
Scalable Heuristics for Clustering Biological Graphs

Inna Rytsareva∗, Ananth Kalyanaraman∗, Kishori Konwar†, and Steven J. Hallam†
∗School of Electrical Engineering and Computer Science

Washington State University, Pullman, WA
Email: inna.rytsareva@wsu.edu, ananth@eecs.wsu.edu
†Department of Microbiology and Immunology

University of British Columbia, Life Sciences Institute, Vancouver, BC, Canada
Email: kishori@mail.ubc.ca, shallam@interchange.ubc.ca

Abstract—Clustering is one of the advanced analytical func-
tions that has an immense potential to transform the knowl-
edgespace when applied particularly to a data-rich domain such
as computational biology. The nature of clustering that is of
concern in this paper is graph-theoretic — more specifically,
given an input graph G(V,E) where vertices represent elements
and edges connect elements that are “related” by a certain
biological property, the problem is one of identifying tightly-
knit (potentially variable-sized) groups where each member of
a group is highly related to most, if not all, of the other
members of the same group. The computational hardness of the
underlying theoretical problem necessitate use of heuristics in
practice. In our previous work, we had evaluated the application
of a randomized sampling-based heuristic called shingling on
unweighted biological graphs. In this paper, we present a new
variant of this heuristic that not only extends its application
to weighted graph inputs but is better positioned to achieve
qualitative gains on unweighted inputs as well. We also present
parallel algorithms for this heuristic using the MapReduce
paradigm. Experimental results on subsets of a medium-scale real
world biological input (containing up to 10.3M vertices and 640M
edges), constructed out of protein sequence data collected from
metagenomic communities, demonstrate significant qualitative
improvements in the reported clustering, both with and without
using edge weights. Furthermore, performance studies indicate
near-linear scaling on up to 4K cores of a distributed memory
supercomputer.

Keywords—Graph clustering; MapReduce algorithm; Shingling
heuristic; metagenomics; protein family identification.

I. INTRODUCTION

Graph representations are a popular way to model several
problems in computational biology. Vertices can be used to
represent experimentally acquired data and edges (weighted
or unweighted) can be used to represent pairwise relationships
between the data. Once modeled as a graph, several scientifi-
cally interesting questions can be posed — e.g., performing
an Euler tour or Hamiltonian path for genome assembly,
finding connected components to group expressed sequences
(transcriptomics), and clustering, which forms the focal point
for this study. Loosely defined, the clustering formulation
targeted in this study is as follows: Given an input graph
G(V,E) with n vertices and m edges, “clustering” is the act of
grouping vertices into tight-knit clusters, where the members
of each cluster are closely related to most (if not all) other
members of the same cluster, and sparsely related (if at all) to
the members of other clusters.

Related work and motivation: There is a rich body
of clustering related literature in the context of biological

applications, of which a substantial segment is devoted to
applications such as gene expression analysis and genome
sequencing, where typically single-linkage clustering formula-
tions are used. A different class of applications benefit from a
clustering formulation based on detecting denser communities
within biological data (which is the focus of this paper) [3], [7],
[11], [15], [17], [22], [24]. Brohee et al. [6] evaluate clustering
techniques for analyzing protein-protein interaction networks.
Andreopoulos et al. [2] present a broader, and more conceptual
survey of different clustering applications that benefit from
tighter cluster techniques.

Despite its potential for discovery, clustering at large-scale
remains a daunting computational task not only due to the
sheer volumes of data available but also due to the inherent
complexity of the analytics involved. The computational hard-
ness of the underlying theoretical formulations [1], [8], [12],
[14] implies that heuristics need to be deployed in practice
(e.g., [4], [7], [9], [13], [14], [17]). Even with such heuristics,
however, parallelism has become necessary in order to tackle
modern day inputs which could contain tens of millions to
even billions of vertices with even more edges. However, the
built-in irregularity in graph structures along with the inherent
sequentiality of certain heuristics often makes it a challenging
task to design efficient parallel methods.

Recently [20], we presented the design and evaluation of
a MapReduce-based parallel implementation of a well known
serial graph clustering heuristic called the Shingling heuristic,
which was originally developed by Gibson et al [9] to analyze
unweighted internet graphs. The algorithm when implemented
and tested on a Hadoop platform demonstrated linear scaling
on up to 64 cores on an input size containing about 11M
edges of a protein family graph. Despite the linear scaling
behavior, the time to solution was rather slow — for example,
even on the 11M edges input graph, which is still an order or
two magnitudes smaller when compared to other real world
graphs available from the same domain, the analysis took
∼40 minutes on 128 cores. An investigation revealed that
a dominant fraction of the time was expectedly spent on
the intermediate shuffle/sort stage of the Hadoop MapReduce
library.

In a subsequent study [21], we also conducted a qualitative
assessment of the heuristic when applied to biological graphs.
While this study showed the effectiveness of the heuristic to
detect dense clusters, the analysis also revealed a tendency of
the heuristic to leave out a significant fraction of vertices as
singletons (i.e., vertices not recruited as part of any cluster). In

978-1-4673-1321-6/12/$31.00 c©2013 IEEE 1

other words, the heuristic was more effective in capturing core
elements of a cluster in an attempt to improve intra-cluster
edge density albeit at the expense of peripheral elements.
This is expected as the original heuristic was designed for
the problem of link spam detection in internet graphs, which
tend to be represented in the densest parts of the networks.
However, for most biological graph inputs, it is desirable to
allow some fringe elements to become part of larger, dense
clusters. This is because clustering is often used as a way to
functionally annotate new members of a family (e.g., proteins),
or to consolidate large volumes of sequence data into fewer,
non-redundant subgroups for facilitating further downstream
processing and discovery. The importance of recruiting mem-
bers into clusters (without significantly diluting the density
of clusters) becomes even more pronounced while analyzing
data from environmental microbial communities (i.e., metage-
nomics data), where it is typically challenging to annotate a
significant fraction of the input data owing to the scattered
nature in the sequencing (sampling) procedures [10].

Furthermore, for many biological graphs, there is informa-
tion available on edge weights that need to be incorporated dur-
ing clustering. For instance, in protein family identification, the
degree of sequence similarity between two protein sequences
could be used as edge weights (between the corresponding two
vertices) in determining the composition of a family.

A. Contributions

In this paper, we make the following contributions:

1) We propose a new variant of the standard Shingling
heuristic for clustering unweighted real world biologi-
cal graphs. This modified heuristic uses a normalization
technique during its randomized sampling process, which
positions it better to overcome the qualitative challenges
encountered with the standard version of the heuristic as
outlined above.

2) We also show how this new variant of the heuristic
extends to handling biological graphs with edge weights
— something that the original heuristic was not capable
of.

3) We present a MapReduce algorithm for parallelizing
the new variant of the heuristic on distributed mem-
ory clusters. We implemented this algorithm using the
MapReduce-MPI library [18] so that we could use any
cluster with MPI installed on it.

4) We present extensive experimental results on a real
world metagenomics graph containing 10.3M vertices and
640M edges and its subsets. These results demonstrate
a) significant qualitative improvements over the standard
heuristic, both with and without using edge weights;
and b) significant performance improvements over the
previous Hadoop MapReduce implementation, resulting
in the analysis of the entire test graph (640M edges) in
less than a minute on 4,096 core of a distributed memory
cluster.

Organization: The rest of the paper is organized as
follows. In Section II, we describe the new variant of the
Shingling heuristic and its parallel MapReduce algorithm.
In Section III, we present both qualitative and performance
results of our experimental evaluation of the proposed method.

Section IV concludes the paper with an identification of future
work components.

II. METHODS

A. Overview of the standard Shingling heuristic

In this section, we provide an algorithmic overview of the
standard Shingling heuristic [9]. For complete details we refer
the readers to the original paper.

The Shingling heuristic is a randomized approach to iden-
tify dense subgraphs in unweighted input graph G(V,E). The
main idea of the heuristic is as follows. For any vertex u let
Γ(u) denote the set of its neighboring vertices. A brute-force
approach to detect vertices that are likely to be part of the
same dense subgraph would be to compute |Γ(ui)∩Γ(uj)|

|Γ(ui)∪Γ(uj)| for
every pair of vertices ui, uj ∈ V . The Shingling heuristic takes
a randomized sampling approach to reduce this search space.
More specifically, it obtains random samples of size s (called
“shingles”) from Γ(u) for every “source vertex” u ∈ V , and
compares them against one another. If two vertices are part of
the same dense subgraph, they are likely to share most of their
links in common and hence with a high probability are also
expected to share a shingle [5]. As this cannot be guaranteed,
the algorithm performs c random trials to improve probability
of detecting common shingles.

The overall clustering algorithm proposed by Gibson et al.
iteratively computes shingles, and in the process transforms
the input graph into newer graphs with shingles replacing
the original vertex set. The output clusters are computed by
detecting connected components from the transformed graph
in the final iteration. Algorithm 1 details the steps that occur
within one iteration of the algorithm. It has been shown that
two iterations are typically sufficient in practice to capture
dense subgraphs within real world graphs.

Algorithm 1 Shingling (Input: G(V,E), s, c)
Generate c random number pairs { < Aj , Bj > }
P ← a big prime number
for u ∈ V do

Let Γ(u)← {v|v is a neighbor of u}
for j = 1→ c do

Generate Γj(u)←{vj |vj=(Aj×v+Bj)%P, v ∈ Γ(u)}
Let shingle sj(u)←Minimum s elements of Γj(u)
Store tuple of the form < sj(u), u >

end for
end for
for j = 1→ c do

Sort all tuples < sj(u), u > by their shingle ids
Output transformed graph GI(V ′, E′), where V ′ is the
set of all shingles and E′ = {(s, u)|u generated s}

end for

B. The design of a new variant for the Shingling heuristic

Although the standard heuristic has been shown to be
effective at capturing a majority of the dense subgraphs [9],
its application to biological graphs such as protein sequence
homology graphs reveals that a significant fraction (up to a
third) of the vertices do not get recruited into any of the

2

clusters for some of the real world data sets we tested (please
see experimental results section). Such vertices, referred to
as “singletons”, typically tend to be low degree vertices.
The potential cause for these singletons is that either these
vertices have degree less than parameter s and as a result
no shingles get generated, or these vertices with low degree
have larger degree neighbors which in turn fail to generate the
same shingle as their low degree neighbors during the random
sampling method.

Figure 1 illustrates a couple of contrasting instances on
how low degree vertices should be handled during clustering.
In Figure 1a, vertices u1 . . . u4 are low degree vertices who
should be assigned the same clusters as their larger degree
neighbors u′1 . . . u

′
4. The standard heuristic, however, will mark

these peripheral elements of the cluster as singletons (for
s > 2). On the other hand, not all low degree vertices should
follow their larger degree neighbors in their cluster assignment.
For example, in Figure 1b, the vertex v1 is a weak bridge
between the two dense clusters containing its neighbors v2 and
v3 respectively, and therefore should be left out as a singleton,
keeping the two clusters separate.

Algorithm 2 Normalized Shingling (Input: G(V,E), s, c)
Generate c random number pairs { < Aj , Bj > };
P ← a big prime number
C ← normalizing constant (default to 100)
for u ∈ V do

Let Γ(u)← {v|v is a neighbor of u}
for v ∈ Γ(u) do

/* Normalize edge weight for every edge*/
wu,v ← wu,v × C /

∑
∀v′∈Γ(u) wu,v′ ;

end for
for j = 1→ c do

Generate multi-set Γj(u)←{wu,v copies of vj |vj=(Aj×
v +Bj)%P, v ∈ Γ(u)}
Let shingle sj(u)←Minimum s elements of Γj(u)
Store tuple of the form < sj(u), u >

end for
end for
for j = 1→ c do

Sort all tuples < sj(u), u > by their shingle ids
Output transformed graph GI(V ′, E′), where V ′ is the
set of all shingles and E′ = {(s, u)|u generated s}

end for

In Algorithm 2, we present a new algorithmic variant of
the standard shingling heursitic. This new algorithmic variant
is not only better suited to overcome the challenges outlined
above, but also automatically extends the scope of clustering to
graphs with edge weights. If the graph is unweighted, then we
trivially assign a weight of 1 to every edge. In what follows,
we explain the algorithm assuming weighted inputs. The main
idea of the new algorithm is as follows. Let u be a source
vertex. Given that a shingle is a random sample of size s
from u’s neighbors, the probability that a neighbor v becomes
part of a shingle of u should be dictated by the weight of
the edge connecting u to v (wu,v). This led us to develop
a simple normalization method, in which the edge weights
of all edges connected to u are recomputed to represent
their relative importance to that vertex and the normalized
weights are subsequently used for shingle generation. As the

Fig. 1. Cases illustrating the decisions to be made on the clustering of low
degree vertices.

original algorithm is oblivious to edge weights during shingle
generation, we modified the shingle generation process so that
it now conceptually treats an edge with an integer weight x
as implicitly containing x copies of unit weight edges (i.e.,
multi-edge), prior to applying the standard shingle generation
method from the original algorithm. To guarantee integer edge
weights, we multiply the normalized edge weight by a constant
C and ignore the decimal places. In other words, for C = 100,
this implies that the edge weights are normalized to the scale
of 100. Ideally, one would like to set the value of C to the
value of the maximum degree (or weighted degree) of a vertex,
as otherwise there is a possibility that the normalized weight
value evaluates to less than 1 (and therefore interpreted as
0). For instance, in an unweighted graph, if a vertex has a
degree of more than C, then each edge’s normalized weight
will evaluate to zero, which implies that these edges will
never participate in the shingling process. Forcibly resetting
the normalized weight to 1 in such cases intuitively provides
those edges a chance to participate in the shingling process.
(In all our experimental studies (please see Section III), we
used this trick combined with a value of C = 100 and this
combination yielded good results.)

The above idea of normalization also helps in the recruit-
ment of singletons into clusters. For instance, a low degree
vertex which has less than s neighbors, would now be able to
generate shingles due to normalized weights and subsequently
participate in clustering. A caveat is that the new “shingles”
that we generate using this new variant could potentially have a
size smaller than s (as duplicate occurrences of a vertex within
a shingle should be removed). For instance, in Figure 1a all
shingles generated from vertex u1 will be the set {u′1}. Yet,
from our experiments, we observe that this is not a problem
and that the large number of random trials (c ≈ 100) is
still sufficient to cluster these low degree vertices into their
appropriate neighboring clusters.

We also note that the normalization approach introduces
a possibility, although with very low probability, that two
disparate cluster structures get combined into a larger cluster.
For the example shown in Figure 1b, let us assume unit
weight edges connected originally to v1. After normalization
to the scale of 100, these edges will be assigned weights
of 50 each. This leads to the possibility of v1 enumerating
any of these three shingles: {v2, v3}, {v2} or {v3} during
different random trials. Given the same possibility persists for
the other neighbors of v2 and v3 within each of their individual
clusters, it becomes theoretically possible that the clusters are
combined based on common shingles. However, the probability
of such merging events are expected to be extremely low

3

owing to the larger degrees of the vertices in the individual
clusters, and the fact that these shingles need to be produced
during the same random trial in order to lead to merges.
Although we acknowledge this to be a theoretical possibility
for false merging by the normalization-based method, we did
not observe such events in our empirical evaluation.

C. Parallel MapReduce algorithm

The new variant of the Shingling heuristic using normaliza-
tion also maps directly to the MapReduce model. Each Map
process takes as input the adjacency list for a given source
vertex u, and performs the following tasks:

Step1) Normalize all the edge weights for u.
Step2) Generate c shingles for u, and emit the shingles in the

form of tuples < s, u >, where s is a shingle generated
by u.

The shingle structure contains information on the shingle id
and the set of at most s vertices constituting that shingle. The
shuffle stage sorts the tuples by their shingle ids.

Each Reduce process takes the list of all source vertices
that generated a given shingle id and emits tuples of the form
< s, u > where s is the shingle and u is every distinct source
vertex in the list. The union of all the tuples emitted by all the
reducers constitute the transformed graph GI(V ′, E′), which
is passed as input to the next Shingling phase.

Implementation: All our implementations for the standard
and normalized algorithms were in C/C++ using MapReduce-
MPI library [18] that is written with standard MPI calls and
compiled into a regular MPI program.

III. EXPERIMENTAL RESULTS

Experimental setup: The experiments were performed on
the Hopper supercomputer at the National Energy Research
Scientific Computing Center (NERSC). Hopper is a 1.28
petaflop/sec Cray XE6 consisting of 6,392 compute nodes
made up of 2 twelve-core AMD ’MagnyCours’ 2.1GHz proses-
sors and 32 GB RAM per node. The MPI library is a custom
version of mpich2 for Cray XE systems, version 5.5.5. For
MapReduce on this MPI platform, we used the MapReduce-
MPI library [18], [19].

As our test input, we used a metagenomics sequence
homology graph (see Table I). This graph contains open
reading frame/amino acid sequences obtained from a variety
of environmental microbial community sources (referred as the
“UBC data set”). Homology detection was performed on this
set using pGraph [23] and the resulting graph contains a total
of 10.3M vertices (sequences) and 640M edges (homologous
pairs). For edge weight calculations, we used the degree of
sequence similarity computed through Smith-Waterman align-
ments. The clustering of such a protein sequence homology
graph can lead to metagenomic protein family identification
[24], [22].

A. Qualitative evaluation

There is no single metric that is perfectly suited to measure
all aspects of clustering quality. Therefore, we used a combina-
tion metrics — such as cluster modularity, the average density

TABLE I. INPUT STATISTICS FOR METAGENOMICS PROTEIN SEQUENCE
DATA.

Input Number of Number of
label edges (m) vertices (n)
UBC-25M 25× 106 3, 965× 103

UBC-50M 50× 106 4, 525× 103

UBC-100M 100× 106 6, 795× 103

UBC-200M 200× 106 7, 336× 103

UBC-400M 400× 106 8, 958× 103

UBC-640M 640× 106 10, 346× 103

of clusters (which is agnostic to edge weights), and other
clustering statistics such as the number of clusters, number
of singletons and number of vertices in the largest clusters —
as indicators of quality. For modularity calculation, we used
Newman’s formula [16] as shown in Equation 1, taking edge
weights into account.

Q = 1/2m
∑

(Aij − kikj/2m)δ(ci, cj), (1)

where Aij represents the weight of the corresponding edge
(or 0 if there is no edge), ki is the total weight of edges
adjacent to vertex i, kj is the total weight of edges adjacent
to vertex j and m is the total weight of all edges. The density
of a cluster is defined as the ratio between the number of its
intra-cluster edges and the theoretical maximum on the number
of such edges. Note that the upperbound for the density and
modularity is 1.

For qualitative evaluation, we compared the quality of the
clusters (by the above metrics) generated by three methods:
A) the normalized implementation of the Shingling heuristic
proposed in this paper, B) our previous implementation of the
standard Shingling heuristic, and C) the Louvain method [4],
which is one of the most widely used (sequential) methods for
detecting communities based on the modularity-maximization
procedure. We also compared the quality difference between
the unweighted and weighted inputs of the same graph. All
analysis was performed on two subgraphs from the UBC data
set — containing 25M and 100M edges, and using shingling
parameters s = 2 and c = 100.

Tables II shows the results for analyzing the 25M and
100M data sets. A comparison of the results from our standard
vs. normalized implementations of the Shingling heuristic
shows the effectiveness of our normalized heuristic in detecting
significantly denser clusters than the standard heuristic. It
can also be observed that the normalized heuristic significant
improves modularity over the standard heuristic for the 25M
data set (0.84 to 0.99). Given that the Shingling heuristic is a
density-driven approach, it is impressive to note that all the
modularity figures reported are directly comparable to that
of the Louvain method, which is solely a modularity-driven
approach.

The results also show that normalization is effective in
reducing the number of singletons drastically relative to the
standard heuristic (35% to ∼2% for 25M, ∼28% to <1%
for 100M) without compromising on the clustering quality.
Reducing singletons is important from the point of view
of keeping the loss of sequence information as minimal as
possible. However, the main challenge is to recruit more
sequences into clusters without adversely affecting the overall
quality of clustering, especially cluster density. To this effect, it

4

TABLE II. QUALITATIVE RESULTS OF THE CLUSTERING OBTAINED FROM OUR DIFFERENT IMPLEMENTATIONS AND THE LOUVAIN METHOD FOR TWO
SUBSETS OF THE UBC DATA SET.

Quality metrics Clustering statistics
Input Data set, Algorithm # non-singleton Largest

Modularity Density clusters % of singletons cluster size

Unweighted, Standard 0.8454 0.3126±0.2506 27,479 35.15% 21,973
UBC-25M Unweighted, Normalized 0.9928 0.5603±0.3866 95,505 2.39% 25,827

Weighted, Normalized 0.9937 0.5603±0.3866 95,505 2.12% 25,864
Weighted, Louvain 0.9695 0.5309±0.3864 116,558 0% 13,297

Unweighted, Standard 0.9299 0.6715±0.2526 145,627 27.96% 36,586
UBC-100M Unweighted, Normalized 0.8839 0.8658±0.2466 601,707 0.65% 38,938

Weighted, Normalized 0.8988 0.8658±0.2466 601,716 0.54% 38,951
Weighted, Louvain 0.9628 0.8634±0.2505 701,527 0% 13,531

TABLE III. RUN-TIME (IN SECONDS) FOR OUR IMPLEMENTATION AS A FUNCTION OF THE INPUT AND SYSTEM SIZES ON THE HOPPER
SUPERCOMPUTER FOR UNWEIGHTED GRAPHS.

Input graph Time using p cores
p =64 p =128 p =256 p =512 p =1024 p =2048 p =4096

UBC-25M 104.4 59.81 37.21 26.66 17.5 14.8
UBC-50M 159.87 100.43 50.89 32.66 25.96 17.84 20.69
UBC-100M 158.22 90.74 53.51 36.48 27.88 24.86
UBC-200M 110.57 60.23 43.66 30.53 31.14
UBC-400M 121.81 73.91 36.71 25.53
UBC-640M 102.49 70.78 36.08

is noteworthy that our normalized heuristic achieves this goal
by significantly increasing the cluster density.

Even though the Louvain method achieves a comparable
or slightly higher modularity than our implementations, it
is interesting to note that this improvement comes with an
increase in the total number of non-singleton clusters. This
shows that the modularity driven codes could detect large
number of small clusters in the interest of increasing the
modularity. However, from a clustering point of view, it is
desirable to keep the number of output clusters smaller in order
to reduce the burden on the downstream processing of clusters.
It is also noteworthy that our normalized implementation is
able to increase the size of the largest cluster by factors
between 2x to 3x compared to the Louvain method, and doing
so by still maintaining a high cluster density.

Finally, Table II shows the effect of incorporating edge
weight information into the normalized heuristic method
is minimal (please compare Unweighted, Normalized vs.
Weighted, Normalized). More specifically, adding edge weight
information results only in a marginal improvement in modu-
larity and number of singletons recruited, while maintaining
density. This effect, however, is input dependent. For this
particular sequence homology graph, the graph construction
procedure retained only those edges corresponding to a strong
similarity based on a predefined cutoff. We expect the edge
weight information to play a more significant role in clustering
decisions for inputs where there is a wider divergence in the
quality of edges.

B. Performance results

Table III shows the runtime of our implementation as a
function of the input and system sizes. Note that this new
implementation uses MapReduce-MPI as opposed to Hadoop
which was used in our previous implementation [20]. To
enable comparison between these two platforms, we present
the runtime results for our standard heuristic implementation
in Table III.

As can be observed, the runtime decreases as more cores
are added to the system. Also, the scaling improves as the input
size increases. For the largest input size (640M) we observe
near-linear scaling up to 4K cores. More notably, even for the
smallest data set (25M) the implementation delivers consider-
able performance improvement until 512 cores, beyond which
the work becomes too small to benefit from parallelism. Also
note that values along the diagonal of the table are roughly
constant, which is a good indicator that when the input size
is doubled alongside doubling the system size, the runtime
is roughly maintained. These results demonstrate the overall
scaling potential of our implementation to even larger number
of cores as larger inputs are analyzed. It is noteworthy that our
new implementation built over the MapReduce-MPI library is
significantly faster when compared to our previous implemen-
tation on Hadoop platforms. For instance, the analysis of a
smaller input with only 11M edges took about 1,612 seconds
on 128 cores of another Hadoop cluster [20]; whereas the
same analysis on the same number of cores using our new
implementation took only 41 seconds. We attribute the superior
performance of the MapReduce-MPI implementation to its
ability to perform in-core operations — i.e., if the intermediate
temporal data owned by processor fits within an allocated
pages of memory, the library operates on the data in-core with
no disk files are written or read [18].

We also evaluated the performance of our normalized
parallel implementation separately on both weighted and un-
weighted inputs. Table IV shows the run-times for both inputs
for varying number of cores. Note that the implementation
scales near-linearly up to the system size of 1,024 cores tested
on both weighted and unweighted inputs. Furthermore, as to
be expected from the effect of normalization, the runtimes
for the weighted and unweighted inputs were nearly identical.
The marginal increase in the runtimes for the weighted inputs
can be attributed to the increased number of floating point
operations performed during the summation of edge weights
prior to normalization.

All the tests that were run in our experiments for this paper

5

TABLE IV. RUN-TIME (IN SECONDS) FOR OUR NORMALIZED
HEURISTIC FOR VARYING SYSTEM SIZES ON THE WEIGHTED AND

UNWEIGHTED INPUTS FOR UBC-25M.

cores Time
Unweighted, Weighted,
Normalized Normalized

128 450.55 458.73
256 237.96 249.42
512 126.87 132.22
1024 73.64 78.81

are using our parallel implementation that assumes that the
input graph is made available as an adjacency list. However, we
also re-implemented our previously developed edge-list based
algorithm for Hadoop systems [20] using MapReduce-MPI1,
and subsequently compared their performance. Our results (not
shown here due to space constraints) show that the adjacency
list implementation was consistently twice as fast as the edge
list implementation, and is also more memory efficient. More
importantly, our results led us to conclude that the adjacency
list based implementation is better suited for the MapReduce-
MPI model where it is desirable to keep the volume of the
intermediate <key,value> pairs as small as possible so as to
enable in-core access.

IV. CONCLUSION

In this paper, we presented a new variant of the shingling
heuristic for clustering weighted and unweighted biological
graphs. This new algorithmic heuristic is designed to overcome
the qualitative problems encountered in the standard version,
and also extends its application to weighted graphs. When
applied to real world metagenomics graphs, our implemen-
tation demonstrated significant improvements in quality than
the previous version, and in performance under the MapReduce
parallel model. From a practical standpoint, it is desirable for a
clustering method to detect as fewer number of non-singleton
clusters and singletons as possible, while maintaining a highly
density within clusters. The newly proposed clustering heuris-
tic using normalization in this paper has been demonstrated to
be highly effective in all these respects. Future line of research
includes comparison against other clustering methods such as
MCL, incorporating cluster composition information as part of
qualitative study, extension to enumerate possibly overlapping
clusters, and a comprehensive application on larger real world
graphs with billions of edges.

V. ACKNOWLEDGMENTS

This research was supported by DOE award DE-SC-
0006516. This research used resources of the National Energy
Research Scientific Computing Center, supported by the Office
of Science of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.

REFERENCES

[1] Andersen, R. and Chellapilla, K. (2009) ‘Finding dense subgraphs with
size bounds’, Lecture Notes in Computer Science, Vol. 5427, pp.25–36.

[2] Andreopoulos, B., Wang, X. and Schroeder, M. (2009) ‘A roadmap of
clustering algorithms: finding a match for a biomedical application’,
Briefings in Bioinformatics, Vol. 10, No. 3, pp.297–314.

1Specific details about the differences between these two implementations
are omitted due to space constraints

[3] Bader, G. and Hogue, C. (2003) ‘An automated method for finding
molecular complexes in large protein interaction networks’, BMC
Bioinformatics, Vol. 4, No. 2, pp.1471–2105.

[4] Blondel, V.D., Guillaume, J., Lambiotte., R., and Lefebvre., E. (2008)
‘Fast unfolding of communities in large networks’, Journal of Statistical
Mechanics: Theory and Experiment, Vol. 2008, pp.P10008.

[5] Broder, A.Z., Charikar, M., Frieze, A., and Mitzenmacher, M. (2000)
‘Min-wise independent permutations’, Journal of Computer and System
Sciences, Vol. 60, pp.630–659.

[6] Brohee, S. and Helden, J.V. (2006) ‘Evaluation of clustering algorithms
for protein-protein interaction networks’, BMC Bioinformatics, Vol. 7,
pp.488.

[7] Enright, A.J., Van Dongen, S. and Ouzounis, S.A. (2002) ‘An efficient
algorithm for large-scale detection of protein families’, Nucleic Acids
Research, Vol. 30, No. 7, pp.1575–1584.

[8] Feige, U., Kortsarz, G. and Peleg, D. (2001) ‘The dense k-subgraph
problem’, Algorithmica, Vol. 29, pp.410–421.

[9] Gibson, D., Kumar, R. and Tomkins, A. (2005) ‘Discovering large
dense subgraphs in massive graphs’, Proceedings of the International
Conference on Very Large Data Bases, pp.721–732.

[10] Handelsman, J. (2004) ‘Metagenomics: application of genomics to
uncultured microorganisms’, Microbiology and Molecular Biology Re-
views, Vol. 68, pp.669–685.

[11] Jeong, H., Mason, S.P., Barabasi, A. and Oltvai, Z.N. (2001) ‘Lethality
and centrality in protein networks’, Nature, Vol. 411, pp.41–42.

[12] Khuller, S., Saha, B., Albers, S., Marchetti-Spaccamela, A., Matias, Y.,
Nikoletseas, S. and Thomas, W. (2009) ‘On Finding Dense Subgraphs’,
Automata, Languages and Programming, Springer Berlin / Heidelberg,
pp.597–608.

[13] Lancichinetti, A. and Fortunato, S. (2009) ‘Community detection algo-
rithms: A comparative analysis’, Phys. Rev. E, Vol. 80, No. 056117.

[14] Lee, V.E., Ruan, N., Jin, R. and Aggarwal, C. (2010) ‘A Survey of
Algorithms for Dense Subgraph Discovery’, Managing and Mining
Graph Data, Springer US, pp.303–336.

[15] Ma, H. and Zeng, A. (2003) ‘The connectivity structure, giant strong
component and centrality of metabolic networks’, Bioinformatics,
Vol. 19, pp.1423–1430.

[16] Newman. M.E.J., and Girvan, M. (2004) ‘Finding and evaluating
community structure in networks’, Phys. Rev. E, Vol. 69, No. 2, pp.
026113.

[17] Olman, V., Mao, F., Wu, H. and Xu, Y. (2007) ‘A parallel clustering
algorithm for very large data sets’, IEEE/ACM Transaction on Compu-
tational Biology and Bioinformatics, Vol. 5, No. 2, pp.344–352.

[18] Plimpton, S. J. and Devine, K. D (2011) ‘MapReduce in MPI for Large-
Scale Graph Algorithms’, Parallel Computing, Vol. 37, pp.610–632.

[19] Plimpton, S. J. and Devine, K. D (2011) http://mapreduce.sandia.gov/
index.html, Last date accessed: April 2013.

[20] Rytsareva, I. and Kalyanaraman, A. (2011) ‘An efficient MapReduce
algorithm for parallelizing large-scale graph clustering’, Proc. Par-
Graph’11 - Workshop on Parallel Algorithms and Software for Analysis
of Massive Graphs, Held in conjunction with HiPC’11, Bengaluru,
India.

[21] Rytsareva, I. Chapman, T. and Kalyanaraman, A. (2013) ‘Parallel
algorithms for clustering biological graphs on distributed and shared
memory architectures’, International Journal of High Performance
Computing and Networking: Special issue on Architectures and Algo-
rithms for Irregular Applications (IJHPCN), In Press, 2013.

[22] Wu, C. and Kalyanaraman, A. (2008) ‘An efficient parallel approach
for identifying protein families in large-scale metagenomic data sets’,
Proceedings ACM/IEEE conference on Supercomputing, pp.1–10.

[23] Wu, C., Kalyanaraman, A., and Cannon, W.R. (2012) ‘pGraph: Efficient
parallel construction of large-scale protein sequence homology graphs’,
IEEE Transactions on Parallel and Distributed Systems, Preprint, DOI
10.1109/TPDS.2012.19.

[24] Yooseph, S., Sutton, G., Rusch, D.B. et al. (2007) ‘The Sorcerer II
Global Ocean Sampling expedition: expanding the universe of protein
families’, PLoS Biology, Vol. 5, No. 3, pp.432–466.

6

