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Summary: Classical bipartite community methods only

take into account inter-type edge information—i.e., edges

between vertices of two different types. We present a

new form of bipartite modularity (as an objective func-

tion for community detection) that can enable methods

to incorporate both intra-type and inter-type edge infor-

mation. Preliminary results evaluating this new form are

presented.

Introduction

Bipartite graphs serve as an effective way to represent

the interplay between two different data types—e.g., gene

vs. disease, plant vs. pollinator, etc. (e.g., [3, 8]). Here,

vertices represent the individual entities of a data type,

and edges represent the interaction between the entities

of two different data types. The problem of community

detection, when applied to such bipartite networks, is one

of co-clustering the entities of the two different types based

on their inter-type interactions.

However, in many applications, we may also have intra-

type information, which may be critical in determining

the co-clustering structures [6]. For instance, considering

the sequence-based similarity between genes (intra-type)

could either provide the additional basis for clustering

a group of genes with a group of diseases or help reveal

hidden links between disease groups.

Current methods for bipartite community detection are

ill-equipped to handle such intra-type information when

made available. More specifically, the modularity metrics

that they use, to measure the goodness of clustering, use

only inter-type edge information. Note that a näıve way

to handle both inter- and intra-type information is to

simply treat the graph as a general graph and run methods

that are designed for general graphs. However, intra-

type may or may not carry the same weight as inter-type;

furthermore, the connectivity characteristics (e.g., sparsity

of edges, degree distribution) could differ between inter-

and intra-type edges.

Contribution: In this paper, we present a definition of

bipartite modularity that would enable bipartite commu-

nity detection methods to compute clustering structures

taking into account both inter- and intra-type edges. Our

definition extends the Murata+ definition of [7].

Notation and Definitions: Let G = (V1 ∪ V2, E) denote

a bipartite graph, where V1 and V2 represent vertices

of two different types, and an edge eij ∈ E represents

a pairwise relationship between i ∈ V1 and j ∈ V2. M

denotes the sum of the weights of all edges in E. We define

an augmented bipartite graph as a bipartite graph which

also allows edges between vertices of the same type—i.e.,

G(V1 ∪V2, E ∪E′), where every edge eij ∈ E′ is such that

either i, j ∈ V1 or i, j ∈ V2.

The goal of bipartite community detection is to partition

V1 and V2 into a set of communities such that the members

of a community are highly “related” to one another than

to the rest of the network. The degree of relatedness is

typically captured in the modularity of clustering.

Classical Definitions of Bipartite Modularity

Multiple bipartite modularity definitions have been pro-

posed [1, 4, 5, 7]. However, all the above definitions

focus on establishing community structures only based

on inter-type information. Guimerà et al. [4] focuses

on connectivity from the perspective of only one vertex

type. Barber [1] assumes and enforces a one-to-one cor-

respondence between the communities from the different

vertex types, whereas Murata’s definition [5] overcomes

this limitation. During analysis, we encountered an in-

consistency in Murata’s definition and proposed a variant

called Murata+ defined as follows [7]:

QB =
∑
C

(EC,ψ(C) −AC ×Aψ(C)) +
∑
D

(ED,ψ(D) −AD ×Aψ(D)) (1)

Here, C and D represent a community in V1 and V2
respectively; ψ(C) denotes a D that is identified as the

co-cluster mate of C in V2 (similar definition for ψ(D));

EC,ψ(C) represents the fraction of inter-type edges from C

to ψ(C) (similar for ED,ψ(D)); and AC (or AD) denotes

the fraction of edges contributed by community C (or D).

Proposed Definition of Bipartite Modularity

Given an augmented bipartite graph G(V1 ∪ V2, E ∪ E′),

we assume (without loss of generality) that all edges have
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normalized weights. First, we define a positive weight

α ∈ R for using inter-type edges (implying, 1−α for intra-

type edges). We use s(i, j) to denote the“similarity” score

between vertices i and j of the same type. Let us consider

the bipartite network formed by genes and drugs; then,

sg(i, j) is a sequence-based similarity score between two

genes i and j, while sd(i, j) is a structure-based similarity

score between two drugs i and j. Based on the s function,

we define β and φ factors for community C of genes as

follows (for i 6= j):

β(C) =

∑
i,j∈C

sg(i, j)∑
i,j∈V1

sg(i, j)
, φ(C) =

∑
i∈C,j∈V1

sg(i,j)∑
i,j∈V1

sg(i,j)

Intuitively, β(C) represents the relative intra-cluster simi-

larity based solely on intra-type edges, whereas φ(C) is

the fraction of intra-type edges (in V1) contributed by

community C.

Subsequently, we define the augmented variant of the

Murata+ modularity definition as follows:

QB =
∑
C

(E ′C −A′
C) +

∑
D

(E ′D −A′
D) (2)

where:

E ′C = [α EC,ψ(C)] + [(1− α)β(C)]

A′
C = [α ACAψ(C)] + [(1− α)(φ(C)φ(C))]

Implementation: We implemented the proposed modu-

larity into our biLouvain community detection tool [7]

(https://github.com/paolapesantez/biLouvain). We use a

multi-level iterative scheme where vertices determine their

communities at each step. We implemented two variants

of how a vertex chooses its destination community Cj

from its current community Ci:

Strongly constrained (SC ): Cj that maximizes the modu-

larity gain ∆QB and β(Cj), such that β(Cj) ≥ λVk
and

β(Cj) > β(Ci);

Weakly constrained (WC ): Cj that maximizes ∆QB while

β(Cj) ≥ λVk
, where λVk

is a predetermined cutoff.

Experimental Results

Test data: We experimented with an Enzyme-Interaction

binary bipartite network [2] that has 1,109 nodes (664

targets and 445 drugs) and 317,841 edges (2,926 inter-type,

220,116 targets intra-type, and 94,799 drugs intra-type).

We use λV1
= 0.03 and λV2

= 0.25 obtained from the

average similarity scores and based on [6].

Table 1: Evaluation on an Enzyme-Interaction data set.
Alpha Modularity QB Correlation Coefficient(%)

α SC WC α comparison SC WC

0.0 2.90E-05 2.90E-05 0.0 vs. 0.1 15.88 14.76

0.2 0.259 0.281 0.2 vs. 0.3 83.44 89.34

0.4 0.381 0.420 0.4 vs. 0.5 88.39 89.41

0.6 0.509 0.562 0.6 vs. 0.7 81.19 93.32

0.8 0.647 0.718 0.8 vs. 0.9 94.08 95.41

1.0 0.869 0.869 0.9 vs. 1.0 87.31 96.76

Table 1 shows how adding intra-type information im-

pacts the final modularity. When α = 0.0, QB is small

because targets and drugs form a few large communities;

contrarily to when α = 1.0. When α is increased, QB also

increases. The SC case provides a better run-time because

being more restrictive reduces the amount of work needed.

Correlation coefficient percentages show the degree of con-

servation in the clusters obtained across different α values.

α values between 0.4 and 0.6 produce approximately con-

sistent community outputs, implying that giving roughly

equal weight to inter- and intra-type edges for this input

data set is desirable. When comparing clusters for α = 0.0

vs. α = 0.1, the major difference is a consequence of inter-

type information exclusion. Finally, the less restrictive

the constraint, the better correlation between clusters.
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