
Detecting Communities in Biological Bipartite Networks

Paola Pesantez-Cabrera
School of EECS

Washington State University
Pullman, Washington 99164

p.pesantezcabrera@wsu.edu

Ananth Kalyanaraman
School of EECS

Washington State University
Pullman, Washington 99164
ananth@eecs.wsu.edu

ABSTRACT
Methods to uncover and extract community structures are
required in a number of biological applications where net-
worked data and their interactions can be modeled as graphs,
and observing tightly-knit groups of vertices (“communi-
ties”) can offer insights into the structural and functional
building blocks of the underlying network. While classical
applications of community detection have focused largely
on detecting molecular complexes from protein-protein net-
works and other similar graphs, there is an increasing need
for extending the community detection operation to work for
heterogeneous data sets — i.e., networks built out of multi-
ple types of data. In this paper, we address the problem of
identifying communities from biological bipartite networks
— networks where interactions are observed between two
different types of vertices (e.g., genes and diseases, drugs
and protein complexes, plants and pollinators). Toward de-
tecting communities in such bipartite networks, we make the
following contributions: i) we define a variant of the bipar-
tite modularity function defined by Murata to overcome one
of its limitations; ii) we present an algorithm (biLouvain),
building on an efficient heuristic that was originally devel-
oped for unipartite networks; and iii) we present a thorough
experimental evaluation of our algorithm compared to other
state-of-the-art methods to identify communities on bipar-
tite networks. Experimental results show that our biLouvain
algorithm identifies communities that have a comparable or
better quality (bipartite modularity) than existing methods,
while significantly reducing the time-to-solution between one
and three orders of magnitude.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Graph Algorithms; I.5.3 [Clustering]:
Algorithms, Similarity measures

General Terms
Algorithms

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
BCB’16, October 2–5, 2016, Seattle, WA, USA.
Copyright 2016 ACM. ISBN 978-1-4503-4225-4/16/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2975167.2975177.

Keywords
Heterogeneous biological data, biological bipartite networks,
graph algorithms, community detection

1. INTRODUCTION
The increasing identification and characterization of genes,

protein complexes, diseases, and drugs have highlighted a
need to incorporate heterogeneity while analyzing complex
biological data. Identifying “community” structures that
transcend data boundaries could provide new insights that
may not be readily visible by examining only a specific data
type in isolation. For instance, identifying a group of genes
that have been implicated across a set of diseases could pos-
sibly reveal hidden links among seemingly different diseases
or disease conditions, and in the process help identify new
drugs and therapies [8]. Similarly, identifying active gene
clusters across different subsets of brain regions could pro-
vide new insights into brain function [13].

Graph-theoretic representations offer a natural way to mo-
del networks built out of heterogeneous data. In this pa-
per, we focus on bipartite networks as a way to model the
interplay between two different data types. Bipartite net-
works are those which have two types of vertices such that
edges exist only between vertices of the two different types.
Some examples of biological bipartite networks include (but
are not limited to) gene-disease [19], gene-drug [11], plants-
pollinators [7], and host-pathogen [22]. Once modeled as a
bipartite network, we can view the problem of identifying
cluster structures between the two different data types as a
problem of community detection in bipartite networks.

Given a graph, the goal of community detection is to parti-
tion the set of vertices into “communities” such that vertices
that are assigned to the same community have a higher den-
sity of edges among them than to the vertices in the rest
of the network. Community detection can be used to reveal
hidden substructures within real world networks, without
any known prior knowledge on either the number or sizes of
the output communities.

Community detection is a well studied problem in litera-
ture [9]. However, the treatment of the problem on bipartite
networks has been sparse. Because edges connect vertices of
two different types, the classical definition of communities
[18] does not directly apply. Instead, the notion of communi-
ties needs to be redefined so that a community of vertices of
one type is formed on the basis of the strength of its shared
connections to vertices of the other type (as shown in the
example in Figure 1).

Figure 1: Communities detected by our biLouvain
algorithm, in the motten1982 bipartite network [7] of
13 spring wildflowers (larger nodes) vs. 44 insects
visitors (smaller nodes). Nodes of the same color
correspond to the same community. QB stands for
bipartite modularity.

To unveil important new associations, evaluation of the
goodness of a community-wise division of a bipartite net-
work also becomes critical. To this end, a measure called
bipartite modularity can be defined, extending the classical
measure for unipartite networks [18]. Modularity is a sta-
tistical measure which calculates the difference between the
observed fraction of intra-community edges to an expected
fraction in an equivalent random graph — i.e., null model.
For bipartite networks, multiple formulations of bipartite
modularity have been proposed [1, 12, 16, 21]. Of these,
Murata’s definition is known to overcome some of the limi-
tations of the other definitions (see Sections 2 and 4).

Contributions: We present a direct method to optimize
a modified version of Murata’s modularity (which we call
Murata+). Specifically, the contributions are as follows:

• Murata+ modularity: We initially consider the classi-
cal definition of Murata’s modularity [16] and discuss
its suitability for community detection in Section 4. In
the process of evaluation, we identify an inconsistency
in the classical formula and subsequently propose a
simple variant.

• biLouvain algorithm: We present an algorithmic heuris-
tic for optimizing Murata+ modularity in bipartite
networks (Section 5). Our approach extends the Lou-
vain algorithm [4], which is one of the most efficient
and widely used heuristic for unipartite networks. Con-
sequently, we call our algorithm biLouvain. As part of
our algorithm, we provide ways to calculate the mod-
ularity gain resulting from vertex migrations — a step
that constitutes the core of the Louvain heuristic.

• Experimental evaluation: We present a thorough ex-
perimental evaluation of our algorithm using both syn-
thetic and real world networks and in comparison to
other state-of-the-art methods (Section 6). Experi-
mental results show that our algorithm identifies com-
munities that have a comparable or better quality (bi-
partite modularity) than existing methods, while sig-
nificantly reducing the time-to-solution between one
and three orders of magnitude.

2. RELATED WORK
Community detection has been extensively studied in uni-

partite graphs [9]. Most of these algorithms use the modu-
larity measure, as defined by Newman [18]. Multiple efforts

Table 1: A comparison of bipartite community de-
tection methods.

Feature DIRTLPAwb+
[3]

biSBM
[14]

biLouvain

Objective function Barber’s modu-
larity

Maximum
Likelihood

Murata+
modularity

Output determinism No No Yes

Number of commu-
nities known a priori

No Yes No

Binary & weighted Yes Yes Yes

have extended the classical definition of modularity to bi-
partite networks:

i) Guimerà et al. [12] defines bipartite modularity as the
cumulative deviation from the random expectation of
the number of edges between vertex members of the
same bipartite community. The main weakness of this
definition is that it focuses on connectivity from the
perspective of only one vertex type.

ii) Barber [1] extends the scope to include connectivity in-
formation from both vertex types. However, this def-
inition has a limitation of assuming a one-to-one cor-
respondence between the communities from both ver-
tex types — i.e., the number of communities should be
equal on both sides.

iii) Murata’s definition [16] overcomes the above limita-
tions by not enforcing a one-to-one mapping between
the communities of either side (see Section 4.1).

iv) Suzuki-Wakita [21] uses a “prominence factor” that av-
erages the volume of connections to all communities.

While there is no general consensus on the modularity def-
inition to use for bipartite networks, we chose to adopt the
Murata’s definition (with modifications - Section 4.2). Ex-
perimental results shown in Section 6 will demonstrate the
high quality of results produced by this definition.

As for community detection in bipartite networks, there
have been a handful of efforts so far. In 2010, Liu and
Murata [15] proposed a way to detect communities in bi-
partite networks using label propagation. This approach
was extended and improved by Beckett [3] in a tool called
DIRTLPAwb+. In 2014, Larremore et al. [14] developed
an approach (biSBM) that uses Stochastic Block model to
maximize a likelihood function. This approach assumes that
the number of output communities should be known a pri-
ori. Multiple executions of DIRTLPAwb+ and biSBM on the
same input could produce different outputs. In 2012, Nacher
et al. [17] used a simulated annealing algorithm to maximize
Guimerà’s modularity and also calculated modularity using
projections. The method proposed in this paper, biLouvain,
compares to the above methods as summarized in Table 1.

3. BASIC NOTATION AND TERMINOLOGY
We will use G(V1 ∪ V2, E, ω) to denote an undirected bi-

partite graph. Here, V1 and V2 represent the two sets of
vertices, and E represents the set of edges such that each
edge e = (i, j) ∈ E is such that i ∈ V1 and j ∈ V2. Each
edge e is also associated with a numerical weight ω(e). We
will assume that the edge weights are non-negative values
that reflect the strength of the relation between any two

vertices. The sum of the weights of all edges incident on a
vertex i is said to be its weighted degree (denoted by γ(i)).
Additionally, we use the term binary networks to describe
networks whose edges are unweighted. In such cases, all
edges that exist are assumed to have a unit weight.

Let n1 and n2 denote the number of vertices in V1 and
V2 respectively, and m denote the number of edges. Let
M =

∑
e

ω(e). For sake of consistency, we use i’s to denote

vertices in V1, and j’s for vertices in V2.
A community represents a subset of either V1 or V2. For

ease of exposition, we use C’s to denote communities taken
from V1 and D’s to denote communities taken from V2. Let
P1 = {C1, C2, . . . , Ck1} denote a set of communities in V1

such that it represents a partitioning of V1. Similarly, let
P2 = {D1, D2, . . . , Dk2} represent a set of communities in
V2 such that it represents a partitioning of V2. Throughout
this paper, we assume k1 need not be equal to k2.

We denote the community containing any vertex i ∈ V1

as C(i). Similarly, we denote the present community con-
taining any vertex j ∈ V2 as D(j).

4. BIPARTITE MODULARITY
4.1 Murata’s Bipartite Modularity

In what follows, we describe Murata’s modularity [16] al-
though using our own notation for convenience.

Given a pair of communities, C ∈ P1 and D ∈ P2, let
EC,D denote the set of all edges that connect a vertex in
community C with a vertex in community D, and let e ∈
EC,D. Consequently, we define:

eC,D =
1

2M

∑
e

ω(e) (1)

For binary networks, this quantity represents the fraction of
all edges that connect communities C and D1. Note that by
this definition, eC,D = eD,C . Also note that the term 2M
corresponds to the sum of the weighted degree of all vertices
— i.e., 2M =

∑
i γ(i). We will use the term aC to denote

the fraction of this term contributed by community C.

aC =
1

2M

∑
D

eC,D (2)

Furthermore, we define the co-cluster of a community C
be a community DC ∈ P2 to which C has the most concen-
tration of its edges — i.e.,

DC = argmax
D

(eC,D) (3)

Similarly, the co-cluster of a community D is defined as
follows:

CD = argmax
C

(eD,C) (4)

Definition 1. Given a bipartite graph G(V1 ∪ V2, E, ω),
and two sets of communities P1 in V1 and P2 in V2, Murata’s
bipartite modularity QB is defined as follows [16]:

QB =
∑
C

(eC,DC −aC×aDC)+
∑
D

(eD,CD −aD×aCD) (5)

Intuitively, Murata’s modularity is calculated by pairing
every community from one side with a community on the

1The factor 2 in the denominator is a result of each edge
getting counted twice — once in each direction.

other side that it has maximum connections to. The first
term inside the two summations in Eqn. 5 corresponds to
the fraction of such“intra-cocluster”edges. The second term
inside each of the summations is the expected fraction of
such edges in a randomly generated bipartite graph with an
identical vertex degree sequence. As in Newman’s modular-
ity [18] for unipartite networks, the idea is to encourage a
partitioning that maximizes intra-cocluster edges while dis-
couraging a partitioning from grouping unrelated vertices
together.

4.2 Murata+: Proposed Bipartite Modularity
From Eqns. 3, 4 and 5 we make the following two obser-

vations:

Observation 1. If a community C picks a community D
as its co-cluster (by Eqn. 3), D need not necessarily pick C
(by Eqn. 4).

Observation 2. The statistical terms aC × aDC and aD ×
aCD are used in the final modularity calculation of Eqn. 5,
but they are not used while picking the co-clusters (Eqns. 3
and 4).

Observation 1 implies that the co-cluster relationship is
nonsymmetric. This relaxation is necessary to avoid a method-
enforced one-to-one mapping between communities and their
co-clusters. However, the relaxation could also lead to an un-
desirable effect of a lack of cohesion between communities
and their co-clusters. For bipartite networks, we typically
attempt to explain the grouping of a community based on
its co-cluster. While one-to-one mapping would make it too
restrictive for this purpose, it is also important not to make
it excessively many-to-many. For most practical inputs, a
middle ground is more desirable where the expected map-
ping remains closer to an one-to-one mapping. For instance,
we can expect a strong (if not strict) two-way correlation
between a set of genes and the set of diseases they impact.

Observation 2 indicates a matter of inconsistency because
a community C picks a co-cluster solely based on the positive
term, while the final modularity is calculated taking into
account also the negative term. At best, this can lead to an
underestimated value of modularity when QB is calculated.
More importantly, we argue that the negative term is in fact
essential as otherwise it could potentially lead to a scenario
where a community and its co-cluster could be of vastly
different sizes. This is shown in Figure 2.

To address the above inconsistency problem within the
classical definition, we propose a variant of bipartite modu-
larity by redefining the co-cluster equations as follows:

DC = argmax
D

(eC,D − aC × aD) (6)

Similarly, the co-cluster of a community D is defined as
follows:

CD = argmax
C

(eD,C − aD × aC) (7)

The modularity expression to be used is identical to that
of Eqn. 5.

It should be clear that this revised definition would make
the choice of co-clusters consistent with the modularity cal-
culation — i.e., fixing the problem with Observation 2.

In addition, the revised definition preserves the nonsym-
metry property (Observation 1), while being better posi-
tioned than the classical definition to encourage one-to-one

Figure 2: An illustrative example of a case where a
community C has 40% of its edges connected to com-
munity D1 and the remaining 60% of its edges con-
nected to community D2. Under this scenario, C has
two choices for its co-cluster, D1 and D2, with eC,D1

being only marginally smaller than eC,D2 but the
sizes of C and D2 are vastly different as shown. In
scenarios like this, ignoring the negative term may
have the undesirable effect of picking a co-cluster
that is significantly different in size. A better choice
of co-cluster for C is D1, not only because of its com-
parable size, but also because it is likely to lead to
a better modularity.

mapping, wherever possible, without strictly enforcing it.
This is because of the reduced degree of freedom that a
community is likely to have (with the introduction of the
negative term) when picking its co-cluster.

Henceforth, we refer to our revised version of the Murata’s
modularity as Murata+ (Eqns. 5, 6, and 7), and use it as
our primary objective function for detecting communities in
a bipartite network.

5. BILOUVAIN: AN ALGORITHM FOR BI-
PARTITE COMMUNITY DETECTION

In this section, we present our biLouvain algorithm for
community detection in bipartite networks. We adapt the
widely used Louvain heuristic [4] to work for bipartite net-
works. While biLouvain follows the same algorithmic tem-
plate provided by Louvain, it differs in the objective func-
tion (by using Murata+) and in the way all the key steps
are computed, as will be elaborated below.

Like the original algorithm, biLouvain is a multi-phase,
multi-iterative algorithm, where each phase is a series of it-
erations, and the algorithm moves from one phase to another
using a graph compaction step. Within every iteration, each
vertex makes a local decision on its community based on a
net modularity gain function. The main steps of the biLou-
vain algorithm are as follows (see Figure 3):

1. Given a bipartite graph G(V1∪V2, E, ω), initialize a set
of n1+n2 communities, where n1 = |V1| and n2 = |V2|,
by placing each vertex in its own community.

2. At every iteration, all vertices in V1 and V2 are scanned
linearly (in an arbitrary order). For each vertex i:

a) Acquire a list of its candidate communities for
it to move to;

b) Evaluate the modularity gain that would result
from moving i from its current community to each
of the candidate communities.

Figure 3: An example to illustrate the main steps
of our algorithm for community detection: biLouvain.
a) The input bipartite graph. Vertices of the two dif-
ferent types are shown in two different shapes. b)
After a sequence of iterations, the biLouvain algo-
rithm converges (based on net modularity gain) and
a phase is completed. The figure shows the vertices
and the communities they belong to at the end of
the phase. In this simple example, communities C1

and D1 are co-clusters to one another, and C2 and D2

are co-clusters to one another. c) The graph is com-
pacted by collapsing each detected community into a
new “vertex” and collapsing inter-community edges
between every pair of communities into new “edges”
with corresponding weights. This compacted graph
is input to the next phase until convergence.

c) Move vertex i to a candidate community that max-
imizes the modularity gain, only if that gain is pos-
itive (otherwise, no change).

3. A phase ends when the net modularity gain achieved
between two consecutive iterations is negligible — i.e.,
below a certain threshold τi, which we refer to as the
iteration cutoff.

4. Once a phase terminates, a new graphG′(V ′1∪V ′2 , E′, ω′)
is generated through a compaction step, which col-
lapses each community to a vertex, and edges and their
weights in the new graph corresponds to the strength
of edges connecting any two communities.

5. The new compacted graph is input to the next phase
(step 1). The algorithm terminates when any two con-
secutive phases result in a negligible modularity gain,
defined by a threshold τp, which we refer to as the
phase cutoff.

In what follows, we describe how the key steps that are im-
pacted by the bipartite structure are implemented in biLou-
vain. More specifically, the classical definition for candidate
communities and their computation (step (2a)), the expres-
sion for calculating the modularity gain resulting from a ver-
tex migration, and the algorithm to calculate the modularity
gain (step (2b)) need to be redefined taking into account the
bipartite structure.

5.1 Computing Candidate Communities
A candidate community of a vertex is a community to

which that vertex can potentially migrate at any given iter-
ation of the biLouvain algorithm, with a realistic chance of
accruing a positive modularity gain.

For ease of exposition, we explain the process of comput-
ing candidate communities from the point of view of a ver-
tex i in V1. It should be easy to see that the same approach
works for any vertex j ∈ V2.

For a given vertex i ∈ V1, let Γ(i) denote the set of neigh-
bors of i in V2 — i.e.,

Γ(i) = {j | (i, j) ∈ E}

Let Γ′(i) denote the set of vertices in V1 that the neighbors
of i are connected to.

Γ′(i) = {k | (k, j) ∈ E, where j ∈ Γ(i)}

Consequently, the set of candidate communities for i, Cand(i)
is given by:

Cand(i) =
⋃

k∈Γ′(i)

C(k)

Intuitively, a vertex i ∈ V1 can only migrate to communi-
ties in V1, within which it has at least one 2-hop neighbor
(i.e., via its vertex neighbors in V2). Moving to any other
community in V1 (i.e., not in this candidate set) will result
in a decrease in modularity.

5.2 Calculating Modularity Gain
In the case of unipartite networks [4], calculating the ex-

pected modularity gain resulting from moving a vertex from
one community to another can be executed in constant time
if appropriate data structures are maintained. In the case
of bipartite networks, this is not the same because of the
following two lemmas (as shown in Figure 4):

Lemma 1. If vertex i moves from C to C′, then the choice
of co-clusters for either community could change.

Proof. The migration of vertex i from C to C′ affects
the values eC,D, eC′,D, aC and aC′ , for any D, in Eqn. 6.

Note that the lemma applies to migrations of vertices in
V2 as well.

Define the community set N(C) as follows:

N(C) =
⋃

j∈Γ(i)

D(j)

The above lemma leads to the following corollary:

Corollary 1. If vertex i moves from C to C′, then:

a) any of N(C)’s co-clusters may change; and

b) any of N(C′)’s co-clusters may change.

Proof. Due to the migration of i from C to C′, any com-
munity Dx of V2 to which either of these two communities
is connected (see Figure 4) could potentially change its co-
cluster preference with changes to the right hand side values
of its corresponding CDx — i.e., Eqn. 7. This implies that
Dx ∈ N(C) ∪N(C′).

It should be intuitively clear why these two lemmas should
be true. In short, the two equations for co-cluster choices
(Eqns. 6 and 7) depend on both the positive and the negative
terms, and either of those two terms could change for the

Figure 4: Illustration of vertex i evaluating its mi-
gration from community C to community C′. If this
move were to be executed, the co-cluster choices for
both C and C′ (presently, DC and DC′ respectively)
could change (Lemma 1). Furthermore, the co-
cluster choice for an arbitrary community Dx which
has at least one edge incident from either C or C′

could also change (Corollary 1). A question mark in-
dicates that the corresponding co-cluster affiliation
needs to be re-evaluated.

communities covered in Lemma 1 and Corollary 1 as a result
of i moving out of C into C′. It should also be clear that
the co-cluster choices for no other communities in the rest
of the graph are affected by this move.

Based on the above lemma and corollary, we constitute a
set containing all affected communities — i.e., S = {C,C′}∪
N(C)∪N(C′), and compute the overall net modularity gain
resulting from i′s migration from C to C′ as follows:

We calculate the contribution of a community D and its
co-cluster CD to the summation in the modularity Equa-
tion 5 as follows:

f(D,CD) = eD,CD − aD × aCD

Consequently, the change in a community D’s contribu-
tion to the overall modularity QB due to the change in its
co-cluster (from DC to Dnew

C imposed by vertex i’s move) is
given by:

∆QB(D) = f(D,CD)− f(D,Cnew
D) (8)

We calculate this term for all affected communities (which
includes C, C′, all communities inN(C) andN(C′)) in order
to derive the modularity gain for a single vertex move. This
modularity gain is calculated for each possible vertex move
into one of its candidate communities; and finally, vertex i
is moved to that candidate community which maximizes the
gain (assuming it is positive).

Vertex Ordering: In the biLouvain algorithm, the order
in which vertices are processed could potentially impact the
performance of the algorithm and the quality of community-
wise partitioning to varying degrees, depending on the input
and on the ordering scheme used.

To understand the impact of vertex ordering on perfor-
mance, note that the community assignment made for a
vertex on one partition (say V1) at any given iteration is
dependent on the community states of its neighboring ver-
tices in the other partition (V2), and also on the community
states in the same partition (for selecting candidate commu-
nities). Also note that initially the number of communities
on each partition is equal to its number of vertices. Coupled
together, these observations imply that if vertex decisions
are all made, say sequentially, within one partition prior to
the other partition, then the time taken for processing ver-

tices on the first partition is likely to be significantly higher
than for the vertices in the second partition during the same
iteration. However, this performance impact is expected to
diminish in the later iterations of the algorithm as commu-
nities get larger. Other vertex ordering schemes might alter
this performance behavior.

As for quality, the impact of ordering is likely to be rel-
atively less. It can be expected that for real world inputs
with well-defined community structures, the state of com-
munities typically converges faster in the first few iterations
of the algorithm and largely remain stable in the later iter-
ations2. However, the final output quality could still differ
based on the vertex ordering used.

To evaluate this quality-time tradeoff imposed by vertex
ordering, we implement these vertex ordering schemes:

1. Sequential: Within each iteration, the vertices in one
partition (say, V1) are all processed (in some arbitrary
order) prior to vertices in the other partition.

2. Alternate: Within each iteration, the processing of
vertices from the two partitions is interleaved — i.e.,
alternating between the two partitions, until one of the
partitions is exhausted at which point the algorithm
defaults to the sequential mode to cover the remaining
vertices of the larger partition.

3. Random: Within each iteration, the order of pro-
cessing vertices in V1∪V2 is randomized. By fixing the
random seed, one can ensure that the output remains
deterministic across multiple runs on the same input.

Another contributing factor to dictate an ordering scheme’s
impact on performance is the constituent vertex partition
sizes. For instance, if the two partitions are of skewed sizes
(e.g., n1 << n2) then the Random scheme is expected to
have an advantage in run-time over the other two schemes,
whereas if the two partitions have comparable sizes, then all
three schemes can be expected to behave similarly.

5.3 Complexity Analysis
The run-time within an iteration is dominated by the time

taken to calculate the modularity gain for all the vertices
(Section 5.2). In our implementation we keep efficient data
structures to enable us to calculate each community’s con-
tribution in constant time. The worst-case run-time com-
plexity for calculating the best modularity gain for a given
vertex i at any given iteration is O(n2 × n1) (this assumes
that all C communities are connected to all D communities).

As all vertices are linearly scanned within each iteration,
the worst-case run-time complexity is O((n1 +n2)n1n2) per
iteration — which makes our exact algorithm a cubic al-
gorithm. In practice; however, we can expect inputs to be
sparse — that would imply a quadratic behavior in the ini-
tial iterations; but as the algorithm progresses, the number
of communities shrinks and with that also the run-time per
iteration.

Algorithmic Extensions: The performance of the al-
gorithm can be further improved by observing and taking
advantage of certain structural motifs within bipartite net-
works and their relation to the modularity expression. Such
structural motifs can include simple topological features such
as a star (i.e., vertex i in V1 is connected to k vertices in V2),
and a chain (i.e., a linked list) inside a bipartite network, or

2This is confirmed in our experimental results (Section 6).

more complex attributes such as a k-core or inexact versions
of chains and stars embedded within a larger subgraph.

In this paper, we prove two such lemmas, one for the sim-
ple star case (Figure 10(a)), and another for the simple chain
case (Figure 10(b)). The lemmas and condensed versions of
the proofs are shown in the Appendix.

The idea is that, based on these provable properties, the
input graph can be preprocessed so as to detect such mo-
tifs and compact them into their corresponding community
structures (as dictated by the lemmas). Thus, reducing the
initial number of vertices will have a direct impact on the
overall work of the biLouvain algorithm.

From testing, we find that identifying simple stars and
chains can reduce the number of input vertices by a factor of
up to 8%. While this may not in itself represent a significant
work reduction, we are extending this idea to more prevalent
structural motifs, such as the inexact versions of stars and
chains, which could yield larger factors of improvement.

6. EXPERIMENTAL RESULTS
6.1 Experimental Setup

Test Platform: We used compute nodes of the Cori
supercomputer at the National Energy Research Scientific
Computing Center (NERSC). Each node has a 16-core Intel
“Haswell” processor at 2.3 GHz, and 128GB RAM. Since our
current implementation is serial, we used only one core. For
graph visualization, we used the Mango software: Manipu-
lation and Analysis of Networks and Gene Ontology [5].

Test inputs: We used real world and synthetic data sets
for our testing (see Table 2). The real world data sets
are as follows: a) Southern Women [2]: a women vs. social
events bipartite graph, where edges represent the attendance
of a woman at a social event;3 b) Plant-Pollinator [7]: 4
of the 23 pollinator networks, binary and weighted, where
each edge represents the frequency of a pollinator’s visit to
a plant4; c) Malaria [14]: a network showing a mapping
between subsequences and the genes that contain them, in
the malaria parasite P. falciparum; d) Drug-Complexes [17]:
a network showing drug-protein target interactions; and e)
Gene-Drug [11]: a network showing gene-drug interactions.

We also used two synthetic networks (Synthetic1 and Syn-
thetic2) generated using a simulation code with predefined
probabilities for links and target community structures. More
specifically, Synthetic1 corresponds to a bipartite network
with a well characterized community structure (probability
of 0.9 for intra-cocluster edges and probability of 0.1 for
inter-cocluster edges), whereas Synthetic2 represents a ran-
dom bipartite network with uniform degree distribution.

biLouvain setting: All modularity results presented use
the Murata+ formulation defined in this paper (Section 4).
Recall that biLouvain has two parameters — the iteration
and phase cutoffs (τi, τp respectively), as described in Sec-
tion 5. We experimented with multiple values of τi in the in-
terval [10−6, 10−2] on different inputs. These preliminary ex-
periments consistently showed that: a) the final output mod-
ularities hardly changed within the interval tested; whereas
b) as τi is decreased, the number of iterations per phase in-
creased, thereby increasing run-time to completion. Thus,

3This is a bipartite graph with a known community struc-
ture and we use this as a benchmark for validation.
4We experimented on all 23 networks, and select only the
top 4 largest networks for presentation in this section.

Table 2: Input statistics, and biLouvain’s modularity
and run-time performance on the inputs.

Input Nodes Edges Modula- Time

Data Set n1 n2 m rity (QB) t(sec)

SouthernWomen 18 14 89 0.575 0.1

memmott1999 25 79 299 0.431 0.9

kevan1970 30 114 312 0.540 1.4

junker2013 56 257 572 0.560 5.9

kato1990 91 679 1,206 0.636 48.6

Malaria 297 806 2,965 0.630 34.8

Drug-Complex 680 739 3,690 0.839 22.4

Gene-Drug 3,090 14,311 29,389 0.822 3,402

Synthetic1 21 180 216 0.816 1.3

Synthetic2 67 10 424 0.505 1.5

Figure 5: (a) Synthetic2 bipartite network: Circles
represent V1 vertices, and diamonds V2 vertices. (b)
Bipartite communities output by biLouvain: Yellow
and red vertices form two communities in V1, while
green and purple vertices form two communities in
V2. The dashed line shows the division between the
two co-clusters.

we set the default value of τi = 10−2 throughout our ex-
periments. We set the phase cutoff τp to 0.0 in all our ex-
periments. Note that this represents a conservative setting
where the algorithm is allowed to terminate only when two
consecutive phases produce no change in the overall mod-
ularity. We also evaluated the quality-time tradeoff among
different vertex ordering schemes in Section 6.3. As our de-
fault setting, we used the Random ordering scheme.

6.2 Qualitative Assessment
Validation: First, we validate our biLouvain algorithm

using the Southern Women benchmark and the two syn-
thetic networks. For the Southern Women, our algorithm
was able to reproduce the expected communities [10] iden-
tically (not shown due to lack of space).

For both synthetic networks, the results were along ex-
pected lines. In Figure 5, we show the Synthetic2 input, and
the bipartite community division output from biLouvain.
Recall that this is a random network with uniform degree
distribution. Yet, our algorithm was able to achieve a mod-
ularity of 0.505. On the Synthetic1 input, which was con-
figured to have a stronger community structure, the output
modularity was 0.816 and the expected community structure
was recovered (results not shown due to space).

Figure 6: biLouvain bipartite modularity evolution by
phase on different inputs.

Modularity evolution: We studied the increase in mod-
ularity as a function of the number of iterations and phases.
As can be seen in Figure 6, the first phase typically con-
tributed to the maximum gain in modularity indicating the
minimal role of graph compaction on the inputs tested. Graph
compaction can prove more effective on networks which are
likely to result in local maximal solutions at the end of the
first phase (e.g., inputs with bicliques). We also observed
that the number of iterations per phase was at most 3 for
the inputs tested, illustrating the effectiveness of the first
few iterations.

6.2.1 Cluster Assessment
We assessed the significance of the bipartite communities

output by the biLouvain algorithm, on the Gene-Drug net-
work, which was the largest real world network tested. For
assessment, we computed a Gene Ontology (GO)-based sig-
nificance for each gene cluster detected by our algorithm.

The biLouvain algorithm detected 1,092 gene clusters from
the Gene-Drug network, of which 505 clusters consisted of
two or more genes. We computed the GO significance for
these 505 clusters using gProfileR [20]. The analysis resulted
in 428 clusters with GO term annotations. The significance
of a particular GO term, associated with a group of genes, is
given by its p-value. We used the conservative approach of
assigning the maximum p-value from within each cluster to
be the cluster’s p-value. Based on this conservative scheme,
we found that all of the 428 clusters have a p-value of 0.05
or less — indicating a minimum confidence level of 95%.

6.2.2 Effect of Edge Weights
We studied the effect of introducing edge weights using

the plant-pollinator networks. Figure 7 shows results of our
analysis. As can be observed, the resulting community struc-
tures for the weighted vs. binary inputs are different and are
consistent with the weight distribution of edges.

6.3 Performance of vertex ordering schemes
In Section 5.2 we described three vertex ordering schemes

and their potential impact on biLouvain’s quality and per-
formance. We studied this quality-time tradeoff on two of
the larger real world networks: the Drug-Complex network,
which represents the case of an even size distribution be-
tween the two vertex partitions — i.e., n1 ' n2; and the

Figure 7: The set of bipartite communities resulting from analyzing the bezerra2009 network (shown in (a)).
The communities (and co-clusters) resulting from the binary network and the weighted network are shown in
parts (b) and (c) respectively. The large nodes represent 13 Malpighiaceae oil-flowers, and the small nodes
represent 13 oil-collecting bees. Nodes belonging to the same community are shaded with the same color.

Figure 8: Comparison among biLouvain, biSBM, and DIRTLPAwb+. Modularity, run-time and NMI results
for binary networks (charts (a),(c),(e)), and for weighted networks (charts (b),(d),(f)).

Gene-Drug network, which represents the case of a skewed
size distribution between the partitions (here, n1 � n2.

Figure 9 depicts this quality-time tradeoff for these two
cases. For Drug-Complex (chart (a)), we observed that all
three schemes behave similarly (both by quality and perfor-
mance). For the Gene-Drug (chart (b)), we observed that
the Random scheme demonstrated the best tradeoff, show-
ing a reduction of 0.05 in modularity relative to Sequen-
tial, while improving the performance by a factor of 3.43×.
These results confirm the expected efficacies of the ordering
schemes. These results provide a guide to the choice of the
ordering scheme based on the input.

6.4 Comparative Evaluation
We compared our biLouvain algorithm with two other

tools — the Label Propagation (DIRTLPAwb+) method [3],
and the Stochastic Block Model (biSBM) [14]. These two
methods represent the state-of-the-art in bipartite commu-
nity detection. For the purpose of comparatively evaluating
the quality of the communities generated by the different

methods, we use the Murata+ modularity. We also com-
puted a pairwise Normalized Mutual Information (NMI) [6]
of the outputs generated between any two methods.

While running both tools (DIRTLPAwb+ and biSBM),
we observed slight variations in the outputs across multi-
ple executions on the same input. For the purpose of our
comparison, we selected an arbitrary output from each of
them.

Furthermore, for biSBM, the tool also requires the user to
input the number of output communities on either side (k1

for V1 and k2 for V2). Therefore, to obtain the best possi-
ble results from biSBM, we ran the biSBM under multiple
configurations and used the results from the configuration
that produced the best modularity. The four configurations
tested are as follows — the numbers of communities (k1 and
k2) are set to the numbers output by: a) DIRTLPAwb+ [3],
and b) our biLouvain algorithm run in each of the vertex
ordering schemes (Sequential, Alternate and Random).

Figure 8 shows the results of our comparative study on
both binary and weighted network inputs. In terms of the

Figure 9: Evaluation of performance of biLouvain
vertex ordering schemes. (a) Drug-Complex data
set (n1 ' n2). (b) Gene-Drug data set (n1 � n2).

output quality (modularity; charts (a) and (b)), our biLou-
vain algorithm produces the best modularity for all but one
input.

As for performance (run-time; charts (c) and (d)), there
is a variance in performance for the smaller inputs; but for
the larger inputs (Malaria, Drug-Complex, and Gene-Drug),
biLouvain is orders of magnitude faster than the other two
tools. For the Drug-Complex network, biLouvain is 14.8×
faster than biSBM and 2, 655× faster than DIRTLPAwb+.
For Gene-Drug, biLouvain completes in 56 minutes, while
biSBM had to be run using small values of k1 = k2 = 30 in
order to complete in reasonable time (6 hours 35 minutes).
The DIRTLPAwb+ tool failed to complete in 48 hours.

We compared the community compositions produced by
the three methods, and the results (charts (e) and (f)) show
that the pairwise NMI between methods can vary anywhere
between 0.5 and 1 for the inputs tested. While there is
hardly a consensus, our biLouvain algorithm’s outputs tend
to be generally closer to the outputs from DIRTLPAwb+
than to biSBM. This can be attributed to the fact that,
methodology-wise, the label propagation and biLouvain ap-
proaches are more similar to one another, as both scan local
neighborhoods to determine a vertex’s community.

In [17], modularity of the Drug-Complex network was cal-
culated using a simulated annealing algorithm. The results
yielded a modularity of 0.824 with 48 communities for drugs
and a modularity of 0.762 with 42 communities for com-
plexes. In comparison to the above, the biLouvain algorithm
yields a bipartite community structure with QB = 0.839.
We also ran the biSBM tool setting k1 = 48 and k2 = 42 (as
per [17]), and this yielded an output modularity of 0.788.
Running DIRTLPAwb+ gives a modularity of 0.826.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we presented an efficient algorithm, biLou-

vain, for the problem of community detection in bipartite
networks. Our method uses a revised definition of the clas-
sical Murata’s modularity definition, and extends the Lou-
vain heuristic to work for bipartite networks. Experimental
results show that our biLouvain algorithm identifies com-
munities that have a comparable or better quality (bipartite

modularity) than two state-of-the-art methods, while signif-
icantly reducing the time-to-solution between one and three
orders of magnitude for large input networks.

Multiple future extensions have been planned. These in-
clude: i) Parallelization to further reduce the time to solu-
tion and enhance problem size reach; ii) Algorithmic opti-
mizations to fully take advantage of structural motifs within
the input graph; iii) Incorporation of intra-type edge infor-
mation, where available, in addition to inter-type edges as
part of modularity computation; iv) Comparative evaluation
with other modularity formulations and with other existing
methods such as spectral methods; and v) Large-scale ap-
plication to networks obtained from multiple domains and
subsequent scientific analysis.

8. ACKNOWLEDGMENTS
We wish to thank the Mango graph visualization team at

Iowa State University. This research was supported by US
Department of Energy grant DE-SC-0006516. This research
used resources of the National Energy Research Scientific
Computing Center, a DOE Office of Science User Facility
supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231.

9. REFERENCES
[1] M. J. Barber. Modularity and community detection in

bipartite networks. Physical Review E, 76(6):066102,
2007.

[2] V. Batagelj and A. Mrvar. Pajek datasets.
http://vlado.fmf.uni-lj.si/pub/networks/data/.

[3] S. J. Beckett. Improved community detection in
weighted bipartite networks. Royal Society Open
Science, 3(1):140536, 2016.

[4] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and
E. Lefebvre. Fast unfolding of communities in large
networks. Journal of Statistical Mechanics: Theory
and Experiment, 2008(10):P10008, 2008.

[5] J. Chang and H.-H. Chou. Mango: Manipulation and
analysis of networks and gene ontology.
http://www.complex.iastate.edu/download/Mango/.

[6] L. Danon, A. Diaz-Guilera, J. Duch, and A. Arenas.
Comparing community structure identification.
Journal of Statistical Mechanics: Theory and
Experiment, 2005(09):P09008, 2005.

[7] C. F. Dormann, J. Frueund, N. Bluethgen, and
B. Gruber. Indices, graphs and null models: analyzing
bipartite ecological networks. The Open Ecology
Journal, 2:7–24, 2009.

[8] J. T. Dudley, T. Deshpande, and A. J. Butte.
Exploiting drug–disease relationships for
computational drug repositioning. Briefings in
bioinformatics, page bbr013, 2011.

[9] S. Fortunato. Community detection in graphs. Physics
Reports, 486(3):75–174, 2010.

[10] L. C. Freeman. Finding social groups: A meta-analysis
of the southern women data. Dynamic social network
modeling and analysis, pages 39–97, 2003.

[11] M. Griffith, O. L. Griffith, A. C. Coffman, J. V.
Weible, J. F. McMichael, N. C. Spies, J. Koval, I. Das,
M. B. Callaway, J. M. Eldred, et al. Dgidb: mining
the druggable genome. Nature methods,
10(12):1209–1210, 2013.

[12] R. Guimerà, M. Sales-Pardo, and L. A. N. Amaral.
Module identification in bipartite and directed
networks. Physical Review E, 76(3):036102, 2007.

[13] S. Ji. Computational genetic neuroanatomy of the
developing mouse brain: dimensionality reduction,
visualization, and clustering. BMC bioinformatics,
14(1):1, 2013.

[14] D. B. Larremore, A. Clauset, and A. Z. Jacobs.
Efficiently inferring community structure in bipartite
networks. Physical Review E, 90(1):012805, 2014.

[15] X. Liu and T. Murata. An efficient algorithm for
optimizing bipartite modularity in bipartite networks.
JACIII, 14(4):408–415, 2010.

[16] T. Murata. Detecting communities from bipartite
networks based on bipartite modularities. In
Computational Science and Engineering, 2009.
CSE’09. International Conference on, volume 4, pages
50–57. IEEE, 2009.

[17] J. C. Nacher and J.-M. Schwartz. Modularity in
protein complex and drug interactions reveals new
polypharmacological properties. PloS one,
7(1):e30028, 2012.

[18] M. E. Newman and M. Girvan. Finding and
evaluating community structure in networks. Physical
review E, 69(2):026113, 2004.

[19] J. Piñero, N. Queralt-Rosinach, À. Bravo,
J. Deu-Pons, A. Bauer-Mehren, M. Baron, F. Sanz,
and L. I. Furlong. Disgenet: a discovery platform for
the dynamical exploration of human diseases and their
genes. Database, 2015:bav028, 2015.

[20] J. Reimand, M. Kull, H. Peterson, J. Hansen, and
J. Vilo. g: Profiler—a web-based toolset for functional
profiling of gene lists from large-scale experiments.
Nucleic acids research, 35(suppl 2):W193–W200, 2007.

[21] K. Suzuki and K. Wakita. Extracting multi-facet
community structure from bipartite networks. In
Computational Science and Engineering, 2009.
CSE’09. International Conference on, volume 4, pages
312–319. IEEE, 2009.

[22] M. Wardeh, C. Risley, M. K. McIntyre, C. Setzkorn,
and M. Baylis. Database of host-pathogen and related
species interactions, and their global distribution.
Scientific data, 2, 2015.

APPENDIX
A. STAR PROPERTY

Lemma 2. A connected component of G(V1 ∪ V2, E, ω)
that is a vertex i ∈ V1 connected to k vertices {j1, j2, . . . , jk}
in V2, is guaranteed to collapse into a single co-cluster.

Proof. Figure 10(a) illustrates a star input. Let us con-
sider unit weight edges for simplicity. Vertex i is guaranteed
to be in a community of its own when the algorithm termi-
nates, because all its neighbors (j’s) in V2 are of unit degree.
As for the community assignment for all the j’s, we consider
two possible cases:

Case a) All the k vertices in V2 are merged into one com-
munity. For this case, the contribution (Q′B) of all these
k+ 1 vertices, including i, to the overall modularity (QB) is
as follows (by Eqn. 5):

Q′B =
1

2M

(
2k − 2k2

2M

)
(9)

Figure 10: Illustration of a) the star case, and b)
the chain case.

Case b) k − 1 vertices in V2 are merged into one commu-
nity, the remaining one is left in its own community. The
corresponding modularity contribution is:

Q′B =
1

2M

(
(2k − 1)− 2k2 − k

2M

)
(10)

A comparison of Eqn. 9 and Eqn. 10 indicates that the
contribution of case (a) can be shown to be always greater
than the contribution of case (b), as M ≥ k (expression not
shown).

B. CHAIN PROPERTY
Lemma 3. A connected component within G(V1∪V2, E, ω)

that is a linear chain of length ` (in the number of edges),

can collapse into one co-cluster if and only if ` < 2
√
M .

Proof. Figure 10(b) illustrates a chain input. For conve-
nience we assume unweighted edges. We consider two pos-
sible cases to determine the optimal length of a chain for
modularity maximization.

Case a) All vertices forming the chain on each partition,
are assigned to the same community. For this case, the con-
tribution of the chain (Q′B) to the overall modularity (QB)
is as follows:

Q′B =
1

2M

[
2`− `2

M

]
(11)

Case b) The chain is split in two parts, such that com-
munity pairs of lengths (C0, D0) and (C1, D1), form two co-
clusters. The corresponding modularity contribution is:

Q′B =
1

2M

[
2`− 2− `

M

(
`2 − `D0 − `C0 + 2C0D0

)]
(12)

Maximizing the negative term above:

∂y

∂C0
= −`+ 2D0 = 0

∂y

∂D0
= −`+ 2C0 = 0

⇒ C0 = D0 =
`

2
(13)

Substituting Eqn. 13 in Eqn. 12:

Q′B =
1

2M

[
2`− 2− 1

M

(
`2

2

)]
(14)

For case (a) to be preferred over case (b):

∆Q′B =
1

2M

[
2`− 2`+ 2− `2

M
+

`2

2M

]
> 0

⇒` < 2
√
M

(15)

