph [3]. PageRank is an important centrality metric with
numerous applications. We present approximate computing
techniques for the PageRank algorithm by focusing on the
notion of importance of the outgoing edges and selectively
updating only a subset of the neighborhood for a given
vertex. Further, we preorder the neighbor lists based on the
outdegree of the neighbors, which we use as a proxy for
relative importance. Preordering the neighbor lists enables
us to amortize costs for memory access as well as quickly
identify cutoffs for computation. We detail our method in
Section III. Empirically, we observe substantial improvement
in the convergence of PageRank, which we detail in Sec-
tion V. We compare the performance and correctness of our
approximate algorithm with the state-of-the-art STIC-D [4]
algorithm.

Given an undirected graph G(V,E, ω), community de-
tection aims to compute a partitioning of V into a set of
tightly-knit communities (or clusters). Community detection
has emerged as one of the most frequently used graph
structure discovery tools in a diverse set of applications [5].
We employ several approximate computing techniques to
improve the performance of an agglomerative technique
based on modularity optimization [6], one of the fastest
methods for community detection albeit with several lim-
itations. As described in Sections II and IV, our techniques
take advantage of some key properties of the underlying
algorithm in order to save on computation work and memory
lookups. We observe significant improvements in perfor-
mance (Section V) from these techniques. We compare the
performance and correctness of our approximate computing
techniques using the state-of-the-art Grappolo [7] algorithm.

In summary, we make the following contributions in this
work:

• Design of multiple generic approximate computing
techniques suitable for iterative graph algorithms;

• Analysis of the memory access characteristics of the
PageRank algorithm to identify and isolate the most
expensive memory accesses;

• Design of approximate computing algorithms that min-
imize very expensive, latency-inducing irregular mem-
ory accesses;

• Empirical validation of the correctness of the approxi-
mation in terms of multiple metrics;

23

2017 IEEE 24th International Conference on High Performance Computing (HiPC)

0-7695-6326-0/17/$31.00 ©2017 IEEE
DOI 10.1109/HiPC.2017.00013

��
��
��
��
��
	
�
��
�

�
��
���
��
�
�
��
��
�
��
��
��

��

�
��
��
��

��
��
��
�	

��

�

������
����������

��������
���������
��
�������
����������������

�����������	����

�����������
����	
��

�
�
�!
�����������
��"��	
��

�������
���
��������

Figure 1. A schematic illustration of our main approximate computing
ideas applied to iterative graph algorithms. The steep climbs in quality are
a typical feature in iterative algorithms that perform coarsening—such as
[7].

• Extensive evaluation demonstrating performance im-
provements of up to 83% for PageRank and up to 450×
for community detection; and

• Evaluation and comparison against a state-of-the-art
PageRank approximation algorithm (STIC-D).

II. APPROXIMATE COMPUTING TECHNIQUES

For many applications, the overall computational cost can
be significantly reduced if an exact solution is not required.
Under approximate computing, portions of a computation
are skipped or transferred to more efficient but imprecise
versions such that the overall quality of the solutions is
not significantly perturbed. Approximate computing has the
potential to improve performance and energy efficiency at
the expense of solution accuracy. Below, we discuss the
approximate computing techniques we employ in the context
of iterative graph algorithms. Figure 1 illustrates the key
ideas.

A. Loop perforation
Broadly, loop perforation is the idea of randomly or

selectively skipping a portion of the operations for a given
iteration of a loop. There are different ways to implement
this technique, taking advantage of appropriate properties
of the underlying iterative algorithm. But the main idea
is to effect a progressive decrease in the work performed
within each iteration, as the algorithm proceeds, as shown
in Figure 1. We interpret loop perforation in two similar
ways to match the needs of the graph algorithm under
consideration.

For PageRank, the algorithm arranges the neighbors of
each vertex in a non-increasing order of importance, and
progressively skips operation on the neighbors as the al-
gorithm proceeds. We use the indegree of a neighbor as a
proxy for importance, which can be easily replaced with
other measures of importance. The algorithm is described
in Section III. The impact on performance is provided in
Section V.

We interpret loop perforation for community detection
through the idea of early termination of the computation,
as the algorithm progresses, for a selected subset of vertices
at each iteration. The key property we exploit is one of
diminishing returns exhibited by the underlying algorithm.
To illustrate this, let us consider the community detection
algorithm in [7]. This algorithm takes an iterative approach,
where every vertex is processed at every iteration, and at the
end of each iteration a convergence criterion is evaluated:
is the net quality gain (measured by the modularity mea-
sure [8]) achieved by the current iteration above a certain
positive threshold θ? If so, the algorithm proceeds to the
next iteration; otherwise it terminates the current sequence
of iterations (aka “phase”).

Because each step in the algorithm attempts to improve
modularity, the overall quality of the solution is guaranteed
to be non-decreasing as the algorithm progresses through its
iterations (as shown by the quality curves in Figure 1). In-
terestingly, we observed in [7] that the quality increases at a
faster rate in the initial iterations, while in the later iterations
it effectively plateaus (as also illustrated in Figure 1). We
observed this pattern for every input we tested in [7]. In fact,
the reason for this behavior is that vertices tend to migrate
from one community to another more frequently during the
initial iterations, but as the algorithm progresses, they settle
in.

This observation leads us to the idea of early termination,
where we detect vertices that are less likely to change
their state (i.e., migrate) in future iterations and retire such
vertices from consideration in subsequent iterations. There
are many ways to implement this simple idea, and Section IV
describes one possible mechanism.

B. Vertex/Edge ordering

Vertex ordering represents the order in which the vertices
are considered for execution during a given iteration. It has
been well-studied that vertex ordering has a tremendous
impact on performance of graph algorithms [9], [10]. Vertex
ordering becomes a considerable challenge in the context
of parallel execution where ordering becomes dependent on
several parameters including the runtime system. We, there-
fore, employ vertex ordering as an approximate computing
technique in this work.

Vertex ordering in community detection is implemented
through graph coloring [7], [11]. Graph coloring assigns
a color (identified by integer ids) to each vertex such
that no two vertices connected by an edge receive the
same color [12]. The latter condition makes it a distance-1
coloring problem. We employ two variants of this coloring
problem, complete and incomplete. In the complete scheme,
every vertex receives a valid color (consistent with the
distance-1 condition). In the incomplete scheme, however,
only a subset of vertices receives color consistent with the
distance-1 criterion, while the remaining are bundled up into
a single arbitrary color.

24

Subsequently, within every iteration, we go through each
color class in an arbitrary order and process all vertices
belonging to that color class in parallel—with the goal
of not processing any two neighbors concurrently. This
strategy ensures that more parallelism is available for the
larger color classes. Consequently, both the performance
(runtime per iteration, convergence rate) and quality of the
output depend on the schemes used, which we evaluate in
Section V. Figure 1 shows the targeted behavior, where the
partial ordering produced by coloring improves performance
without affecting quality.

Similarly, for PageRank, we combine vertex ordering
with loop perforation by ordering the outgoing neighbors of
each vertex based on the neighbor’s indegree. The indegree
of a neighbor represents its importance. By progressively
skipping operations on the outgoing neighbors, the set of
vertices processed changes during each iteration. Further,
this ordering provides us a mechanism to determine in near-
constant time the edges along which operations need to be
performed.

C. Threshold Scaling

We use another approximate computing technique, thresh-
old scaling, for iterative graph algorithms. Threshold scaling
is used effectively in many algorithms, such as the auction
algorithm for bipartite weighted matching [13]. We empiri-
cally evaluate its impact on performance for the community
detection algorithm where there is a graph coarsening step.
The basic idea for threshold scaling is to make the threshold
for convergence more stringent during the later stages of
the algorithm, so that the algorithm iterates longer in those
stages, albeit on a smaller graph. On the other hand, the
less stringent setting in the early stages of the algorithm
allows the coarsening to happen sooner than later, thereby
potentially improving performance. This targeted behavior
is illustrated in Figure 1. We explain this technique in the
context of the community detection operation in Section IV.

In addition to these three approximate computing tech-
niques, we also considered a few related techniques, such
as synchronization and data caching, in our study. However,
we skip them from a detailed treatment in this paper.

III. APPROXIMATION TECHNIQUES FOR PAGERANK

Google’s PageRank [3] is a method for computing the
ranking of webpages in their search engine results. Usually,
PageRank evaluates a large set of web pages connected
through hyperlinks. PageRank [3] implements the “random
surfer model,” where a web surfer walks the outgoing
links of an initial vertex, chosen uniformly at random with
probability d. At random or when the surfer ends up at a
page with no outgoing links, the surfer, with probability
(1 − d), jumps to an entirely new page and restarts the
random walks from this new page. The output of PageRank
is a score for each page on the web that determines its
importance. The web usually can be represented as a directed
graph whose vertices are HTML pages and edges hyperlinks.

Note that PageRank applies to almost any directed graph, not
just web graphs. For example, PageRank is used for solving
problems in various domains such as chemistry, bioinfor-
matics, bibliometrics, and social networks analysis [14].

Consider a directed graph G = (V, E) with vertex set V
and edge set E. For a given vertex Vi, let IN(Vi) be the set
of incoming vertices. The PageRank score for vertex Vi is
defined [3] by the equation:

PR(Vi) =
1− d

|V | + d×
∑

j∈IN(Vi)

contribution(Vj) (1)

The damping factor, d, usually set to 0.85 [3], denotes
the probability of jumping from a given vertex to another
random vertex in the graph. We start by initializing all
vertices to an initial PageRank score of 1

|V | . The PageRank

computation iteratively computes the rank value of each
vertex (using Equation 1) until convergence.

There is a notion of the PageRank value for the entire
graph (global PageRank), which corresponds to the summa-
tion of the PageRanks of its vertices: PR(G) =

∑
i PR(Vi).

When comparing different algorithms to compute PageRank,
we can compare their accuracy by: (i) comparing the global
PageRanks they compute for the same datasets, and (ii)
comparing the relative ordering imposed on the vertices by
the resulting vertex PageRanks (as well as comparing the
PageRank values of individual vertices).

Algorithm 1 shows an overview of the code for our
baseline (exact) implementation. On each iteration, we first
traverse the outgoing edges for each vertex Vi and store
Vi’s contribution to each of its neighboring vertices Uj

in a contribution list (of size |E|). OffsetList (constructed
during the preprocessing stage) gives the index into the
ContributionList for each Uj where Vi’s contribution to Uj

is stored. Then, the code traverses the incoming edges for
each vertex Vi and gets Vi’s contributions from each vertex
Xj along the incoming edges. The contributions from all
incoming vertices are summed over, and the PageRank value
for Vi is computed using Equation 1. The algorithm com-
putes the maximum absolute difference between the previous
PageRank and the new PageRank values for all vertices.
The PageRank array is updated to the newly computed
PageRank. The process is repeated until global difference is
less than the specified threshold. We perform the incoming
and outgoing edge traversals in parallel and perform the
PageRank computation in double-precision floating point for
greater accuracy. We used Intel Threading Building Blocks’
parallel_for construct to parallelize our computation.

Loop Perforation: We observe that, in general, the change
to the PageRank values of individual vertices decreases in
magnitude over time. In turn, this results in only minimal
changes in the contribution such a vertex makes to its outgo-
ing neighbors. This is especially true for vertices with high
outdegree because a vertex’s contribution to its outgoing
neighbors is its PageRank value divided by its outdegree.

We exploit this characteristic to freeze the contributions
of a source vertex Vi along outgoing edges leading to target

25

Algorithm 1 Pseudo-code for our baseline (exact) PageRank
implementation

PageRank(0 . . . |V |)← 1
|V |

globalDiff ←∞
while globalDiff > 10−6 do

maxDiff = −∞
for each Vi = 0 . . . |V | do � Parallel loop

contribution ← PageRank(Vi) / OutDegree(Vi)
for each Uj ∈ OutList(Vi) do

ContributionList(OffsetList(Uj)) ← contribution

for each Vi = 0 . . . |V | do � Parallel loop
sum ← 0
for each Xj ∈ InList(Vi) do

sum ← sum + ContributionList(Xj)

PreviousPageRank(Vi) ← PageRank(Vi)
PageRank(Vi) ← (1−d

|V |) + d ∗ sum
diffRanks ← |PageRank(Vi) - PreviousPageRank(Vi)|
maxDiff ← max(diffRanks, maxDiff); � Parallel Reduction

globalDiff ← maxDiff

vertices. The idea is that the updates of a source vertex
Vi’s contribution is only offered to the vertices along its
outgoing edges when it will have a bigger impact on the
overall PageRank results. Hence, we do not update the
target vertices’ contributions when Vi’s contribution is small,
instead using the previous (frozen) value of the contribution.

In addition to reducing the number of memory write
operations, the freezing strategy reduces the number of
irregular memory accesses. However, checking every access
for potential freezing can still be expensive. Therefore, we
design a strategy to minimize the number of operations re-
quired to determine updates that are candidates for freezing.
The optimized algorithm in shown in Algorithm 2.

We sort the outgoing edge list of each vertex Vi based on
their target vertices indegree during the graph building and
pre-processing stage. The sorted list (for each Vi) is orga-
nized into bins based on indegree. Our optimized implemen-
tation of PageRank uses a fifth vector named BinIndexList
that stores the bins for all vertices in V. BinIndexList(Vi)
is a subset of BinIndexList that represents all bins for a
vertex Vi. Bin x in BinIndexList(Vi) corresponds to the index
position in OffsetList for Vi’s outgoing edges whose target
vertex indegree is between 2x−1 to 2x. The index position
determines the outgoing edges to be frozen.

All the vertices (neighbors of Vi) from the first bin until
bin x can be frozen. This change would be reflected in our
algorithm where vertex Vi contributes only to vertices (in
its outgoing vertex list) which start from the index position
given by bin x. Since BinIndexList is built during the pre-
processing stage, the starting index position is later retrieved
during the PageRank computation using

log2(
10−11

(contribution−prev contribution))

2

as shown in Algorithm 2. Thus, we effectively traverse
only a subset of Vi’s outgoing edges. By doing so, we

significantly save on memory accesses to ContributionList
and OffsetList. The memory writes to ContributionList are
not contiguous. Hence, by reducing these irregular memory
accesses, we gain significant performance improvement.

The maximum number of bins needed for each vertex is
�(log2(MaxInDegree(G))�. We call this the maximum bin
count value bc required for each vertex. Therefore, the total
size required for bins of all vertices is bc|V |. bc ranges from
10 through 27 for the datasets used in this paper, depending
on the graph’s MaxInDegree value.

Algorithm 2 Pseudo-code for our approximate PageRank
algorithm

PageRank(0 . . . |V |)← 1
|V |

globalDiff ←∞
while globalDiff > 10−6 do

maxDiff = −∞
for each Vi = 0 . . . |V | do � Parallel loop

contribution(Vi) ← PageRank(Vi) / OutDegree(Vi)
prevContribution(Vi) ← PreviousPageRank(Vi) / OutDegree(Vi)

BinNo ← log2(10−11

(contribution−prevContribution)
)/2

OutListIndex ← BinIndexList[Vi*bc + BinNo]
for each Uj = OutListIndex. . . |OutList(Vi)| do

ContributionList(OffsetList(Uj)) ← contribution(Vi)

...
Remaining code same as shown in Algorithm 1
...

Analysis of Memory Overhead: The data structures used
are: ContributionList (size |E|), OffsetList(size |E|), and
InList and OutList each of size |V | that store the bounds
for the incoming and outgoing edge lists for each vertex.
PageRank and PreviousPageRank vectors (each of size |V |).
Therefore, the total memory required for the baseline algo-
rithm is 4|V |+2|E|. The approximate PageRank algorithm
uses an additional BinIndexList vector of size bc|V |, leading
to a total memory footprint of 4|V |+ 2|E|+ bc|V |.

IV. APPROXIMATE COMPUTING FOR COMMUNITY

DETECTION

Given an undirected graph G(V,E, ω), where V is the
set of vertices, E is the set of edges and ω(.) is a weight
function that maps every edge in E to a non-zero, positive
weight. We use n and m to denote the number of vertices
and the sum of the weights of all edges in E respectively. We
denote the neighbor list for vertex i by Γ(i). A community
within graph G represents a subset of V .

In general terms, the goal of community detection is to
partition the vertex set V into a set of tightly knit (non-
empty) communities—i.e., the strength of intra-community
edges within each community significantly outweighs the
strength of the inter-community edges linked to that com-
munity. Neither the number of output communities nor their
size distribution is known a priori.

Let P = {C1, C2, . . . , Ck} denote a set of output com-
munities in G, where 1 ≤ k ≤ n, and let the community

26

containing vertex i be denoted by C(i). Then, the goodness
of such a community-wise partitioning P is measured using
the modularity metric, Q, as follows [8]:

Q =
1

2m

∑

i∈V
ei→C(i) −

∑

C∈P
(
aC
2m

· aC
2m

), (2)

where ei→C(i) is the sum of the weights of all edges con-
necting vertex i to its community, and aC is the sum of the
weights of all edges incident on community C. The problem
of community detection is then reduced to the problem of
modularity maximization, which is NP-Complete [15].

The Louvain algorithm proposed by Blondel et al. [6]
is a widely-used efficient heuristic for community detection.
Grappolo was recently developed as a parallel variant of the
Louvain algorithm by Lu et al. [7]. We build on Grappolo for
this work and implement different approximate computing
techniques. In this section, we focus on the core ideas
behind incorporation of these techniques into the Grappolo
algorithm; the reader is referred to [7] for more details about
the Grappolo algorithm.

Grappolo is a multi-phase multi-iteration algorithm, where
each phase executes multiple iterations as detailed in Algo-
rithm 3. Within each iteration, vertices are considered in
parallel (Line 8) and decisions are made using information
from the previous iteration, and thus, eliminating the need
for explicit synchronization of threads. If coloring is enabled,
then vertices are partitioned using the color classes (Line
2). The threads synchronize after processing all the vertices
of a color class (within the for loop on Line 6), and
therefore, use partial information from the current iteration.
The algorithm iterates until the modularity gain between
successive iterations is above a given threshold θ (Lines 17-
20).

Within each iteration, the algorithm visits all vertices
in V and makes a decision—whether to change its com-
munity assignment or not. This is achieved by computing
a modularity gain function (ΔQi→t), by considering the
scenario of vertex i potentially migrating to each of its
neighboring communities (including its current community)
(t), and selecting the assignment that maximizes the gain
(Lines 10-13).

At the end of each phase, the graph is coarsened by
representing all the vertices in a community as a new
level “vertex” in the new graph. Edges are added, either
as self-edges (an edge from a vertex to itself) with a weight
representing the strength of all intra-community edges for
that community, or between two vertices with a weight
representing the strength of all edges between those two
communities. The algorithm iterates until there is no further
gain in modularity achieved by coarsening (Lines 17-20).

Loop Perforation via Early Termination: For community
detection, we implement the loop perforation technique
by a scheme that detects and terminates vertices (from
being considered for processing) as the algorithm progresses
through its iterations. We refer to this technique as early
termination. This idea was introduced in Section II. In

Algorithm 3 Implementation of our approximate computing
schemes within the parallel algorithm for community detec-
tion (Grappolo), shown for a single phase. The inputs are a
graph (G(V,E, ω)) and an array of size |V | that represents
an initial assignment of community for every vertex Cinit.
The output is the set of communities corresponding to the
last iteration (with memberships projected back onto the
original uncoarsened graph).

1: procedure PARALLEL LOUVAIN(G(V,E, ω), Cinit)
2: ColorSets ← Coloring(V), where ColorSets represents

a color-based partitioning of V . � An optional step

3: Qcurr ← 0; Qprev ← −∞ � Current & previous modularity

4: Ccurr ← Cinit

5: while true do
6: for each Vk ∈ ColorSets do
7: Cprev ← Ccurr

8: for each i ∈ Active(Vk) in parallel do
9: Ni ← Cprev[i]

10: for each j ∈ Γ(i) do Ni ← Ni ∪ {Cprev[j]}
11: target ← argmaxt∈Ni ΔQi→t

12: if ΔQi→target > 0 then
13: Ccurr[i]← target

14:

15: Cset ← set of communities corresponding to Ccurr

16: Qcurr ← Compute modularity as defined by Cset

17: if |Qcurr−Qprev

Qprev
| < θ then � θ is a user specified

threshold.

18: break � Phase termination

19: else
20: Qprev ← Qcurr

Algorithm 3, we show a function Active(Vk) that returns
only the subset of vertices that are still “active”—i.e., have
not been terminated. To determine whether a vertex is to
stay active during any given iteration, we use a binary flag
at every vertex: 1, if it has changed its community affiliation
in the last k iterations; and 0 otherwise. The flag is initialized
to 1 at the start of execution. Once a vertex’s flag becomes
0, it is “terminated”.

Vertex Ordering via Graph Coloring: We employ graph
coloring as a vertex ordering strategy for community detec-
tion. Distance-1 graph assigns a color to each vertex such
that no two adjacent vertices are assigned the same color.
We introduce the notion of incomplete coloring, where we
color a subset of the vertices based on the number of colors
that is provided as an input parameter (say k). To perform
an incomplete coloring efficiently, we use the algorithm by
Jones and Plussmann [16]. The algorithm starts by assigning
a unique random number for each vertex. Unique colors are
used for each iteration of the incomplete coloring algorithm.
In a given iteration, each vertex checks to find if its random
number is the maximum (alternatively, minimum) number
among its neighbors (vertex identities can be used to break
ties). A unique color is used to color all the locally maximum
(alternatively, minimum) vertices (alternatively, minimum).
This scheme guarantees that no two neighbors will receive
the same color. The colored vertices are eliminated from

27

further consideration after each iteration. The algorithm
iterates until either all vertices are colored or the given
number of colors specified has been exhausted. We call it
incomplete since the number of colors used is small and
potentially not sufficient to color all the vertices correctly.
For such a situation, all the uncolored vertices are assigned
a common color k + 1, and potentially with many conflicts
(incorrect coloring). We experiment with 4, 8, 16 and 32
colors in our experiments that are detailed in Section V.

Threshold Scaling: We implement threshold scaling in
conjunction with coloring by using a higher value of thresh-
old (θ in Algorithm 3) in the initial phases of the algorithm.
In our experiments, we utilize a value of 10−2 as the higher
threshold and 10−6 as the lower threshold. By decreasing
the number of iterations in the beginning of the execution,
the algorithm coarsens the graph quickly and thus converges
faster. Empirically, we also observe that the final modularity
is better when threshold scaling is combined with graph
coloring as the heuristic [7].

V. EXPERIMENTAL RESULTS AND OBSERVATIONS

We evaluated the effectiveness of the approximate com-
puting techniques that we employed for PageRank and
community detection. We evaluated both algorithms using
the same set of inputs on the same platform.

Experimental Setup: We tested our implementations on
an 80-core Linux (kernel version 2.6.32) system consisting
of eight ten-core Intel Xeon E7 8860 CPUs operating at
2.27GHz and two terabytes of total memory. We compiled
the code with the Intel C++ Compiler version 15.0 and Intel
Threading Building Blocks (TBB) version 4.4 using the ‘-
Ofast’ optimization flag. The graph datasets are from the
Laboratory for Web Algorithmics (LAW) website [17]. We
use two types of graphs for our experiments: social networks
(twitter-2010 and hollywood-2011) and webgraphs (enwiki-
2013, indochina-2004, uk-2002, eu-2015-host, arabic-2005,
webbase-2001, it-2004, twitter-2010, sk-2005, uk-2007, gsh-
2015 and clueweb12). Table I summarizes these inputs and
their various characteristics. As shown, we group the inputs
into three categories—smaller graphs that have less than
500 million edges, medium sized ones with less than 5
billion edges and two large graphs with greater than 30
billion edges. The same graph is interpreted as directed for
PageRank and as undirected for community detection—a
directed edge u→ v is interpreted simply as an edge (u, v).

A. PageRank Evaluation

Now, we discuss the impact of our approximate computing
strategy on the performance and accuracy of the PageRank
results obtained. With the global threshold set to 10−6,
Table II shows the number of frozen edges for each dataset
and the difference in global PageRank between the approx-
imated (aka optimized) and baseline versions. The small
difference (of up to 1.1e−2) in the global PageRank shows
that our approximate method minimally impacts the overall
PageRank. The fraction of edges frozen keeps increasing

Table I
INPUT CHARACTERISTICS FOR THE 14 DATASETS USED IN OUR

EXPERIMENTAL STUDY. M AND B DENOTE MILLIONS AND BILLIONS,
RESPECTIVELY.

Input No. Vertices No. Edges Out Deg
Max. Avg.

enwiki-2013 4.2M 101.4M 8104 24.1
indochina-2004 7.4M 194.1M 6985 26.1
hollywood-2011 2.2M 229.0M 13107 105.0
uk-2002 18.5M 298.1M 2450 16.1
eu-2015-host 11.3M 386.9M 398600 34.3
arabic-2005 22.7M 640.0M 9905 28.1
webbase-2001 118.1M 1.0B 3841 8.6
it-2004 41.3M 1.2B 9964 27.8
twitter-2010 41.7M 1.5B 3.0M 35.2
sk-2005 50.6M 1.9B 12870 38.5
uk-2007-05 105.9M 3.7B 15402 35.3
gsh-2015 988.5M 33.9B 32114 34.2
clueweb12 978.4M 42.6B 7447 43.5

until the final (converging) iteration as shown in Figure 2.
The percentage improvements relative to the baseline version
at various core counts are shown in Figure 3.

Table II shows that, for all inputs, the number of iterations
required for convergence remains nearly the same between
the baseline and optimized versions. In general, we can say
that the time per iteration improves for our approximate
algorithm while keeping the number of iterations roughly
the same for all datasets. The cumulative fraction of edges
frozen along each iteration keeps increasing until the final
iteration as shown in Figure 2. Hence, performance improves
proportionally with the increasing number of frozen edges.
We observe speedups of up to 2.3X.

Figure 2. Freezing rate across iterations.

From Figure 3, we observe that the performance improve-
ments grow as graph sizes increase, with some exceptions
like hollywood-2011, eu-2015-host, and twitter-2010. For
these graphs, as shown in Table II, the total number of
edges frozen is very small. Twitter-2010 and hollywood-
2011 take very few iterations to converge and, hence, the
number of frozen edges does not grow fast enough as their
iterations progress. This behavior for twitter-2010 is shown
in Figure 2.

In general, we observe the performance improvements
from approximate computing are greater at smaller core

28

Table II
FROZEN COUNT, GLOBAL RANK DIFFS, ITERATION COUNT.

Dataset #Edges #Frozen diff global rank #Iter (base, approx)
enwiki-2013 101.4M 19.8M (19.49%) 3.3e-05 17, 17
indochina-2004 194.1M 107.3M (55.27%) 2.8e-04 31, 31
hollywood-2011 229.0M 376607 (0.16%) 0 6, 6
uk-2002 298.1M 198.0M (66.41%) 7.3e-04 26, 26
eu-2015-host 386.9M 108.1M (27.93%) 3.1e-04 36, 36
arabic-2005 640.0M 517.6M (80.88%) 8.0e-04 38, 38
webbase-2001 1.0B 711.4M (69.75%) 2.4e-03 21, 21
it-2004 1.2B 829.3M (72.07%) 1.3e-03 31, 31
twitter-2010 1.5B 357.5M (24.35%) 4.0e-05 11, 11
sk-2005 1.9B 1.5B (77.84%) 1.2e-03 28, 25
uk-2007-05 3.7B 2.9B (76.97%) 2.2e-03 29, 29
gsh-2015 33.9B 33.3B (98.24%) 1.1e-02 40, 41
clueweb12 42.6B 34.0B (79.94%) 9.5e-03 25, 26

Figure 3. Speedup relative to baseline for 1.0e-6 global threshold.

counts than at larger core counts. At larger core counts,
load balancing and other overheads limit the scalability
achieved by the exact algorithm. The limited scalability and
associated idleness potentially masks the benefits achieved
from reduced memory operations.

We now analyze the accuracy of the results produced
by approximate computing. The final PageRank vector pro-
duced in decreasing order of the final PageRank of each
vertex. The L1, L2, and L∞ norms presented in Table III are
computed for all vertices in the graph. We observe that the
L2 and L∞ norms are less than 7.4e−5, demonstrating that
the algorithm makes limited impact of the approximation on
accuracy. The L1 norm shows seemingly worse correctness
bound of 1.1e−2. Our approximate computing strategy
accepts minor inaccuracies in lower ranked vertices, which
are numerous in number. Together, these vertices have a
significant impact on the L1 norm. When we consider the
2000 highest ranked vertices, shown in Table IV, all errors,
including the L1 norms improve.

In general, the performance improvements resulting from
approximate computing scale with lowering the convergence
threshold. In scenarios where accuracy is important, our
approach provides greater performance benefits without de-
grading the correctness of the search results.

1) Comparison with the STIC-D Algorithm: STIC-D [4]
is a recent algorithm to optimize page rank computation
through processing of vertices in terms of strongly connected

components and selective freezing of vertices. It was shown
to significantly improve performance as compared to prior
alternatives. Working with the authors of STIC-D, we have
implemented the STIC-D algorithm using our data structures
and framework. We did not change the core logic imple-
mented by the STIC-D authors, but instead optimized the
primary data structures to make them consistent with our
implementation. Specifically, our implementation of STIC-
D uses contiguous cache aligned memory layout for the
most important arrays, making our implementation 7-10X
faster than the original version. We use this implementation
of STIC-D to compare the accuracy and efficiency of our
algorithm. Figure 5 shows the speedup of our optimized
implementation compared relative to the STIC-D imple-
mentation. Figure 4 shows the L2 norms for both imple-
mentations. “OPT” in these figures refers to the optimized
(i.e., approximate) version of our freezing-based algorithm.
These results demonstrate that our optimized algorithm
outperforms STIC-D for medium to large size datasets at
scale in terms of both performance and correctness.

The difference between the algorithms is due to two rea-
sons. STIC-D aggressively freezes computation by marking
all contributions from a vertex as frozen. More importantly,
the STIC-D algorithm computes the page rank one strongly
connected component (SCC) at a time, enabling the freezing
of contributions from other SCCs. This leads to better perfor-
mance than our algorithm in certain cases at the expense of
overall accuracy. On the other hand, computing in terms of
SCCs reduces the overall parallelism available at any given
time. This impacts the scalability achieved at large thread
counts. Our approach operates on all vertices in parallel and
selectively freezes edges (rather than vertices). This exposes
greater parallelism and finer-grained control over the desired
accuracy. In summary, the results demonstrate that STIC-D
is an efficient algorithm for coarser accuracy requirements
and at medium thread-counts. For larger thread counts and
finer accuracy requirements, our algorithm performs better.

Figure 4. Comparison of L2 norms with STIC-D for 1.0e-6 global
threshold

29

Table III
L1 , L2 AND L∞ NORMS (10−6).

Dataset L1 Norm L2 Norm L∞ Norm
enwiki-2013 3.3e-05 3.6e-07 1.4e-07
indochina-2004 2.8e-04 2.1e-06 8.1e-07
hollywood-2011 1.6e-08 2.4e-10 4.5e-11
uk-2002 7.3e-04 1.4e-06 3.4e-07
eu-2015-host 3.1e-04 1.4e-06 6.0e-07
arabic-2005 8.0e-04 3.0e-06 1.2e-06
webbase-2001 2.4e-03 2.5e-06 9.4e-07
it-2004 1.3e-03 2.8e-06 4.2e-07
twitter-2010 4.6e-05 6.4e-08 3.9e-08
sk-2005 1.2e-03 1.2e-05 7.6e-06
uk-2007-05 2.2e-03 5.2e-06 9.7e-07
gsh-2015 1.1e-02 7.4e-05 4.3e-05
clueweb12 1.0e-02 5.2e-05 3.3e-05

Table IV
L1 , L2 AND L∞ NORMS FOR THE TOP 2000 RANKS WITH THRESHOLD

10−6

Dataset L1 Norm L2 Norm L∞ Norm
enwiki-2013 5.8e-06 3.6e-07 1.4e-07
indochina-2004 4.3e-05 2.0e-06 8.1e-07
hollywood-2011 2.7e-10 7.2e-11 4.5e-11
uk-2002 3.2e-05 1.1e-06 3.4e-07
eu-2015-host 2.8e-05 1.4e-06 6.0e-07
arabic-2005 6.9e-05 2.6e-06 1.2e-06
webbase-2001 4.4e-05 2.3e-06 9.4e-07
it-2004 7.2e-05 2.3e-06 4.2e-07
twitter-2010 4.0e-07 6.0e-08 3.9e-08
sk-2005 2.3e-04 1.2e-05 7.6e-06
uk-2007-05 1.3e-04 4.2e-06 9.7e-07
gsh-2015 6.0e-04 7.4e-05 4.3e-05
clueweb12 7.5e-04 5.2e-05 3.3e-05

Figure 5. Speedup relative to STIC-D for 1.0e-6 global threshold

B. Community Detection Evaluation

We interpret early termination as an approach for loop
perforation for community detection, and incomplete color-
ing as the approach for vertex ordering. Further, threshold
scaling and use of vectors are used as enabling techniques for
the two basic approximate computing techniques. Different
techniques impact the convergence of the algorithm, which
we capture in Figure 6 for one input. We observe that faster
convergence is enabled by the use of coloring combined with
threshold scaling. While the use of vectors does not result
in any improvement in the convergence of the algorithm,
there is a significant improvement in the performance of
each iteration, especially after the first few iterations when
the number of communities decreases rapidly. We capture
the details of convergence in terms of the modularity score
at the end of the execution, the total number of iterations
used and total number of phases employed in Table V.

We summarize the improvement in performance for Basic,
Early Termination, Vector, and Early Termination combined
with Threshold Scaling in Figure 7. We observe that while
Early Termination results in the improvement of runtime
for a given iteration, it has the effect of either increasing
or decreasing the net number of iterations (e.g., increasing

�

���

���

���

���

���

��	

��#

��$

��%

�

� 	 �� �	 �� �	 �� �	

�
��

��
��
	
�

�
��
	��������

�����
������������������
���������������
�������	��������
��&����������������

Figure 6. Impact of different techniques on the convergence of Grappolo
for input arabic-2005.

Table V
MODULARITY AND CONVERGENCE. “#ITS.” DENOTES THE NUMBER OF

ITERATIONS ACROSS ALL PHASES.

Input Baseline Early Term. Coloring (4)
Modularity #Its. (phases) Modularity #Its. (phases) Modularity #Its. (phases)

Arabic 0.989 35(5) 0.990 68(20) 0.990 16(6)
Wiki 0.671 58(5) 0.643 49(6) 0.633 19(5)
EU 0.828 46(5) 0.826 33(5) 0.828 16(5)
Hollywood 0.752 77(5) 0.735 37(7) 0.745 18(5)
IndoChina 0.929 37(6) 0.930 128(28) 0.930 17(6)
IT-2004 0.973 48(7) 0.973 44(7) 0.975 21(6)
sk-2205 0.971 24(4) 0.967 46(12) 0.967 12(4)
twitter-2010 0.478 31(6) 0.470 22(7) 0.444 32(5)
uk-2002 0.991 126(35) 0.990 66(15) 0.991 17(6)
uk-2007 0.996 43(6) 0.996 81(24) 0.994 21(6)
webbase 0.983 161(41) 0.983 114(34) 0.984 18(7)

from 37 to 128 for IndoChina, while decreasing from 126
to 66 for uk-2002). We conclude that simple interpretation
of loop perforation in a simple manner does not necessarily
suffice for iterative algorithms such as community detection.
A combination of Early Termination with Threshold Scaling
leads to a better improvement in performance.

The impact of coloring on the performance is summarized
in Figure 8. We experimented with 4, 8, 16, and 32 colors
and observe a similar behavior with each value. Notably,

30

� �����

�������

�������

�������

�������

�����	�

�����	�

�

�
�

��
���
�
��
��
���

��
��

���
��
� �

��
��
��

��������
����������������������
������������� ������
!�����

Figure 7. Impact of different approximate computing techniques on the
performance of Grappolo. Different inputs are listed on the X-axis and
compute time in seconds is provided on the Y-axis on a log2 scale.

�������
�������
�������
�������
�������
�������
�����	�
�����	�

��
�
��

��
��	
�
��
	�
���

��
�	

���
��

�
���

��
��

�����
����������	�
�������������
�������������

Figure 8. Impact of coloring with different colors on the performance of
Grappolo. Different inputs are listed on the X-axis and compute time in
seconds is provided on the Y-axis on a log2 scale.

the performance improvements due to coloring, compared
to the baseline are significant while being widely varying—
yielding up to 17× for twitter-2010 and 450× for sk-2205.
As our next step, we are investigating the reason for this
wide divergence in the speedups. As graph coloring takes
only a small portion of the total time, one would be tempted
to always use complete coloring. However, controlling the
number of colors through an incomplete coloring could
become important in distributed environments in order to
reduce synchronization costs associated with each color
class. Table VI shows the percentage of vertices colored by
the different coloring schemes.

VI. RELATED WORK

PageRank is traditionally computed using the Power iter-
ation method [3]. Since its inception, there has been a large
body of work on optimizing PageRank using a variety of

Table VI
% OF VERTICES COLORED FOR A GIVEN NUMBER OF COLORS

Input 4 colors (%) 8 colors (%) 16 colors (%) 32 colors (%)
Arabic 30.65 36.05 44.61 56.17
Wiki 25.75 29.57 32.72 35.03
EU 51.71 56.87 61.09 64.23
Hollywood 26.72 33.09 38.35 41.62
IndoChina 37.76 44.77 54.38 66.05
IT-2004 33.85 40.02 48.74 59.53
sk-2205 24.79 28.45 33.36 40.13
twitter-2010 34.89 37.58 39.42 39.88
uk-2002 38.42 46.68 59.08 73.23
uk-2007 34.75 38.63 45.03 54.34
webbase 53.63 65.42 78.18 88.12

techniques. For instance, one well-known approach based
on the power method is Adaptive PageRank [18], where the
principal idea is that the pages that converge faster than other
pages can be “locked” and not used in subsequent iterations
leading to an overall 30% improvement. [19] studies the
correlation between PageRank and indegree for webgraphs.
Our approximation strategy is designed to be general enough
to be applied to other types of graphs (social, citation, etc.)
and not just webgraphs. [20] surveys approximation based
approaches for computing PageRank.

Recent works using extrapolation-based methods to ac-
celerate PageRank (e.g., [21], [22]) are based on the power
method. They improve convergence rates but take more
iterations compared to our exact version and do not provide
any analysis on the correctness of the results obtained.
Recently, D-Iteration [23] proposed a diffusion-based ap-
proach for solving PageRank as an alternative to the classical
algorithms like the power method. While this approach
shows very fast convergence rates using a 10−3 threshold,
correctness is not evaluated. [24] demonstrates adaptive
sampling methods for approximating PageRank; however
our approach is faster in terms of convergence for similar
datasets and is also evaluated on much larger datasets.

Community detection is also a well-studied problem with
numerous related work. Due to the intractable nature of the
problem [15], most of the widely used methods are efficient
heuristics. [5] presents a detailed survey of the different
approaches for community detection. [25] presents a survey
of parallel implementations for community detection. Very
recently, we had tested the early termination idea for reaping
savings in performance and energy at the architecture layer,
for Network-on-Chip manycore platforms [26]. However, the
use of approximate computing techniques as proposed in
this paper remains relatively an unexplored area. In fact, the
techniques proposed in this paper have the potential to carry
over to a broad range of graph algorithms with an iterative
structure to their computation.

VII. CONCLUSION

The increasing need to perform graph analytics on large-
scale datasets under strict constraints on time and energy can
be effectively met with approximate computing techniques.
Using PageRank and community detection as representative

31

graph algorithms, we presented several techniques to im-
prove performance with minimal impact on the quality of
the solutions. We believe that the techniques we presented
are applicable to a broad class of iterative graph algorithms.
We conclude that approximate computing is an effective
means to achieve desirable performance with a proportional
impact on the loss of correctness and optimality of the
solutions computed. However, the impact on quality of non-
deterministic algorithms such as PageRank and Grappolo
needs to be evaluated carefully. Metrics to quantify the
quality of a solution also need to be chosen with care.
Approximate computing holds promise to enable graph
analytics on streaming data with restrictions on compute and
memory capacities. We believe that the techniques presented
in this paper will motivate their adoption to a diverse set of
iterative algorithms by the community.

ACKNOWLEDGEMENTS

The research was supported in part by the DOD funded
High Performance Data Analytics Program (HPDA) at the
U.S. Department of Energy Pacific Northwest National Lab-
oratory (PNNL), and by the DOE award DE-SC-0006516
to WSU. PNNL is operated by Battelle Memorial Institute
under Contract DE-AC06-76RL01830. We thank the authors
of STIC-D [4] for actively sharing the software and helping
us port it to our framework. We also thank Dr. Hao Lu for
his contributions to Grappolo.

REFERENCES

[1] S. Mittal, “A survey of techniques for approximate comput-
ing,” ACM Comput. Surv., vol. 48, no. 4, pp. 62:1–62:33, Mar.
2016.

[2] R. R. McCune, T. Weninger, and G. Madey, “Thinking like
a vertex: a survey of vertex-centric frameworks for large-
scale distributed graph processing,” ACM Computing Surveys
(CSUR), vol. 48, no. 2, p. 25, 2015.

[3] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pager-
ank citation ranking: Bringing order to the web,” Stanford
University, Technical Report;, 1998.

[4] P. Garg and K. Kothapalli, “STIC-D: Algorithmic techniques
for efficient parallel pagerank computation on real-world
graphs,” in ICDCN, 2016, pp. 15:1–15:10.

[5] S. Fortunato, “Community detection in graphs,” Physics Re-
ports, vol. 486, no. 3-5, pp. 75–174, Feb. 2010.

[6] V. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre,
“Fast unfolding of communities in large networks,” Journal
of Statistical Mechanics: Theory and Experiment, p. P10008.,
2008.

[7] H. Lu, M. Halappanavar, and A. Kalyanaraman, “Parallel
heuristics for scalable community detection,” Parallel Com-
put., vol. 47, no. C, pp. 19–37, Aug. 2015.

[8] M. E. J. Newman and M. Girvan, “Finding and evaluating
community structure in networks,” Physical Review E, vol. 69,
no. 2, p. 620–627, 2004.

[9] I. S. Duff, K. Kaya, and B. Uçcar, “Design, implementa-
tion, and analysis of maximum transversal algorithms,” ACM
Trans. Math. Softw., vol. 38, no. 2, pp. 13:1–13:31, Jan. 2012.

[10] M. M. Ali Patwary, A. H. Gebremedhin, and A. Pothen, “New
multithreaded ordering and coloring algorithms for multicore
architectures,” in Proceedings of the 17th International Con-
ference on Parallel Processing - Volume Part II, ser. Euro-
Par’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 250–
262.

[11] H. Lu, M. Halappanavar, D. Chavarria-Miranda, A. H. Ge-
bremedhin, A. Panyala, and A. Kalyanaraman, “Algorithms
for balanced graph colorings with applications in parallel
computing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 5, pp. 1240–1256, 2017.

[12] U. Catalyurek, J. Feo, A. H. Gebremedhin, M. Halappanavar,
and A. Pothen, “Graph coloring algorithms for multi-core and
massively multithreaded architectures,” Parallel Computing,
vol. 38, no. 11, pp. 576–594, 2012.

[13] D. P. Bertsekas, “Auction algorithms for network flow prob-
lems: A tutorial introduction,” Computational Optimization
and Applications, vol. 1, no. 1, pp. 7–66, Oct 1992.

[14] D. F. Gleich, “PageRank beyond the web,” SIAM Review,
vol. 57, no. 3, pp. 321–363, August 2015.

[15] U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoe-
fer, Z. Nikoloski, and D. Wagner, “On modularity cluster-
ing,” IEEE transactions on knowledge and data engineering,
vol. 20, no. 2, pp. 172–188, 2008.

[16] M. T. Jones and P. E. Plassmann, “A parallel graph coloring
heuristic,” SIAM J. Sci. Comput., vol. 14, no. 3, pp. 654–669,
May 1993.

[17] “Laboratory for web algorithmics (law),” http://law.di.unimi.
it/.

[18] S. Kamvar, T. Haveliwala, and G. Golub, “Adaptive methods
for the computation of pagerank,” Linear Algebra and its
Applications, vol. 386, pp. 51 – 65, 2004.

[19] S. Fortunato, M. Boguñá, A. Flammini, and F. Menczer,
“Algorithms and models for the web-graph,” 2008, ch. Ap-
proximating PageRank from In-Degree, pp. 59–71.

[20] F. Chung, “A brief survey of pagerank algorithms,” IEEE
Transactions on Network Science and Engineering, vol. 1,
no. 1, pp. 38–42, Jan 2014.

[21] H.-F. Zhang, T.-Z. Huang, C. Wen, and Z.-L. Shen, “{FOM}
accelerated by an extrapolation method for solving pagerank
problems,” Journal of Computational and Applied Mathemat-
ics, vol. 296, pp. 397 – 409, 2016.

[22] Y.-J. Xie and C.-F. Ma, “A relaxed two-step splitting iteration
method for computing pagerank,” Computational and Applied
Mathematics, pp. 1–13, 2016.

[23] D. Hong, T. D. Huynh, and F. Mathieu, “D-iteration: diffusion
approach for solving pagerank,” CoRR, vol. abs/1501.06350,
2015.

[24] W. Liu, G. Li, and J. Cheng, “Fast pagerank approximation
by adaptive sampling,” Knowl. Inf. Syst., vol. 42, no. 1, pp.
127–146, Jan. 2015.

[25] A. Kalyanaraman, M. Halappanavar, D. Chavarrı́a-Miranda,
H. Lu, K. Duraisamy, P. P. Pande et al., “Fast uncovering
of graph communities on a chip: Toward scalable community
detection on multicore and manycore platforms,” Foundations
and Trends R© in Electronic Design Automation, vol. 10, no. 3,
pp. 145–247, 2016.

[26] K. Duraisamy, H. Lu, P. P. Pande, and A. Kalyanaraman,
“Accelerating graph community detection with approximate
updates via an energy-efficient NoC,” in Proceedings of the
54th Annual Design Automation Conference 2017. ACM,
2017, p. 89.

32

