
An Efficient Parallel Sketch-based Algorithm for
Mapping Long Reads to Contigs

Tazin Rahman, Oieswarya Bhowmik, Ananth Kalyanaraman
Washington State University, Pullman, USA

Abstract—Long read technologies are continuing to evolve at
a rapid pace, with the latest of the high fidelity technologies
delivering reads over 10Kbp with high accuracy (99.9%). How-
ever, there also exist partially constructed assemblies using short
read data. Hybrid assembly workflows provide a way to combine
the information in both these data sources and generate highly
improved and near complete assemblies and genomic scaffolds.
In this paper, we address the problem of mapping long reads to
contigs (representing prior constructed partial assemblies). This
is a many-to-many comparison application. However, brute force
comparisons of all pairs is not practical. Therefore, in this paper,
we present a parallel, alignment-free sketching-based algorithm
that efficiently maps long reads to contigs. More specifically, our
approach uses a minimizer-based Jaccard estimator (or JEM),
a variant of the classical MinHashing technique, as its sketch.
Experimental evaluation shows that our parallel algorithm is
highly effective in producing a high quality mapping while
improving significantly the time to solution compared to state-
of-the-art mapping tools. For instance, for a large genome Betta
splendens (≈ 350Mbp genome) with 429K HiFi long reads
and 98K contigs, our JEM approach produces a mapping
with 99.31% precision and 96.18% recall, while yielding 7.13×
speedup over a state-of-the-art mapper (Mashmap).

Index Terms—hybrid assembly, long read mapping, sketching,
MinHashing, parallel algorithms

I. INTRODUCTION

Over the last two decades, numerous genomes have been

assembled using short read sequencing technologies. These

technologies continue to present a cost-effective and high-

throughput solution to sequencing. While the short reads

are highly accurate (< 1% error) the challenge is the short
read lengths (100 to 250bp)—which also means that the
assembled contigs (≈ 103 − 104) tend to be several orders
of magnitude short off their genome targets (≈ 106 − 109).
Recent emergence in long read sequencing technologies show

a promising front toward addressing this challenge. The first

generation of long read technologies (e.g., PacBio SMRT [1]

or Oxford Nanopore ONT [2]) produce reads that are over

10Kbp but also have a larger error rate (between 11%−14%
[3]). As a significant advancement, the latest generation of

technologies such as PacBio HiFi (High Fidelity) [4] have

highly improved accuracy (99.9%). There are also several

long read error correction tools [5]. Given these, the prospect

of assembling long contiguous portions of the genome has

dramatically improved [6].

Broadly speaking, two classes of approaches exist for using

long reads—standalone and hybrid. Standalone long read
assemblers [6], [7] produce an assembly directly from long

reads; but this also requires a higher sequencing coverage (e.g.,

Fig. 1: Example illustrating mapping of long reads to contigs.

Each end of a long read can be expected to map to a single

contig (assuming a non-redundant contig set).

30× or more on most genomes [8]). On the other hand, hybrid
assemblers [9], [10] offer the benefit of combining long and
short reads, or alternatively, combining long reads with prior

assembled short read contigs. The power to combine both

types of data is particularly attractive if one wishes to build

on and extend the reach prior constructed draft assemblies.

In addition, use of prior constructed contigs also improves

scalability since the number of contigs tends to be orders of

magnitude fewer in number compared to raw short reads.

In this paper, we visit the problem of mapping under hybrid

settings—for combining high fidelity long reads, which are

gradually becoming mainstay, with contigs assembled from

short reads. The motivation for combining long reads with

contigs is two fold: a) to help link contigs covering different

but nearby parts of the genome (i.e., filling in the assembly

gaps); and b) to do so with decreased coverage (and cost)

in long read sequencing. In order to implement this hybrid

strategy, we need a way to efficiently map the long reads to the

contigs, as that step is the primary computational bottleneck in

scaffolding. Therefore, we focus on the mapping step for this

paper. Fig. 1 shows an example illustration of this mapping

process.

While there are a number of sequence mapping solutions

(see Section II for a review), scalability of these tools and in

addition their ability to work with different types of sequences

(short vs. long reads) are limitations.

Contributions: We present a new parallel sketching-
based scheme for efficient and scalable mapping of (high

fidelity) long reads to contigs (obtained from short reads). The

input is a set of long reads (queries Q) and a set of contigs
(subjects S). The output is a mapping from Q to S such that
each long read r ∈Q is mapped to a “best matching” subject
c ∈S . Key contributions include:

157

2023 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

979-8-3503-1199-0/23/$31.00 ©2023 IEEE
DOI 10.1109/IPDPSW59300.2023.00037

20
23

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
is

tri
bu

te
d

Pr
oc

es
si

ng
 S

ym
po

si
um

 W
or

ks
ho

ps
 (I

PD
PS

W
) |

 9
79

-8
-3

50
3-

11
99

-0
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IP

D
PS

W
59

30
0.

20
23

.0
00

37

Authorized licensed use limited to: Washington State University. Downloaded on October 27,2023 at 17:58:45 UTC from IEEE Xplore. Restrictions apply.

• Methods: We present a new sketching-based method for
alignment-free mapping of long reads to contigs. Our

approach uses a minimizer-based Jaccard estimator as

sketch.
• Implementations: We provide an efficient and scal-
able parallel distributed memory implementation for our

minimizer-based Jaccard estimator workflow.
• Evaluation: We conduct a thorough empirical evaluation
of the proposed sketching based implementations. Results

show that our method is able to match the mapping

quality of a state-of-the-art mapping tool, while provid-

ing significant speedups over the state-of-the-art. More

specifically, our distributed memory implementation run-

ning on 64 processes achieves speedups between 5.6×
to 13× compared to the state-of-the-art multithreaded
execution on 64 threads.

With mapping applications increasingly becoming more het-

erogeneous in their data sources, including in hybrid scaffold-

ing/assembly workflows or reference-guided assembly work-

flows [11], the techniques described in this paper have broad

applicability. In what follows, we provide a brief review of the

relevant sequence mapping literature (§II), before describing

our parallel approach (§III) and presenting the results (§IV).

II. RELATED WORK

Sequence mapping is a classical problem in bioinformatics.

It can be abstracted as one of mapping a set of query se-
quences (e.g., reads) to a set of subject sequences. Traditional
sequencing mapping tools (e.g., [12], [13]) focus on aligning

short reads (queries) against a reference genome (subject).

However, the hybrid setting differs from this classical setting

in a couple of different ways. First, in lieu of the reference
(which is typically a handful of very long subject sequences),

our input subjects consist of a set of contigs which represent

a highly fragmented view of the reference genome. conse-

quently, the contig sets can have tens to hundreds of thousands

of sequences, and may also widely vary in their sequence

lengths (103-105 bp).
As for the query set, long reads are significantly longer than

the short reads used in conventional reference mapping. In the

absence of more scalable tools, the current batch of hybrid

assemblers [9], [10], [14] rely on a classical mapping tool

to implement their mapping step. For instance, Haslr [10] first

assembles the short reads using Minia [15], and then aligns the

contigs to the set of long reads using Minimap2 [13]. Similarly,

SAMBA [14] aligns the long reads to the set of contigs using

Minimap2 [13].

To improve scalability of mapping, there has been a growing

interest in alignment-free approaches [16]–[20], and in partic-

ular sketching—e.g., minimizers [20], [21] and MinHashing

[22]. Sketching is a class of techniques that use samples

derived from the input sets (or sequences) to be compared

in order to approximate similarity. Introduced originally for

document clustering [22], sketching and its relatives like

minimizers [21] have found extensive use in bioinformatics.

While these techniques have shown significant promise for

mapping in the classical setting, they have not yet been fully

explored or evaluated the hybrid use-case targeted in this

paper.

III. METHODS

Recall that Q and S denote the sets of queries and subjects
respectively. For the mapping use-case covered in this paper,

we set Q to be the set of input long reads, and S to the set of
input contigs. Intuitively, for each long read in Q we wish to
compute best matching contig(s) in S (as illustrated in Fig. 1).
The rationale for targeting best hit is because a long read query

could have emerged from only one place in the genome, and

therefore we are after a contig that best covers that unknown

region of the target genome. Here, we assume that the set of

input contigs are non-redundant, with negligible duplication

ratio, which is a reasonable assumption that holds in practice,

for most short-read contig assembly tools [15].

Problem statement: Let m = |Q| and n = |S|. Let
Σ = {a, c, g, t} denote the DNA alphabet; therefore, Q⊆ Σ∗

and S⊆ Σ∗. Let function map(q,s) refer to the process
of mapping a query q to a subject s, and a scoring function
ψ : Σ∗ × Σ∗ → R≥0 to denote the quality of the mapping.

Consequently, the mapping problem is defined as follows.

Definition 1. Long read-to-contig (L2C) mapping: GivenQ
and S, find for each query q ∈ Q a subject s∗q ∈ S , such that:

s∗q = argmax
s
ψ(q, s)

Ideally, the function ψ is dictated by a sequence alignment
measure. However, computing alignments at scale is very

expensive, thereby making alignment-free approaches more

desirable in practice. Furthermore, a brute-force approach of

comparing every 〈long read, contig〉 pair is also not feasible. In
fact, in practice we expect a long read to share similarity with

only a very small subset of contigs. Therefore, our approach

uses an alignment-free sketch to reduce the search space as

described below.

A. Preliminaries and notation

a) MinHash preliminaries: Since our sketch is based on
MinHash, we first provide some basic preliminaries about the
classical MinHash scheme. The MinHash sketching scheme
was introduced by Broder in 1997 [22], originally to compute

resemblance or Jaccard similarity between documents. Given

two sets A and B, the Jaccard similarity between the sets is
given by: J (A,B) = |A∩B|

|A∪B| . In his seminal work, Broder
showed that there exists a family of permutations (π : [n]→
[n]) called the minwise independent permutations, which can
be used to generate fixed size sketches from the sets A and B.
It then suffices to compare the sketches instead of explicitly

computing the J (A,B), i.e.,

Pr(min{π(A)} = min{π(B)}) = J (A,B)

In other words, higher the Jaccard similarity, higher the

probability that the sketches obtained A and B will match.
To improve the chance that a random sketch is found, a fixed

158

Authorized licensed use limited to: Washington State University. Downloaded on October 27,2023 at 17:58:45 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Illustration of the major steps of our sketch-based algorithm, JEM-mapper, for L2C mapping.

number of random trials (T) is executed. This is achieved
by choosing T random minwise independently permutations:
{π1, π2, . . . , πT }, and using them to generate the MinHash
sketches for sets A and B, denoted by A and B respectively:

A = [min{π1(A)}, . . . ,min{πT (A)}];
B = [min{π1(B)}, . . . ,min{πT (B)}]

Subsequently, if any of the trials produce the same minimum

between A and B then we conclude A is similar to B. In
practice, a value around 100 to 200 is used for T [22]. We
refer to the MinHash sketches (e.g., A, B) sometimes as just
“MinHashes” for the underlying sets.

b) String notation: Let s denote an arbitrary string over
alphabet Σ, and let |s| denote its length. We use the terms
strings and sequences interchangeably. A k-mer is a (sub)string
of length k. Given Σ and k, let K denote the set of all
k-mers that can be built using Σ. Note that |K|=|Σ|k. We
use the term canonical ordering of k-mers, denoted by Π∗

k,

to refer to the lexicographical ordering of the k-mers in K.
For instance, if k=2, the canonical ordering of K is given
by: Π∗

k = [aa,ac,ag,at,ca,cc,cg,ct,ga,gc,gg,gt,ta,tc,tg,tt].
Given a string s ∈ Σ∗ and a choice of k, the notation sk
is used to denote the set of all k-mers present in s.

B. Computing L2C using a minimizer-based Jaccard estima-
tor sketch

In the L2C mapping application, we have two sets of
strings—Q containing long reads, and S containing contigs.
For a string s, its MinHash sketch can be constructed from
the set of all k-mers (sk) in s—i.e., during trial t, apply a
hash function ht(.) on each k-mer in sk and then select the
k-mer with the minimum value as part of the sketch.
Using this idea, a simple way to apply the MinHashing

scheme for L2C is as follows. First enumerate the MinHashes
(or the sketches) for each subject (one minimum for each

random trial t ∈ [1, T]) and insert those into a sketch data
structure S. Subsequently, during querying time, sketches are

also generated from each query. The more sketches a query

generates in common with a subject, the higher the likelihood

that it shares a high sequence level similarity. Therefore, we

can simply track the frequency of the subjects that “hit” with

a given query, and report the top matching subject (if any) as

the mapped output hit to that query. This simple algorithmic

workflow is illustrated in Fig. 2.

While this workflow can be efficiently implemented, we

make several changes, as there are a few key challenges

with a direct application of MinHashing as described above.

First, note that in the L2C application, contigs and long reads
could have significantly differing lengths. If a long read r is
significantly longer (say 10Kbp) than a corresponding mapped
contig c (say 3Kbp), then even if c has significant identity
within r, MinHashing may select k-mers that may lie outside
the region of the overlap. This could mean missing out on

a true mapped (affects recall). Similarly, if a contig c is
significantly longer (say, 20Kbp) compared to a long read
r (say 10Kbp), recall could again be affected as the sketches
from contigs could lie outside the region of true overlap. Either

way, the qualitative efficacy of MinHash for mapping could
be negatively impacted.

To overcome this limitation, we use two ideas: a) to map

only end segments of long reads; and b) to compute a

minimizer-based Jaccard estimator (instead of the classical

MinHash form).

1) Using the ending segments of a long read: Instead of
extracting sketches from the entire length of a long read, our

approach uses only the ending regions (aka. “end segments”)

of a long read. Specifically, we define a fixed segment length
�. We then map only the first � characters (prefix segment) and
the last � characters (suffix segment) of a long read, and re-
porting their respective best hit contigs. This approach has two

advantages: a) It provides the subsequent hybrid scaffolding

step information about the farthest separated pair of contigs

that are linked by this long read (increasing the span of the

scaffold over the target genome); and b) The approach avoids

the problem of generating sketches from interior regions of the

long read, are not important in scaffolding applications. This

159

Authorized licensed use limited to: Washington State University. Downloaded on October 27,2023 at 17:58:45 UTC from IEEE Xplore. Restrictions apply.

not only improves quality, but also reduces work, making the

algorithm faster. (Note that for non-scaffolding applications,

this segment-based approach may not apply to cases where a

contig may be completely contained within an interior region

of a long read. In such cases, an extension of the approach

will be needed.) Henceforth, we revise the set of queries Q to
include the prefix and suffix segments of each long read—i.e.,

if there are m long reads, then Q consists of 2m sequences
of length � each. We used a value of � = 1000 in all our
experiments. Fig. 1 shows the end segments of long reads

mapped to contigs.

2) Sketching using minimizer Jaccard estimate: The end
segment idea constrains the regions where sketches are ex-

tracted from the long reads. However, the contigs (subjects)

can still be very long, and while an end segment of a long

read is expected to span only a short region (≈ � bp) along the
contig, the location of that mapped region is unknown a priori.
Therefore, we follow a two-pronged idea: a) reducing the base

set of k-mers for Jaccard similarity computation to a set of
minimizers [21] obtained from contigs, and b) then using a
sliding interval of length � bp over the list of those minimizers
to select one MinHash per interval. The list of minhashes so
extracted becomes our version of the minimizer-based Jaccard

estimator sketch (abbreviated as “JEM” henceforth) of the

subject for that trial t ∈ [1, T]. Fig. 3 illustrates this procedure
using a conceptual example. The detailed algorithm is as

follows.

The minimizer-based Jaccard estimate calculates the Jaccard

similarity between two sequences using the minimizer sketches

between them. Let us consider a uniformly random hash

function. Given a sequence s, an integer k and window size
w, the minimizer is the k-mer with smallest hash value of the
w consecutive k-mers. We use the lexicographically smallest
k-mer as this hash function, consistent with previous works
[23], [24]. The minimizer sketch of s (denoted by M(s, w))
is the set of all minimizers in s. Hence the minimizer Jaccard
estimate between sequences A and B is:

Jm(A,B;w) = J (M(A,w),M(B,w))

In other words, the minimizer Jaccard estimate allows us to

collect and compare sketches from the list of minimizers of a

sequence (rather than all the k-mers). This reduces work and
also provides a certain degree of qualitative robustness against

noisy k-mers.

Minimizer Jaccard estimate has been used prior in the

widely used mapping tool Mashmap [16], [25]. Our algorithm

is different in the way these sketches are computed. More

specifically, in Mashmap, for each minimizer, a list of all

positions it is present in the subject is maintained. Later, during

mapping time, if a query shares a minimizer with multiple

positions, then the region where the query has maximal local

intersection on the subject is detected and reported at query

time. This approach entails one of short listing positional can-

didates and then eliminating those that do not have sufficient

concentration of query minimizers in their vicinity.

By contrast, our approach directly applies the end segment

length � of the long read query as the interval length over
the subject, and tracks the MinHash for each such interval
of the subject—as shown in Fig. 3. This guarantees that the

sketches are generated at the resolution of the end segment

length, both for the subjects and queries, thereby obviating

the need to check for any distance constraints later.

Algorithm 1: Sketch_byJEM

Input: s: input sequence
�: segment length
H: set of T hash functions {h1, h2, ..., hT }

Output: sketches generated by for s
1: Sketch← []
2: Let sk ← the set of all k-mers in s
3: Mo(s, w)← Generate_Minimizers(sk, w)

/* returns a list of minimizer tuples

〈ki, pi〉, sorted by position index pi */

4: for each tuple 〈ki, pi〉 ∈Mo(s, w) do
5: Mi ← Generate_Interval(mk, i, �) /* returns

the set of minimizers {〈kj , pj〉 : pi ≤ pj ≤ pi+�}
*/

6: for each trial t ∈ [1, T] do
7: sketch← argminx∈Mi

ht(x)
8: Sketch[t].insert(key: sketch, value: s)
9: end for
10: end for
11: return Sketch

More specifically, let Mo(s, w) represent the set of all
minimizer tuples 〈ki, pi〉 from subject s, where ki denotes the
minimizer at position pi on s. The set Mo(s, w) is kept sorted
based on the minimizer positions. For a given interval length

�, let us define Mi to be the set of consecutive minimizers in

Mo(s, w) such that Mi = {〈kj , pj〉 : pi ≤ pj ≤ pi + �}. We
slide intervals of length � over the set of minimizers and within
each interval, T minhashes are generated. Algorithm 1 shows
how sketches are extracted using our approach. Algorithm 2

shows the overall JEM-mapper algorithm.
Implementation notes: In our implementation, we have

used lexicographic ordering of k-mers to extract minimizers
from window w. For a substring s

′
of length greater than k, a

canocical minimizer is the smallest k-mer of s
′
and its reverse

complement s
′
based on lexicographic ordering. To generate

the T minhashes for each interval, we assign each minimizer
of that interval its k-mer rank x (i.e., as per its canonical
ordering in K), and then use T random hash functions of the
linear congruential form: ht(x) = (At · x + Bt) mod Pt.

Subsequently, the k-mer corresponding to the smallest hashed
value becomes the sketch for that string for trial t. Here At,

Bt, and Pt are randomly generated constants (and generated

a priori).

C. Parallelization
We present a distributed memory parallel algorithm

for Algorithm 2, with code written in C/C++ and

160

Authorized licensed use limited to: Washington State University. Downloaded on October 27,2023 at 17:58:45 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: An example to illustrate the way minimizer-based Jaccard estimate sketch (or the JEM sketch) is generated by our

approach, JEM-mapper. At the subject processing time, the list of minimizer tuples Mo(s, w) is generated for each contig
(shown as red circles). We then slide an interval of length � over the set of minimizers based on their positions. On c1, this
is shown as the list [m4 . . .m8]. For each such interval, we generate T minhashes for T trials. The black concentric circle
shows the minhash that was randomly selected for trial t in that interval (i.e., the sketch). At query processing time, for each
end of the long read, we generate a similar set of minimizers (denoted by the red circles). We then pick T JEM sketches in a
similar fashion and look for hits in the sketch table before detecting the top hit.

Algorithm 2: L2C mapping by JEM-mapper (Q,S)
Input: Q: long read segments, S: contigs, T : no. trials
Output: Φ : Q → S
1: Initialize sketch table: S[t]← φ, where t ∈ [1, T]
2: S.insert(Sketch_byJEM(c)), ∀c ∈ S
3: for each r ∈ Q do
4: S.lookup(Sketch_byJEM(r))
5: for t ∈ [1, T] do
6: Let Hitsr[t]← {c|r and c collide in S[t]}
7: end for
8: Φ(r) = c∗, where c∗ is the most frequent contig in

Hitsr
9: end for
10: return Φ

MPI for communication. The beta version of this soft-

ware is available on https://github.com/TazinRahman1105050/

JEM-Mapper/tree/beta-2.1. We use the following notation:

m = |Q|; M = Σr∈Q|r|; n = |S|; N = Σc∈S |c|; and p
to denote the number of processes. The major parallel steps

are as follows.

S1) (load input) The processes load the input Q and S in a
distributed manner, such that each process gets approxi-

mately O(Mp) query bases and O(Np) subject bases. LetQlocal and Slocal denote the sets of local queries and
subjects respectively, held by any given process.

S2) (sketch subjects) Each process generates the sketches from
Slocal, and inserts them into Slocal, which holds all the

sketches generated from that process.

S3) (gather sketch) In a global communication step that uses
the MPI_Allgatherv primitive, we perform a union
of all the Slocal into a single Sglobal that is stored at each

process. Note that each Sglobal consists of T lists, one for
each trial, as shown in Fig. 2.

S4) (map queries) Each process then processes its local query
set Qlocal. The mapping step for each long read r ∈Qlocal

comprises of three steps: a) sliding window and generate

its JEM sketches, b) lookup the contig hits in Sglobal,

and c) report mapping for the (or a) best hit. As shown in

Fig. 2, hits are located within Sglobal by the corresponding

trial numbers (step b). Subsequently, a reporting step

scans the bins (or the list of trials) to generate the mapping

output pairing queries to subjects (step c).

Implementation notes: For step (c) above, we imple-
mented a lazy update strategy to support a fast tracking of

subjects and their hit rates, across queries. More specifically,
we initialize an array A[1, n] of tuples of the form 〈u, v〉,
where u is an integer counter initialized to 0, and v is the
query id (initialized to -1). Whenever a query j generates a
hit with a subject i, we check if A[i].v is equal to j. If it
is, then we simply increment counter A[i].u. But if it is not,
then we first set A[i].v to j, reset counter A[i].u to 0, and
then increment that counter (to 1). This lazy strategy avoids

the cost of resetting the counters for all subjects whenever a

new query is processed. Note that at each process, queries in

Qlocal are processed one by one.

1) Complexity analysis: The input loading step (S1) costs
O(N+M

p) time. Sketching the subjects (S2) can be achieved

in O(n�sTp) time, where �s is the average length of a subject.
Similarly, sketching the queries (S4) can be achieved in

O(
m�qT

p) time, where �q is the average length of a query.

The gather step (S3) involves communicating each Slocal to

all processes, and can be achieved in O(τ log p+ μnT) time,
where τ is the cost of network latency and μ is the reciprocal
of network bandwidth (i.e., sec per byte transferred). While the

worst-case size of Sglobal is O(n�sT), in practice we expect
significantly fewer minhashes because we are selecting from

the list of minimizers Mo(s, w) (and not all k-mers). Finally,
the query mapping step (S4) is a local step processing each

query r ∈Qlocal. The initialization of counters for the subjects

161

Authorized licensed use limited to: Washington State University. Downloaded on October 27,2023 at 17:58:45 UTC from IEEE Xplore. Restrictions apply.

takes O(n) time and after that each query is mapped through
a linear scan of its sequence (with T minhash computations at
all its minimizers). Consequently, step S4 takes O(n+

m�qT
p)

time. Since the number of long reads (m) can be expected to
be significantly more than the number of contigs (n) due to
sequencing coverage, we expect

m�qT
p to dominate over n in

practice.

The space complexity of our approach is dominated by

the size of Sglobal. Let ms denote the average number of

minimizers generated per subject. Since we enumerate fixed-

size intervals and store one minhash per interval, a subject

s can be expected to contribute up to O(msT) minhashes
into the sketch. Therefore, the space complexity per process

is O(nmsT).

IV. EXPERIMENTAL RESULTS

In this section, we present a thorough experimental evalu-

ation of our sketch-based mapping algorithm, JEM-mapper
(§ III-B)). We study both quality and performance, using both

simulated and real-world data sets.

A. Experimental setup

a) Test inputs: We used two sets of long read inputs (Q)
in our experiments (see Table I):

• PacBio HiFi sim. long reads: generated using the Sim-it
PacBio HiFi read simulator [26], run with a low coverage

of 10× and a long read median length 10Kbp; and
• PacBio HiFi real long reads: real-world PacBio HiFi
reads for Oryza sativa (chr 8) downloaded from the
PacBio repository [27].

The first simulated read data set allows us to evaluate using a

ground-truth (using the coordinate information acquired using

any existing mapping tool), while the real-world data set

is aimed at a real-world application. Simulated read inputs

were generated from real-world genomes, downloaded from

NCBI GenBank [28], for six different organisms ranging from

bacterial to eukaryotic (listed in Table I). The organisms

are E. coli, P. aeruginosa, C. elegans, D. busckii, Human-7
and 8 chromosome, and B. splendens. Once the long reads
are generated, we pulled out the two end segments (prefix

and suffix) of length � = 1, 000 bp and added them to the
respective query set Q.
We used the following two steps to construct the contigs

(S) for all the inputs: use the ART sequencing simulator [29]
to generate 100bp Illumina short reads; and assemble the short

reads using the Minia assembler [15] into contigs (S).
b) Test platform: All experiments were conducted on a

distributed memory cluster with 9 compute nodes, each with

64 AMD Opteron™ (2.3GHz) cores and 128 GB DRAM. The

nodes are interconnected using 10Gbps Ethernet and share

190TB of ZFS storage. The cluster supports OpenMPI and

OpenMP.

c) Software configuration: All runs of our software
JEM-mapper was performed using the following set of
parameters as its default: k-mer size k = 16; no. trials
T = 30 (choice explained in Fig. 6); and window size to

generate minimizer sketches w = 100. In other words, we
select a k-mer (of size 16 bp) from a consecutive stretch of
w (100) k-mers to be the minimizer. Minimizers are added
to the corresponding set Mo(s, w) only if they change or if
the current minimizer goes out of bounds. Subsequently, to

generate the JEM sketches (Algorithm 1), we set the interval

length same as the end segment � bp (or 1,000 bp) for long
reads.

For comparative evaluation, we compared against two state-

of-the-art reference genome mappers, namely Mashmap [16]
and Minimap2 [13]. Of these two, Mashmap tool [16] is a
fast reference genome mapper that also uses sketching, and

from its implementation we can easily extract the top hit for

a query, making it possible to do a head to head comparison

with JEM-mapper. As for Minimap2 [13], it follows a more
classical seed and extend, alignment-based approach, but it

also benefits from the use of minimizers internally for the

seeding step. However, it was not possible to make a direct

comparison with its output because it reports multiple hits for

each query. Therefore, we focus our comparative evaluation on

Mashmap. In all cases, the same inputs (Q,S) were provided
to both programs—i.e., mapping the end segments of long

reads to contigs.

B. Evaluation Methodology

For quality evaluation, we constructed a benchmark for all
simulated data sets using the coordinate information of the

contigs (S) and long reads (Q) mapped back to the full-
length reference genome (G). This is illustrated in Fig. 4. More
specifically, to determine the 〈start,end〉 coordinates of each
contig, we mapped the set of contigs to the reference G using
Minimap2 [13]. In the same way, we extracted the coordinates

of the long reads. A given end segment of a long read e ∈ Q
is said to map to a contig c ∈ S if and only if its respective
〈start,end〉 coordinates intersect in at least k positions of the
reference genome, where k is the k-mer size—as shown in
Fig. 4.

Fig. 4: Benchmark cases for when an ending segment of a

long read successfully maps (Cases A and B) or does not map

(Case C) to a contig. In the figure, two long reads are shown,

one with ends (e1, e2) and another with ends (e3, e4).

Let Bench denote the set of all true 〈read end,contig〉
mappings. Let Test denote the set of output 〈read end,contig〉
mappings produced by one of our implementations. Then, we

classify each 〈read end e,contig c〉 pair as:
• True Positive (TP): if 〈e, c〉 ∈ Test and 〈e, c〉 ∈ Bench
• False Positive (FP): if 〈e, c〉 ∈ Test and 〈e, c〉 /∈ Bench
• False Negative (FN): if 〈e, c〉 /∈ Test and 〈e, c〉 ∈ Bench
• True Negative (TN): if 〈e, c〉 /∈ Test and 〈e, c〉 /∈ Bench

162

Authorized licensed use limited to: Washington State University. Downloaded on October 27,2023 at 17:58:45 UTC from IEEE Xplore. Restrictions apply.

Input genome S: Subject statistics (Minia contigs) Q: Query statistics (HiFi sim. long reads)

Input
Genome

length (in bp)
No. contigs
(≥ 500bp)

Total subject
size in bp (M)

Contig length
(avg.±std.dev)

No. long
reads (n)

Total query
size in bp (N)

Read length
(avg.±std.dev)

E. coli 4,641,652 365 4,521,741 12,388 ± 13,997 4,541 46,305,093 10,205 ± 3,418
P. aeruginosa 6,264,404 460 6,155,889 13,382 ± 18,218 6,122 62,504,041 10,221 ± 3,363

C. elegans 100,286,401 30,883 85,664,920 2,819 ± 4,663 98,103 1,001,061,602 10,205 ± 3,400
D. busckii 118,492,362 43,006 109,278,105 2,541 ± 3,151 123,781 1,258,889,285 10,168 ± 3,412

Human chr 7 159,345,973 55,331 111,086,154 2,007 ± 1,934 156,357 1,593,462,533 9,612 ± 2,988
Human chr 8 145,138,636 53,821 110,539,506 2,053 ± 1,876 142,102 1,449,205,836 10,200 ± 3,402
B. splendens 339,050,970 98,160 339,804,114 3,462 ± 4,181 429,520 4,371,221,619 10,177 ± 3,403

O. sativa chr 8 (real) 28,443,022 9,945 18,416,389 1,851 ± 2,067 532,667 10,458,872,536 19,642 ± 4,246
TABLE I: Input data sets used in our experiments.

Fig. 5: Quality results (precision and recall) using PacBio HiFi sim. long reads for the different sketch-based schemes.

Based on the above four measures, we calculate precision as
TP

TP+FP and recall as
TP

TP+FN . Note that if an output mapping

is a false positive, then by implication it is also a false negative

(since there is room for only one best hit). But there can be

additional false negatives. Therefore the recall values are upper

bounded by the precision values in this evaluation scheme.

C. Qualitative Evaluation

Fig. 5 shows the precision (left) and recall (right) values

for JEM-mapper and Mashmap (for state-of-the-art compar-
ison). These results are for the PacBio HiFi sim. long reads.

The results show that by and large, our sketch-based imple-

mentation is competitive and show comparable quality com-

pared to Mashmap in all cases, with both tools producing well
over 95% precision for all inputs tested. For the smaller/less

complex genomes (E. coli, P. aeruginosa) JEM-mapper
produces similar precision values as Mashmap. Our scheme
produces better precision for all the larger (more complex)

inputs. Eukaryotic inputs have more repetitive content that may

lead to reduced precision and the results show that the strategy

to select the best candidate from multiple random trials makes

our sketch-based scheme more precise for these more complex

inputs.

For all the input datasets, Mashmap produces better re-
call as compared to JEM-mapper. However, the difference
between the two tools is marginal in all cases. Again, both

tools produce recall values that are 95% or more for most

inputs. We also note that the recall values are very close to

the precision values, implying that most of the loss in recall

can be attributed to false positive mapping in the top hit. Note

that if we are to extend our method to report a fixed number,

say top x hits per read, then several of the missing contig hits
could possibly be recovered.

The number of trials T could have an impact on the
overall quality. Fig. 6 shows the effect of varying T on the
JEM-mapper and classical MinHash implementation, using
the B. splendens input. Increasing T improves both precision
and recall. This behavior is consistent with the fact that with

more trials, the sketch-based schemes get more chances to find

a hit between a long read and a contig, thus making the recall

better. Since these are 99.9% correct long reads, precision also

improves. We can observe that JEM-mapper can achieve
above 95% precision and recall only using 20 trials. After 30
trials it reaches to saturation for precision and recall values

and adding more trials only improves precision and recall

marginally. However, for classical MinHash, even after using
100 iterations, the precision and recall values are quite low

compared to JEM-mapper. This behavior is expected as
JEM-mapper is better equipped to identify the region within
�-long segment stretches of the subject. In contrast, classical
MinHash does not constrain identification of sketches from
within such distance bounds, and therefore, may need more

random trials to recover the hits. The property of supporting

fewer number of trials also provides a significant advantage

to JEM-mapper toward faster performance. For example,
to achieve roughly the same quality in mapping on the B.
splendens input, JEM-mapper took 30 trials, whereas the
classical MinHash implementation took 150 trials.

163

Authorized licensed use limited to: Washington State University. Downloaded on October 27,2023 at 17:58:45 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Effect of varying the number of trials on quality results (precision and recall), using input B. splendens. We can observe
that JEM-mapper can achieve above 95% precision and recall only using 20 trials whereas classical MinHash needed to
use more than 150 trials to reach a similar quality output.

D. Performance Evaluation

We studied the strong scaling behavior of our parallel im-

plementation for JEM-mapper, by varying p from 4 through
64. Table II shows the parallel runtimes for the larger inputs

tested. Overall, the parallel runtime reduces with increase in

p, demonstrating improving speedups. For instance, on B.
splendens, the relative speedup (relative to p = 4) increases
from 1.81× on p = 8, to 2.89× on p = 16, 3.52× on
p = 32, and 4.11× on p = 64. As the number of processes
increase, the work per process also reduces leading to parallel

overheads slowly starting to dominate. We have compared

our distributed memory implementation results with Mashmap
runtimes. Mashmap supports a multithreaded shared memory
implementation. Table II shows the Mashmap runtimes for
where the number of threads is set to 64. The results show

that JEM-mapper is significantly faster than the Mashmap
implementations. In all the input cases, JEM-mapper running
in distributed memory mode with p = 64 yields higher
speedup (ranging from 5.6× to 13×) over MashMap running
on the same number of processors (no. threads = 64).
Fig. 7a (left) shows the parallel runtime broken down by the

individual steps of the JEM-mapper implementation for p =
16. It is evident that the dominant step is the query processing
time, which includes the time to sketch the queries and search

in the hash table and report the hits.

We also closely analyzed the query processing time from

the perspective of querying throughput, defined as the number

of queries processed per unit time (sec). To calculate this, we

included the times for sliding windows on the queries, sketch-

ing the queries, and search in Sglobal and report step. Fig. 7b

(right) shows the querying throughput for our JEM-mapper
implementation, for the larger inputs tested. We observe that

this querying throughput scales almost linearly. Notably, these

throughputs do not vary with the inputs or their sizes (except

for O. sativa chr 8 (real)), suggesting high parallel efficiency
for this dominant step of the algorithm.

Fig. 8 shows the total computation versus communication

time for Human chr 7 and B. splendens varying the number of
processors from p = 4 to p = 64. The total computation time

includes the I/O time, subject processing time, generating the

Sglobal time, and the query processing and search time. As

expected, increasing the number of processors increases the

total communication overhead, but the overhead stays well

under 25% for up to p = 64.

E. Evaluation on real world data set

As a real-world application, we used a real-world PacBio

HiFi long read data set for Oryza sativa (rice MH63), down-
loaded from the PacBio repository [27] (see Table I for input

statistics). We used only the long reads from chromosome

8 for our experimental analysis (n = 532K). We then
used JEM-mapper to map these long reads to the contigs
generated using a Minia assembly of O. sativa chr. 8 short
reads (m = 9.9K). Finally, we used BLAST [30] to compute
the percent identity between each long read (segment) and the

corresponding mapped contig as reported by JEM-mapper.
Fig. 9 shows that the percent identity between most of the

long read ends and the corresponding contig falls between

95%-100%—showing the high quality of mapping generated

by JEM-mapper.

V. CONCLUSIONS

Hybrid workflows that combine long reads with short-read

assemblies have a key role to play as sequencing technologies

continue to evolve in accuracy and read length. In this paper,

we presented a minimizer-based Jaccard estimator sketch-

based algorithm for mapping long reads to contigs. When

applied and tested for mapping long reads to short read

assembled contigs, our approach produces mapping of high

quality while delivering significant speedups over state-of-the-

art mapping solutions. Our study also shows the clear benefits

of using a minimizer-based Jaccard estimator sketch over the

classical MinHash for this application.

This work has opened up multiple avenues for future re-

search, including (but not limited to): i) algorithmic optimiza-

tions to further improve quality of mapping while enhancing

scaling; ii) several extensions including end-to-end hybrid

164

Authorized licensed use limited to: Washington State University. Downloaded on October 27,2023 at 17:58:45 UTC from IEEE Xplore. Restrictions apply.

Input JEM-mapper Mashmap
p = 4 p = 8 p = 16 p = 32 p = 64 t = 64

C. elegans 121 66 41 35 32 201
D. busckii 150 83 51 42 39 219

Human chr 7 187 103 63 48 48 624
Human chr 8 173 96 59 45 44 467
B. splendens 518 285 179 147 126 899

O. sativa chr 8 (real) 420 218 122 91 69 605

TABLE II: Strong scaling results for JEM-mapper: Shown are the parallel runtimes (in sec) for JEM-mapper as function
of the number of processes (p) on various inputs. Also shown is Mashmap runtimes. This tool supports only multithreaded
shared memory parallelism. We ran it with the number of threads set to 64.

Fig. 7: (a) Runtime breakdown by steps for JEM-mapper; (b) Querying throughput for JEM-mapper.

Fig. 8: Fraction of computation time and communication time (in percentages) for (a) Human chr 7; and (b) B. splendens;

Fig. 9: Percent identity distribution for long read mappings

generated by JEM-mapper on the O. sativa data set.

assembly and scaffolding, and extension to other types of

hybrid settings; and iii) large-scale studies targeting more

complex eurakyotic genomes. iv) in reference-guided assembly

pipelines [11] either reads are mapped against the reference

genome or alternatively contigs or scaffolds are aligned against

the reference genome. These use-cases can easily benefit from

the efficient sketch-based algorithmic template for mapping

sequences of varied lengths.

ACKNOWLEDGMENTS

This research was supported in parts by NSF grants OAC

1910213 and CCF 1919122. We thank Dr. Priyanka Ghosh for

several discussions during the early stages of the project.

165

Authorized licensed use limited to: Washington State University. Downloaded on October 27,2023 at 17:58:45 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] C. E. Mason and O. Elemento, “Faster sequencers, larger datasets, new
challenges,” 2012.

[2] D. Deamer, M. Akeson, and D. Branton, “Three decades of nanopore
sequencing,” Nature biotechnology, vol. 34, no. 5, pp. 518–524, 2016.

[3] M. O. Pollard, D. Gurdasani, A. J. Mentzer, T. Porter, and M. S. Sandhu,
“Long reads: their purpose and place,” Human molecular genetics,
vol. 27, no. R2, pp. R234–R241, 2018.

[4] T. Hon, K. Mars, G. Young, Y.-C. Tsai, J. W. Karalius, J. M. Landolin,
N. Maurer, D. Kudrna, M. A. Hardigan, C. C. Steiner, et al., “Highly
accurate long-read hifi sequencing data for five complex genomes,”
Scientific data, vol. 7, no. 1, pp. 1–11, 2020.

[5] P. Morisse, T. LeCroq, and A. LeFeBVre, “Long-read error correction:
a survey and qualitative comparison,” BioRxiv, pp. 2020–03, 2021.

[6] S. Koren, B. P. Walenz, K. Berlin, J. R. Miller, N. H. Bergman, and A. M.
Phillippy, “Canu: scalable and accurate long-read assembly via adaptive
k-mer weighting and repeat separation,” Genome research, vol. 27, no. 5,
pp. 722–736, 2017.

[7] G. M. Kamath, I. Shomorony, F. Xia, T. A. Courtade, and N. T.
David, “HINGE: long-read assembly achieves optimal repeat resolution,”
Genome research, vol. 27, no. 5, pp. 747–756, 2017.

[8] M. Kolmogorov, J. Yuan, Y. Lin, and P. A. Pevzner, “Assembly of long,
error-prone reads using repeat graphs,” Nature biotechnology, vol. 37,
no. 5, pp. 540–546, 2019.

[9] D. Antipov, A. Korobeynikov, J. S. McLean, and P. A. Pevzner,
“hybridSPAdes: an algorithm for hybrid assembly of short and long
reads,” Bioinformatics, vol. 32, no. 7, pp. 1009–1015, 2016.

[10] E. Haghshenas, H. Asghari, J. Stoye, C. Chauve, and F. Hach, “Haslr:
Fast hybrid assembly of long reads,” Iscience, vol. 23, no. 8, p. 101389,
2020.

[11] H. E. Lischer and K. K. Shimizu, “Reference-guided de novo assembly
approach improves genome reconstruction for related species,” BMC
bioinformatics, vol. 18, no. 1, pp. 1–12, 2017.

[12] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast
and memory-efficient alignment of short dna sequences to the human
genome,” Genome biology, vol. 10, no. 3, pp. 1–10, 2009.

[13] H. Li, “Minimap2: pairwise alignment for nucleotide sequences,” Bioin-
formatics, vol. 34, no. 18, pp. 3094–3100, 2018.

[14] A. V. Zimin and S. L. Salzberg, “The SAMBA tool uses long reads
to improve the contiguity of genome assemblies,” PLoS computational
biology, vol. 18, no. 2, p. e1009860, 2022.

[15] R. Chikhi and G. Rizk, “Space-efficient and exact de bruijn graph
representation based on a bloom filter,” Algorithms for Molecular
Biology, vol. 8, no. 1, pp. 1–9, 2013.

[16] C. Jain, A. Dilthey, S. Koren, S. Aluru, and A. M. Phillippy, “A
fast approximate algorithm for mapping long reads to large reference
databases,” in International Conference on Research in Computational
Molecular Biology, pp. 66–81, Springer, 2017.

[17] B. D. Ondov, T. J. Treangen, P. Melsted, A. B. Mallonee, N. H. Bergman,
S. Koren, and A. M. Phillippy, “Mash: fast genome and metagenome
distance estimation using minhash,” Genome biology, vol. 17, no. 1,
pp. 1–14, 2016.

[18] B. D. Ondov, G. J. Starrett, A. Sappington, A. Kostic, S. Koren, C. B.
Buck, and A. M. Phillippy, “Mash screen: high-throughput sequence
containment estimation for genome discovery,” Genome biology, vol. 20,
no. 1, pp. 1–13, 2019.

[19] G. Marçais, D. DeBlasio, P. Pandey, and C. Kingsford, “Locality-
sensitive hashing for the edit distance,” Bioinformatics, vol. 35, no. 14,
pp. i127–i135, 2019.

[20] L. Coombe, J. X. Li, T. Lo, J. Wong, V. Nikolic, R. L. Warren, and
I. Birol, “LongStitch: High-quality genome assembly correction and
scaffolding using long reads,” BMC bioinformatics, vol. 22, pp. 1–13,
2021.

[21] M. Roberts, W. Hayes, B. R. Hunt, S. M. Mount, and J. A. Yorke,
“Reducing storage requirements for biological sequence comparison,”
Bioinformatics, vol. 20, no. 18, pp. 3363–3369, 2004.

[22] A. Z. Broder, “On the resemblance and containment of documents,” in
Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat.
No. 97TB100171), pp. 21–29, IEEE, 1997.

[23] G. Holley, R. Wittler, J. Stoye, and F. Hach, “Dynamic alignment-
free and reference-free read compression,” Journal of Computational
Biology, vol. 25, no. 7, pp. 825–836, 2018.

[24] G. Marçais, D. Pellow, D. Bork, Y. Orenstein, R. Shamir, and
C. Kingsford, “Improving the performance of minimizers and winnow-
ing schemes,” Bioinformatics, vol. 33, no. 14, pp. i110–i117, 2017.

[25] M. Belbasi, A. Blanca, R. S. Harris, D. Koslicki, and P. Medvedev, “The
minimizer jaccard estimator is biased and inconsistent,” bioRxiv, 2022.

[26] N. Dierckxsens, T. Li, J. R. Vermeesch, and Z. Xie, “A benchmark of
structural variation detection by long reads through a realistic simulated
model,” Genome biology, vol. 22, no. 1, pp. 1–16, 2021.

[27] P. Biosciences, “PacBio Real-world HiFi long reads for O. sativa.” https:
//downloads.pacbcloud.com/public/dataset/Sequel-IIe-202104/rice/,
2021 (last date accessed: Aug 2022).

[28] D. A. Benson, M. Cavanaugh, K. Clark, I. Karsch-Mizrachi, D. J.
Lipman, J. Ostell, and E. W. Sayers, “Genbank,” Nucleic acids research,
vol. 41, no. D1, pp. D36–D42, 2012.

[29] W. Huang, L. Li, J. R. Myers, and G. T. Marth, “Art: a next-generation
sequencing read simulator,” Bioinformatics, vol. 28, no. 4, pp. 593–594,
2012.

[30] I. Korf, M. Yandell, and J. Bedell, Blast. " O’Reilly Media, Inc.", 2003.

166

Authorized licensed use limited to: Washington State University. Downloaded on October 27,2023 at 17:58:45 UTC from IEEE Xplore. Restrictions apply.

