
 
Figure 1: Biocomputing applications benefiting from hardware acceleration. 

Hardware Accelerators for Biocomputing: A Survey 
Souradip Sarkar, Turbo Majumder, Ananth Kalyanaraman, Partha Pratim Pande 

School Of Electrical Engineering and Computer Science 
Washington State University, Pullman, USA 

{ssarkar, tmajumde, ananth, pande}@eecs.wsu.edu 
 
Abstract— Computing research has become a vital cog in the 
machinery required to drive biological discovery. Computing 
has made possible significant achievements over the last 
decade, especially in the genomics sector. An emerging area is 
the investigation of hardware accelerators for speeding up 
the massive scale of computation needed in large-scale 
biocomputing applications. Various hardware platforms, 
such as FPGA, Graphics Processing Unit (GPU), the Cell 
Broadband Engine (CBE) and multi-core processors are 
being explored. In this paper, we present a survey of 
hardware accelerators for biocomputing by choosing a 
representative set of each.  

I. INTRODUCTION  
The role of computing in molecular biology research 

has never been more defining. Data processing for 
biocomputing applications is currently done in software, 
which often takes a very long time. Aligning even a few 
hundred sequences using progressive multiple alignment 
tools consumes several CPU hours on state-of-the-art 
workstations. Large-scale sequence analysis, often 
involving up to tens of millions of sequences, has become a 
mainstay as well as one of the primary bottlenecks in the 
path to scientific discovery. The molecular biocomputing 
domain also hosts a set of compute-intensive applications 
wherein the underlying problems are proven to be 
computationally intractable (e.g. phylogenetic tree 
computation, protein folding). These aspects collectively 
make this an application domain that has the potential to 
immensely benefit from the incorporation of the latest 
advancements in circuit design and evolving hardware 
architectures. Several hardware accelerators have been 
proposed recently. FPGA-based reconfigurable hardware 
platforms, GPUs, CBEs, general purpose multi-core 
processors and Network-on-Chip (NoC) platforms are used 
as hardware accelerators for biocomputing. A successful 
solution will adopt and encompass elements from several 
such approaches. The challenge of designing efficient 
hardware accelerators for biocomputing research is actively 
being pursued by a number of researchers worldwide, and 
from a variety of different perspectives. Figure 1 
summarizes the current state of the art. In this paper, we 
present an overview of the characteristics of hardware 
accelerators for a representative set of biocomputing 
applications at the molecular level. 

II. SEQUENCE ANALYSIS 
Sequence homology detection (or sequence alignment) 

is a pervasive compute operation carried out in almost all 
bioinformatics sequence analysis (SA) applications. Due to 
exponentially growing sequence databases, computing this 
operation at a large scale is becoming prohibitive. The 

operation can be carried out in three modes: as one-to-one, 
one-to-many or many-to-many comparisons. The one-to-
one alignment operation, called the pairwise sequence 
alignment (PSA), is used to compute an optimal edit 
distance between two sequences, after taking into account 
evolutionary manifestations of mutation such as 
substitution, insertion and deletion. In the one-to-many 
comparison model, a query sequence is searched against a 
database of sequences. The BLAST tool [1] is an example 
of this class. In the many-to-many comparison model, 
multiple sequences are analyzed collectively for the 
purpose of identifying sub-groups of sequences that share a 
common characteristic such as homology. This operation is 
often implemented using an all-against-all sequence 
comparison strategy. Multiple sequence alignment (MSA) 
is an example of this class. In all of the above, a sequence 
can be either a DNA or a protein, and the bulk of the 
computations involve integer arithmetic. 

Algorithmically, computing an optimal PSA between 
two sequences of lengths m and n respectively, can be 
achieved using dynamic programming (DP) in O(mn) time 
and O(m+n) space [2]. The algorithm computes an 
(m+1)*(n+1) table in two passes. In the forward pass, the 
table is computed from cell (0, 0) to cell (m, n), wherein a 
recurrence is applied at every cell (i,j) based on the values 
at cells (i-1,j), (i-1,j-1) and (i,j-1). The main challenge in 
the backward pass is to be able to retrace without storing 
the DP table that was computed during the forward pass. 
Several coarse-grain parallel algorithms have been 
developed. Huang [3] uses a wavefront technique whereby 
the cells along each anti-diagonal are computed in each 
parallel time step. Aluru et al. [4] introduced another 
technique in which cells along each row can be computed 
in each time step using the parallel prefix technique.  

Hardware accelerators provide fine-grain parallelism. 
FPGA-, GPU- and CBE-based implementations primarily 

This work is partially supported by NSF grant (IIS-0916463) 
 

 1 http://www.tolweb.org/tree/ 
2 http://www.ks.uiuc.edu/Research/STMV/  
3 http://wwwcs.uni-paderborn.de/~lst/HotDock/ 

978-1-4244-5309-2/10/$26.00 ©2010 IEEE 3789



rely on software and use pre-existing hardware platforms to 
map algorithms.  Such generic hardware-based systems can 
be used for multiple applications with only software 
modifications.  

Hardware accelerators using FPGA have been 
developed for implementing ClustalW [5], which is a 
popular MSA program. Since the underlying problem is 
NP-Hard, ClustalW approximates a solution in polynomial 
time. A K-sequence MSA problem involves computing KC2 
PSA comparisons. This all-against-all sequence 
comparison is the dominant phase within ClustalW, taking 
more than 90% of the total time. The FPGA 
implementation uses Xilinx Virtex II XC2V6000, platform 
accommodating 92 processing elements (PEs) with a 
maximum clock speed of 34 MHz. This gives a speedup of 
around 10 for the overall MSA and about 50 for PSA. It 
achieves a sustained performance (including all data 
transfer) of ~1 GCUPS (billion cell updates per second in 
the DP matrix). 

The sequence search tool BLAST proceeds by first 
identifying a subset of database sequences that have short 
matching segments with the query sequence and then 
performing a more thorough evaluation of the query against 
each short-listed candidate. The filtering step is 
implemented using a lookup table data structure, and a 
subsequent evaluation as a unit PSA. Sachdeva et al. [6] 
implemented BLAST on CBE, consisting of a 64 bit Power 
Processor Element (PPE) and eight Synergistic Processing 
Elements (SPEs). It achieves a speedup of 2 compared to 
that implemented on a single Power PC processor. The 
FPGA BLAST [7] is implemented on Annapolis 
Microsystems WildstarII-Pro board with two Xilinx Virtex-
II FPGAs. The authors have implemented two FPGA 
BLAST algorithms, namely the TREE BLAST and the 
SERVER BLAST. The notion behind the former algorithm 
is that, it can be executed with iterative merging using a 
tree structure. The FPGA is initialized with the query 
sequence and the scoring matrix. The indexing of the 
scoring arrays is done using the block RAMs (BRAMs). 
The database is streamed from the memory through the 
FPGA. The main component of SERVER BLAST is a 
systolic array that holds a query string while the database 
flows through it. This is implemented using a FIFO buffer 
in FPGA. The performance reported was comparable to 
that of a dedicated server at National Center for 
Biotechnology Information. Liu et al. [8] demonstrates 
about 16 fold speedup over OSEARCH, which is an MSA 
tool using nVidia GeForce 7800 GTX GPU. Mapping of 
the algorithm onto GPU is done exploiting the fact that all 
elements in the same anti-diagonal of the DP matrix can be 
computed independent of each other in parallel. Fragment 
programs are used to implement the arithmetic operations 
specified by the recurrence relation. They have 
reformulated the Smith-Waterman algorithm [2] in terms of 
computer graphics primitives, in an attempt to exploit the 
GPU platform for optimum performance. 

A simple search operation against a database of known 
sequences involves computing an unprecedented number of 
sequence alignment operations. An effective way to 
address this would be to integrate huge number of PEs on a 
single chip for exploiting the massive scale of fine-grain 

parallelism inherent in bioinformatics applications. 
Systems based on multiple cores on a single chip are 
emerging as a viable alternative for accelerating various 
scientific applications. Network-on-Chip (NoC) is viewed 
as an enabling methodology to obtain such high degree of 
integration in a single chip. An NoC-based implementation 
of PSA [9] reports significant improvement over other 
hardware accelerators because of its custom made 
architecture and interconnection topology. The result of 
using 64 PEs in such a system achieved two to three orders 
of magnitude better performance compared to other 
existing hardware accelerators. NoCs also provide the 
freedom to design and experiment with different network 
topologies and their suitability to different algorithmic 
settings. Table 1 summarizes the performances of various 
hardware accelerators designed for SA. 
TABLE 1: OVERVIEW OF SPEEDUPS ACHIEVED FOR SEQUENCE ANALYSIS 

UNDER DIFFERENT HARDWARE ACCELERATOR MODELS ([5][6][8][9]) 

Type of SA 
Speedup over Serial Implementation 

FPGA GPU CBE Multi-core (NoC) 
PSA 100  70  6  22,000  
MSA 13  7 2 N.A. 

BLAST N.A. 16  2 N.A. 

III. PHYLOGENETICS  
While SA represents a data-intensive application class 

in biocomputing, phylogenetics represents a compute-
intensive class of applications. In phylogenetics research, 
the primary goal is to reconstruct evolutionary trees that 
best describe the evolutionary relationship among different 
species, by observing and characterizing variations at the 
DNA and protein level. The “Tree of Life” is an example 
of an ambitious project for inferring the phylogeny linking 
all known life forms. Typical probability models of 
evolution used for this purpose are Jukes-Cantor (JC) and 
General Time Reversible (GTR). Unlike SA, the 
computational intractability of the problem is the primary 
stumbling block to advance the state of research in 
phylogenetic inference, as the underlying problems have 
been proven to be NP-Hard under various formulations 
[10]. The choice amongst three main strategies - neighbor-
joining, maximum parsimony (MP) and maximum 
likelihood (ML) - often depends on the nature of the 
problem at hand. The following discussion covers different 
hardware accelerators for MP and ML in the order of 
increasing problem complexity. Most of the work addresses 
ML, which is statistically the most accurate and 
computationally the most intense of the strategies, 
involving numerous floating point computations for 
evaluating the phylogenetic likelihood function (PLF).  

Mak and Lam [11] proposed a hybrid 
hardware/software system for solving the phylogenetic tree 
reconstruction using the Genetic Algorithm for Maximum 
Likelihood (GAML) approach. The genetic algorithm is 
implemented in software and the computationally intensive 
ML equation is implemented in hardware. This work uses a 
Xilinx Virtex XCV800 FPGA as the hardware accelerator 
and a Pentium 4 PC with 1 GB RAM for running the 
software. The likelihood function is evaluated in parallel in 
the dedicated FPGA. Their results while reconstructing a 4-
taxa phylogenetic tree under the JC Model demonstrate an 

3790



TABLE 2: PERFORMANCE COMPARISON FOR PHYLOGENETIC INFERENCE ([11][12][13][15]) 

Phylogenetic 
tree 

reconstruction 
strategies 

FPGA GPU Cell Broadband Engine General Purpose Multi-
core 

Application 
speedup 

Total 
speedup 

Application 
speedup 

Total 
speedup 

Application 
speedup 

Total 
speedup 

Application 
speedup 

Total 
speedup 

Maximum 
parsimony (MP) 

1005  417  N.A. N.A. N.A. N.A. N.A. N.A. 

Maximum 
likelihood (ML) 

381  32, 13.68  8.5  1.9  12  1.5  12  10  

overall speedup of 30 over software and an ML speedup of 
over 300, despite the communication overhead of the 
hybrid system.  This work however does not explicitly state 
how the acceleration scales for larger taxa or more realistic 
complex models like GTR.  

Alachiotis et al. explored the use of FPGA for 
accelerating the computation of PLF in [12]. A Xilinx 
Virtex 5 SX240T with 1056 DSP48E slices has been used. 
The DSP slices have been used to implement double-
precision floating point multipliers and adders. Due to the 
limited amount of DSP48E slices on the FPGA, several 
multiplexer units are deployed to optimally exploit the 
available computational resources. A Sun x4600 system 
equipped with 8 dual-core AMD Opteron processors 
running at 2.6 GHz with 64 GB of main memory was used 
as the baseline. An average speedup of 8.3 over a single 
core has been demonstrated for trees comprising of 4 to 
512 sequences on FPGA. The FPGA implementation also 
outperforms OpenMP-based parallel implementation on 16 
cores in most cases, achieving speedups from 0.96 to 7.46. 
The projected computational time for a full tree traversal 
using Felsenstein’s pruning algorithm for 512 taxa is less 
than 1 ms, based on reported clock speed of 284.152 MHz.  

Bakos and Elenis [13] proposed a co-processor design 
for whole-genome phylogenetic reconstruction using a 
parallelized version of breakpoint median computation, 
which is an expensive component of the MP phylogenetic 
tree inference. The co-processor uses an FPGA-based 
multi-core implementation of the combinatorial search 
portion of the Travelling Salesman Problem (TSP) 
algorithm while the TSP graph construction is performed in 
software.  The search tree partitioning is carried out in such 
a manner that each core explores the tree in a different 
order. This is done to avoid complex load-balancing and 
inter-core communication issues that occur if disjoint 
subtrees are assigned to different cores, because any of 
them might be subject to pruning. Their test system 
consists of 3.06-GHz Intel Pentium Xeon processor and a 
single XilinxVirtex-2 Pro 100 FPGA connected to the host 
using a PCI-X interconnect. The best average speedup of 
1,005 over software is observed using 3 cores. The best 
overall reduction in execution time is by a factor of 417. 
All these observations are for synthetic data and hence 
difficult to correlate with real-life examples. 

Randomized Axelerated Maximum Likelihood version 
VI for High Performance Computing (RAxML-VI-HPC) is 
an efficient parallel algorithm based on ML for 
phylogenetic tree inference. Blagojevic et al. have explored 
the porting, optimization and evaluation of RAxML-VI-
HPC on CBE [14]. They carry out a detailed empirical 
optimization of RAxML on CBE, with additional support 
from the runtime environment. Different layers of 
parallelism have been used – task-level parallelism across 
SPEs, task vectorization within SPEs and/or loop-level 

parallelization across SPEs. It is shown that CBE 
outperforms both Intel Xeon and IBM Power5 and is more 
cost-effective and power-efficient than either architecture. 
However, the sheer complexity of porting the algorithm 
and the various optimizations required for CBE collectively 
pose a significant roadblock.  

In [15], MrBayes, a program for Bayesian inference of 
phylogenetic trees has been used on three different 
architectures to evaluate performance, scalability and 
programmability. General purpose multi-core (dual-core 
and quad-core Intel and AMD) processors and CBE 
support the Multiple Program Multiple Data (MPMD) 
model while GPUs support Single Program Multiple Data 
(SPMD) model. The PLF in MrBayes is parallelized using 
OpenMP directives for the general-purpose 
multiprocessors, POSIX threads for the CBE systems and 
Compute Unified Device Architecture (CUDA) for the 
GPU systems. For hardware-managed caches, the sharing 
of a cache level within the chip by all cores is a 
determining factor for efficient synchronization and hence 
scalability. Systems with software-managed caches like 
CBE compensate the user effort by efficient 
synchronization mechanisms.  On the other hand, there are 
fewer data transfers between the device memory and CPU 
because GPU has sufficient memory to handle input data. 
CUDA automatically handles data transfer synchronization, 
thus relieving the user of the responsibility of providing 
any explicit synchronization mechanism. PLF computation 
speedup is penalized by computation intensity and 
communication overhead inside the multi-cores. Quad-core 
AMD Opteron, where four cores are on a single die and 
share the same L2 cache, scales better compared to quad-
core Intel Xeon, which has two L2 caches each shared by a 
pair of cores. For CBE, speedup values are close to ideal 
for small data sets and performance is stable across 
different computation intensities. Even though SPEs do not 
share a common cache, CBE is more tolerant to 
synchronization, primarily because it relies on user-
generated software for this. However, speedup values for 
large data sets and computation intensities are almost equal 
for general-purpose multi-cores and CBEs. GPUs display 
an increase in speedup as the computation intensity 
increases because they are designed to perform efficient 
execution of small parallel threads in a scenario where the 
computation-to-data ratio is high. In terms of total 
frequency-normalized execution times, the general-purpose 
multi-core still achieves the best performance. This is based 
on the sum of the time spent in executing the parallel 
portion of the code (PLF) and that for the rest of the code. 
The degradation in total execution time for CBE is due to 
the fact that the PPE that handles the serial portion of the 
code is a rather simple core with a small cache, in-order 
execution capability and is burdened with the additional 
responsibility of synchronizing among SPEs. Table 2 

3791



summarizes the speedups achieved by different hardware 
accelerators for the MP/ML (application speedup) 
computation and the overall algorithm (Total speedup). 

IV. SIMULATION-BASED APPLICATIONS 
Molecular Dynamics (MD) is a widely used technique 

for studying the structural and functional characteristics of 
biomolecules. It is a particular case of an N-body problem 
where hundreds of thousands of atoms of a molecular 
complex such as a protein are allowed to interact over a 
fixed spatial dimension, for over millions of discrete time 
steps. As such, the problem is heavily compute cycle 
bound. In [16], the use of CUDA-based GPU 
implementation for MD applications is reported to have 
achieved speedups of around 20 compared to the regular 
CPU cores. Chiu et al [17] report 80-fold speedup over the 
previous GPU based design, using two Altera Stratix-III 
FPGAs.  Design of a massively parallel machine, ANTON 
[18] for MD computation is particularly notable. This 
design consists of 512 identical MD-specific ASICs that 
interact in a high-speed NoC. It is expected to achieve a 
speedup of about 100 over the IBM Blue Gene 
supercomputer. Molecular Docking is another simulation 
class application that is heavily used to study the binding 
orientation of small molecule drug candidates to their 
protein drug targets. Due to its high computational 
complexity, dedicated hardware platforms have been 
considered for docking. The FPGA [19] and GPU [20] 
based prototype implementations provide significant speed 
up over standard serial implementation. 

V.      COMPARATIVE DISCUSSION  
GPU and CBE provide multi-core platforms where 

applications with sufficient scope for parallelization can be 
ported. From the programmability perspective, GPUs are 
easier for implementation than CBEs, which require the 
user to write elaborate synchronization software. 
Furthermore, due to the inherent architectural properties of 
a GPU, it achieves comparable or higher speedups than a 
CBE-based platform for compute-intensive applications. 
On the flip side, the GPU-based solution spends a 
significant fraction of its time in CPU-GPU communication 
through PCI-X. General purpose multi-core platforms 
provide the best overall speedup and also provide the 
maximum ease of porting of code, while the effort required 
for CBE is maximum. Due to their reconfigurable nature, 
FPGA platforms provide the scope for implementing 
parallel architectures specifically optimized to solve SA or 
phylogenetic inference. The advantage of NoC-based 
multi-core architectures is that both computation and intra-
chip communication can be tailor-made for the application, 
providing orders of magnitude performance improvement.  

The field of bioinformatics and computational biology 
is host to applications that combine a number of desirable 
attributes – emerging importance, high computational 
complexity, inherent data-parallelism, and well-defined 
communication and computation patterns – soliciting the 
design, development and application of novel hardware 
accelerators. While all the hardware models studied so far 
have shown significant levels of improvement over single 

CPU implementations,  we posit that multi-core platforms, 
both general purpose and NoC-based, hold the most 
promise for practical adoption owing to their ease of 
implementation, projected scalability and/or provision for 
higher degrees of design flexibility. 

VI.      REFERENCES 
[1] S. Altschul et. al., “Basic Local Alignment Search Tool”, Journal of 

Molecular Biology, 1990, 215, pp. 403-410. 
[2] T.F. Smith and M.S. Waterman, “Identification of Common 

Molecular Subsequences,” J. Molecular Biology, 1981, vol. 147, 
pp. 195-197. 

[3] X. Huang, “A space-efficient parallel sequence comparison 
algorithm for a message-passing multiprocessor”, International 
Journal of Parallel Programming, 1989, 18(3): pp. 223–239. 

[4] S. Aluru et al., “Parallel biological sequence comparison using 
prefix computations”, .l Parallel and Distributed Computing, 2003, 
63:  pp.264–272. 

[5] T. Oliver et. al., “Using reconfigurable hardware to accelerate 
multiple sequence alignment with ClustalW”, Bioinformatics, 2005, 
vol. 21(16): pp. 3431-3432. 

[6] V. Sachdeva et. al., “Exploring the Viability of the Cell Broadband 
Engine for Bioinformatics Applications”, Parallel and Distributed 
Processing Symposium, 2007, pp. 1-8. 

[7] M. Herbordt et. al., “Single Pass, BLAST-Like, Approximate String 
Matching on FPGAs”, Proc. 14th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, 2006, pp. 217-226. 

[8] W. Liu et al, "Streaming Algorithms for Biological Sequence 
Alignment on GPUs", IEEE Trans. on Parallel and Distributed 
Systems, 2007, vol. 18, No. 9, pp. 1270-1281. 

[9] S. Sarkar, et. al, "Network-on-Chip Hardware Accelerators for 
Biological Sequence Alignment" IEEE Trans. Comp. (Accepted 
April 2009). 

[10] B. Chor and T. Tuller, “Maximum Likelihood of Evolutionary 
Trees: Hardness and Approximation,” Bioinformatics, 2005, vol. 
21, (1), pp. 97-106. 

[11] T. S. T. Mak and K. P. Lam, “High Speed GAML-based 
Phylogenetic Tree Reconstruction Using HW/SW Codesign,” Proc. 
Computational Systems Bioinformatics, 2003, pp. 470.  

[12] N. Alachiotis et. al., “Exploring FPGAs for Accelerating the 
Phylogenetic Likelihood Function,” Proc. IEEE International 
Symposium on Parallel and Distributed Processing 2009, pp 1-8. 

[13] J. D. Bakos and P. E. Elenis, “A Special-Purpose Architecture for 
Solving the Breakpoint Median Problem,” IEEE Trans. VLSI 
Systems, Vol. 16, No. 12, Dec 2008, pp. 1666-1676. 

[14] F. Blagojevic et. al., “RAxML-Cell: Parallel Phylogenetic Tree 
Inference on the Cell Broadband Engine,” Proc. IEEE International 
Symposium on Parallel and Distributed Processing 2007, pp. 1-10. 

[15] F. Patas et. al., “Fine-grain Parallelism using Multi-core, Cell/BE, 
and GPU Systems: Accelerating the Phylogenetic Likelihood 
Function,” Int. Conf. Parallel Processing, 2009, pp. 9-17. 

[16] J. Stone et. al., “Accelerating molecular modeling applications with 
graphics processors”. J. Computational Chemistry, 2007, vol. 28, 
pp. 2618–2640. 

[17] M. Chiu and M. C. Herbordt, “Molecular Dynamics Simulations on 
High Performance Reconfigurable Computing Systems”, ACM 
Trans. on Reconfigurable Technology and Systems, 2010 (Accepted 
for publication). 

[18] D. E. Shaw et. al., "Anton: A Special-Purpose Machine for 
Molecular Dynamics Simulation," Proceedings of the 34th Annual 
International Symposium on Computer Architecture (ISCA '07), San 
Diego, California, June 9–13, 2007, pp.1-12. 

[19] B. Sukhwani and M.C. Herbordt, “FPGA Acceleration of Rigid-
Molecule Docking Codes”, IET Computers & Digital Techniques, 
2009 (In Press).  

[20] B. Sukhwani and M.C. Herbordt, “GPU Acceleration of a 
Production Molecular Docking Code”, Proc. of Workshop on 
GPGPU, 2009, pp. 19-27. 

3792


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Table of Contents

