IEEE TRANSACTIONS ON COMPUTERS, VOL.59, NO. 1,

JANUARY 2010

Network-on-Chip Hardware Accelerators
for Biological Sequence Alignment

Souradip Sarkar, Student Member, IEEE, Gaurav Ramesh Kulkarni, Student Member, IEEE,
Partha Pratim Pande, Member, IEEE, and Ananth Kalyanaraman, Member, IEEE

Abstract—The most pervasive compute operation carried out in almost all bioinformatics applications is pairwise sequence homology
detection (or sequence alignment). Due to exponentially growing sequence databases, computing this operation at a large-scale is
becoming expensive. An effective approach to speed up this operation is to integrate a very high number of processing elements in a
single chip so that the massive scales of fine-grain parallelism inherent in several bioinformatics applications can be exploited
efficiently. Network-on-Chip (NoC) is a very efficient method to achieve such large-scale integration. In this work, we propose to bridge
the gap between data generation and processing in bioinformatics applications by designing NoC architectures for the sequence
alignment operation. Specifically, we 1) propose optimized NoC architectures for different sequence alignment algorithms that were
originally designed for distributed memory parallel computers and 2) provide a thorough comparative evaluation of their respective
performance and energy dissipation. While accelerators using other hardware architectures such as FPGA, General Purpose Graphics
Processing Unit (GPU), and the Cell Broadband Engine (CBE) have been previously designed for sequence alignment, the NoC
paradigm enables integration of a much larger number of processing elements on a single chip and also offers a higher degree of
flexibility in placing them along the die to suit the underlying algorithm. The results show that our NoC-based implementations can
provide above 102-103-fold speedup over other hardware accelerators and above 10*-fold speedup over traditional CPU architectures.
This is significant because it will drastically reduce the time required to perform the millions of alignment operations that are typical in
large-scale bioinformatics projects. To the best of our knowledge, this work embodies the first attempt to accelerate a bioinformatics

29

application using NoC.

Index Terms—Network-on-chip, bioinformatics, DNA/protein sequence alignment, on-chip parallelism, hardware acceleration.

<+

1 INTRODUCTION

HE bioinformatics community faces a daunting chal-

lenge today because the rate of data generation is
rapidly outpacing the rate at which it can be computation-
ally processed. Propelled by recent technological break-
throughs in high-throughput DNA and protein sequencing,
experimentalists are generating data at unprecedented
rates. For example, the GenBank database [1], which is the
largest public repository for molecular sequence data, is
continuing to double in size every 18 months since its
inception in the early 1990s. Sequence data are subsequently
used in further computational analysis that can ultimately
lead to the discovery and fundamental understanding of the
genetic composition in organisms.

The most predominant compute operation that is carried
out in nearly all sequence analysis projects is pairwise
sequence alignment, which aims at measuring the similar-
ity between two DNA or protein “sequences” (represented
as strings over a fixed alphabet). The operation is
performed using a dynamic programming (DP) algorithm
[2], [3] that computes a two-dimensional table, with rows

e The authors are with the School of Electrical Engineering and
Computer Science, Washington State University, PO Box 642752,
Pullman, WA 99164-2752.

E-mail: (ssarkar, gkulkarn, pande, ananth)@eecs.wsu.edu.

Manuscript received 10 Nov. 2008; revised 11 Mar. 2009; accepted 16 Apr.
2009; published online 10 Sept. 2009.

Recommended for acceptance by R. Marculescu.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2008-11-0565.
Digital Object Identifier no. 10.1109/TC.2009.133.

0018-9340/10/$26.00 © 2010 IEEE

and columns representing the character sequence of the two
strings being compared. The operation is used almost on a
daily basis by molecular biologists, and also in all genome
sequencing projects of any scale. While the task of carrying
out a single pairwise sequence comparison is in itself
computationally lightweight (in milliseconds) on traditional
machines, performing millions to billions of such compar-
isons could become easily prohibitive. For example, a recent
analysis that computed pairwise alignments for over
28 million metagenomic sequences [4] took an aggregate
of 10° CPU hours—a task that took months to complete
after parallelization at the coarse level using a combination
of 2,300 processors and high-end memory systems. Our
experiments show that running the multiple sequence
alignment tool ClustalW [5] even on hundreds of sequences
requires several hours on state-of-the-art workstations.

To speed up the data processing, several hardware
accelerators have been proposed recently including, but not
limited to, [6], [7], [8], [9], [10]. Among these, the use of
FPGA-based reconfigurable hardware platforms, Graphics
Processing Unit (GPU), and Cell Broadband Engine (CBE) is
notable. The principal advantages of using FPGA-, GPU-, or
CBE-based systems are fast prototyping and ease of
implementation. These systems primarily rely on software
and use an existing hardware platform to map algorithms.
In the aforementioned schemes, as the basic hardware is not
tailor-made for the applications under consideration, the
achievable speedup is typically limited—the accelerators
built for sequence alignment based on FPGAs, GPUs, and

Published by the IEEE Computer Society

Authorized licensed use limited to: Washington State University. Downloaded on June 16,2010 at 22:14:21 UTC from IEEE Xplore. Restrictions apply.

30

CBE provide a speedup of around 100! [6], [71, [8], [9] over
standard serial implementation. But such generic hardware-
based systems can be used for multiple applications with
only software modifications.

For large-scale deployment of a data-intensive applica-
tion, performance and scalability are of major concerns, and
therefore, it is desirable that the hardware implementation
is optimized to suit the exact computation and on-chip
communication patterns that the application code gener-
ates. With biological databases already having reached
hundreds of billions of bytes and continuing to swell at
exponential rates, a simple search operation against a
database of known sequences involves an unprecedented
number of sequence alignment operations—at a magnitude
proportional to the size of the underlying database in the
worst case. To tackle this challenge and thereby advance the
state of biocomputing research to the next level, larger
magnitudes of speedups are necessary, which can only be
achieved by assimilating the latest breakthroughs in the
Integrated Circuit (IC) design. An effective way to address
this would be to integrate huge number of processing
elements on a single chip for exploiting the massive scales
of fine-grain parallelism inherent in bioinformatics applica-
tions. Computational systems based on multiple cores on a
single chip are emerging as a viable method to continue the
quest for higher performance in various application
domains [11], [12]. Network-on-Chip (NoC) is viewed as
an enabling methodology to obtain such high degree of
integration in a single chip [13], [14]. It is the digital
communication backbone, which interconnects the compo-
nents on a multicore System-on-Chip (SoC). Power and
wire design constraints are forcing the adoption of this new
paradigm for designing large multicore chips, which
incorporates modularity and explicit parallelism.

In this paper, we propose the design of NoC accelerators
for performing the sequence alignment operation. As part
of this effort, we designed and characterized the perfor-
mance of NoC architectures that implement two of the most
effective techniques for computing sequence alignment in
parallel—1) using the parallel prefix operation to compute
the DP table one row at a time and 2) using a systolic array-
based technique that exploits the task parallelism that can
be generated by processing one antidiagonal (same as
“minor diagonal”) of the DP table at a time. These
techniques have been implemented in algorithms primarily
designed for distributed memory parallel computers [15],
[16], [17], [18]. The parallel prefix-based approach guaran-
tees optimal parallel time complexity [15] and the anti-
diagonal guarantees optimal space complexity [17]. Here,
we map these two techniques onto the chip using NoC such
that the resulting architectures are optimized to suit the
underlying computational and communication patterns. A
subsequent comparative analysis of these two optimized
NoC implementations reveals the performance and energy
dissipation trade-offs. In addition, the results show that the
NoC-based accelerators can outperform other hardware
accelerators (based on FPGA, GPU, and CBE) by factors
ranging from 60 to 4,000, and our serial implementation by

1. In direct comparison, the speedup based on the NoC designs
presented in this paper exceeds 10* over serial implementations.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO.1, JANUARY 2010
factors ranging from 10* to 2.5 x 10*. The several orders of
magnitude in speedup observed are consistent with our
design-level expectations, and demonstrates the high
potential of NoC-based architectural design for biological
sequence analysis.

It is to be noted that the scope of the designs described in
this paper is restricted to the comparison of DNA or protein
sequences whose lengths can be fit into the on-chip
memory. Assuming that each character in a DNA or protein
sequence occupies a byte, this length can range from a few
hundreds to a few tens of thousands of characters.
Biologically, this range is sufficient to include most realistic
inputs—for example, DNA fragments generated in genome
sequencing projects contain anywhere between 30 and
1,000 nucleotides (or character positions); most genes
contain a few thousand nucleotides; and protein sequences
contain typically 200-500 amino acid residues. For compar-
ing full-length genomes that could span millions to even
billions of characters in length, coarse-grain parallelization
is more suited. In other words, the NoC architectures
proposed in this paper provide the fine-grain parallelism
that is required to ideally suit analysis wherein an abundant
number of relatively small alignment tasks are computed.

The rest of the paper is organized as follows: Section 2
reviews the literature on the set of hardware accelerators
that has been previously designed for sequence alignment.
Section 3 presents the main ideas behind the serial and
parallel algorithms for sequence alignment. In Section 4,
two different NoC architectures are proposed. Section 5
presents the experimental results of testing and comparing
our implementations. Finally, Section 6 concludes the
paper. Throughout the paper, we will refer to pairwise
sequence alignment as “PSA.”

2 RELATED WORK INVOLVING OTHER HARDWARE
ACCELERATORS

Several hardware accelerators have been previously devel-
oped for PSA. These accelerators are based on FPGAs [6],
[7], GPUs [8], or Cell Broadband Engine [9], [10]. Interest-
ingly, all the above accelerators except the CBE implementa-
tion in [10] use the antidiagonal-based technique for
parallelizing the computation of the DP table, as it can be
implemented using a simpler layout of processing elements.
However, unless the lengths of the two input sequences are
approximately equal, the time complexity of the underlying
parallel algorithm is suboptimal. From this perspective, it is
imperative to implement and study the effectiveness of the
parallel prefix-based technique, which guarantees an opti-
mal runtime as well. Such an implementation would require
a more complex layout of processing elements and support
for arbitrary network topologies. Consequently, the purpose
of this paper is to explore performance of NoC as a more
powerful and flexible methodology for sequence alignment.

As for performance results, Weiguo et al. report that the
GPU hardware GeForce 7800 GTX can perform up to
700 million DP cells per second, implying an overall time of
1.428 milliseconds for aligning two sequences of length ~1K
each. The GPU cores are deployed directly without being
optimized to implement the sequence alignment algorithm.

Authorized licensed use limited to: Washington State University. Downloaded on June 16,2010 at 22:14:21 UTC from IEEE Xplore. Restrictions apply.

SARKAR ET AL.: NETWORK-ON-CHIP HARDWARE ACCELERATORS FOR BIOLOGICAL SEQUENCE ALIGNMENT 31

The FPGA implementation by Oliver et al. reduces the time to
1 millisecond. The CBE implementation by Sachdeva et al.
using 16 Synergistic Processing Units (SPUs) runs in
0.65 millisecond. The other CBE implementation [10]
achieves a runtime of ~17 ms using eight SPUs. Once again
these SPUs are not optimized for bioinformatics application
suites. As a reference, our own serial implementation of the
Smith-Waterman algorithm [2] took 100 milliseconds for
aligning two 1K sequences on a 2.3 GHz Xeon CPU. This
observation is consistent with the near 100-fold speedups
reported by the authors of the aforementioned accelerators.
The goal of this paper is to drastically improve on the
speedup by orders of magnitude using custom-built opti-
mized NoC architectures.

3 ALGORITHMS FOR SEQUENCE ALIGNMENT AND
PARALLELIZATION

Sequence alignment is a way of measuring the similarity
between two sequences. Algorithmically, comparing two
sequences (or strings) is modeled as a combinatorial
optimization problem. Characters of one sequence are
“aligned” against characters of the other in an order-
preserving manner, and only a selected set of operations is
permitted at each aligning position: 1) “match” one
character with another, 2) “mismatch” (or substitute) one
character with another, and 3) align one character with an
empty (called “gap” and denoted by “-”) symbol on the
other string. Through a scoring scheme, a positive score is
rewarded for similarities (match) and negative scores are
assigned for differences (mismatches and gaps). The task of
computing an optimal alignment is therefore a task of
identifying an alignment with the maximum possible
overall score.

Computing an optimal PSA is a well-studied problem
[2], [3], [19]. While there are several variants of the problem,
the complexities of the underlying DP algorithms are
identical. Given two sequences s; and s, of lengths m and
n, respectively, an optimal PSA can be computed sequen-
tially using dynamic programming in O(mn) time and
O(m+n) space. This is achieved by computing an
(m+1) x (n+ 1)-sized table T such that T[i,j] contains the
optimal score for aligning the prefixes Si[l..i] against
Sy[1..j]. For example, the global alignment” score of aligning
prefixes S1[1..i] and S»[1..j] is given by

T[i—Lj—lHU(‘ilH 2[1])
T[Za]] = max T[Z - 15]]) (1)
T[l>.7 - 1] -

where g > 0 corresponds to the gap penalty and o() to the
score for substituting s, [i] with s,[j] or vice versa. As can be
noted, the value at T[i, j] depends on the cells T[i-1, j-1],
T[i-1, jl, and TI[i, j-1]. Sequentially, this dependency
constraint can be met during computation through a
“forward pass” of the table in which the table is computed
one row at a time starting from the first row, and within
each row computing column by column starting from the

2. There are other commonly used formulations such as the local and
semiglobal alignments Algorithmically, the recurrences are slightly mod-
ified variant of (1), with no impact on the overall complexities.

S2 el

-lajclt|lAalT|AlG|A]lC
-lof4 [2]3]4|5[6]7] 8]0
S A la [~ 0] |2 [3|4]5]-6 7
cl-2]0 ve=glo |4 |2]3]44]5
Alald 1] 1N 1]0]1]2]-3
Gla 2[00 [1 o[1[0~
A|5[-3 |4 1 [1]0 [1] 21
G|6[-4]21]21]0]o0o [1TN\s,[21]1
Tl7[5[3 A4 1o 2§ 271
Als[6 [4]2]oJo 212
A9 (7 |5 |3 |1 |1 | 1] 1] N2
C|[10[8 |6 |4 |2 [2 |0] 0] 1S

Optimal Alignment AC-AGAGTAAC
ACTATAG-A-C

Fig. 1. Example of computing the global alignment between two
sequences using Needleman and Wunsch algorithm [3]. The arrows
show the optimal path. The following scoring scheme was used:
match score = 1, mismatch penalty = 1, and gap penalty = 1.

first column. At the end of the forward pass, the optimal
score is available at T[m, n]. The next step is a “backward
pass” in which an optimal path (or equivalently, an optimal
alignment) that led to the optimal score is retraced from
T[m,n] to T[0,0]. Fig. 1 illustrates an example DP table along
with its optimal path.

Parallelization. There are two main challenges in
parallelizing DP algorithms for PSA: 1) meeting the
dependency constraint without affecting the parallel speed-
up during forward pass and 2) computing the optimal
retrace without storing the entire DP table during forward
pass. To meet these challenges, several coarse-grain parallel
algorithms have been previously developed [15], [16], [17],
[18], [20]. These algorithms offer varying degrees of
computational complexities and ease of implementation.
The algorithm by Huang [17] develops on ideas proposed by
Edmiston and Wagner [16] by using the antidiagonal
approach during forward and backward passes. The guiding
observation is that the cells along the same antidiagonal of
the DP table are not interdependent, and therefore, can be
computed in parallel. If p denotes the number of processors,
then this algorithm requires O(*"-"~ m“’)) time and O(™£) space.
Aluru et al. [15] devised an alternatlve strategy that over-
comes the dependency constraint by reformulating the
problem of computing the scores within a row in parallel
using the parallel prefix operation. This algorithm requires
O(**) time and O(m + %) space, assuming that m = O(n).
The algorithm by Rajko and Aluru [17] uses a combination of
these ideas to arrive at a more complex albeit time- and
space-optimal solution—i.e., O(**) time and O(***) space.

For mapping onto the NoC architecture, we based our
choice on the following factors: 1) parallel runtime and
space complexities, 2) relative ease of adoption to the on-
chip framework, and 3) the potential to fully benefit from
the on-chip communication network. Based on these factors,
we selected the algorithms by Aluru et al. [15] and Huang
[17] for implementations in this work. While it will be ideal
to also evaluate the optimal algorithm by Rajko and Aluru
[18], it is highly complex for implementation. It is to be
noted that none of the previously proposed hardware
accelerators implemented the parallel prefix approach.

Authorized licensed use limited to: Washington State University. Downloaded on June 16,2010 at 22:14:21 UTC from IEEE Xplore. Restrictions apply.

32

n/p
Characters s2 .

0 J

| .

Cell T[i,j] depend¥ on
T[i,j-1], T[i-1,j-1] and
TLi-1,j]

s1 |
Time \I :NA
Step i N a N
| | |

m | |

PE, PE, [o

® FE-

Fig. 2. Computation of the DP table in parallel using p processors in the
parallel prefix approach.

In what follows, we briefly outline the main ideas behind
these two algorithms. For convenience, we will refer to the
algorithm by Aluru et al. as the “PP algorithm” (for parallel
prefix), and the algorithm by Huang as the “AD algorithm”
(for antidiagonal).

We implemented three of the most popular variants of
the alignment problem—global [3], local [2], and semiglobal
[21]. To best reflect practical application, we implemented
the affine gap penalty function model [19] in which the gap
penalty function grows linearly with the length of the gap in
an alignment. Algorithmically, this is achieved by comput-
ing three DP tables (T, Ty, and T3) instead of one DP table.
However, the underlying runtime and memory complex-
ities for computing alignments based on the affine gap
model are exactly the same as that of the single-table
constant gap model. The actual time and memory costs in
practice are expected to only increase by a factor of 3.
Because of this algorithmic equivalence and for ease of
exposition, we will describe the parallel algorithms below
for the single-table constant gap model, even though we
implemented the more generic affine gap model.

The PP approach. The PP algorithm partitions the input
sequence s into p pieces such that each PE receives roughly
n/p characters (as shown in Fig. 2). The other input
sequence s; is made available to all the PEs one character
at a time. Throughout, we will assume p to be a power of 2
although the algorithm can be easily extended to arbitrary
processor sizes through a virtual padding scheme. The
(m+1) x (n+ 1)-sized table T computation is divided into
p roughly equal parts such that PE p; is assigned the
responsibility of computing the ith block of O(n/p) columns.
The forward pass in table computation proceeds iteratively,
row by row, such that at any given iteration i, all the PEs
participate in computing row i in parallel. We identify each
iterative step as one “time step.” Within each row, the
algorithm reduces the problem of computing the recurrence
in (1) to the problem of computing the following recurrence:

; wm+m}
X|jl = .)

[J] { X[j . 1}
where 0 < j < n and wlj] is obtained by local computation
(without any need for communication). Computing this
recurrence is equivalent to the problem of finding

n + 1 prefix maximums, which can be easily accomplished
using the PP operation as follows: Since each row is

(2)

IEEE TRANSACTIONS ON COMPUTERS, VOL.59, NO.1, JANUARY 2010

Processors - PE
loc(p) 1 2 3 4 5 6 7 8
2 © %2 ¢ %2 ¢ n
Time Step C O 9 D ¢ 9D
| < T - -
G G G &9 9 99

Fig. 3. Communication pattern generated by the PP algorithm.

partitioned into roughly O(n/p) blocks and assigned to
p PEs, the prefix maximums can be computed by first
computing p local maximums in an O(n/p) computation
step, and then using O(log p) communication steps to update
their local prefix maximums into global prefix maximums.
More specifically, at communication step k (for 0 <k <
(logp)), PE; exchanges its most recent global maximum with
PE; such that j = i + 2¥ and the kth least significant bits in
the binary representations of i and j are 0 and 1, respectively.
For example, in a 4 processor system and at k =0, PEy
exchanges with PE;, and PE, exchanges with PE3; atk =1,
PE, exchanges with PE;, and PE; exchanges with PE;. The
time steps of the inter-PE communication scenario for eight
PEs are shown in Fig. 3. Consequently, each time step can be
completed by performing: 1) an O(n/p) local computation
and 2) an O(log p) parallel prefix communication. After the
last row is fully computed, the PEs reverse their computa-
tion by progressing from last row to top row and retrace an
optimal alignment path that yielded the optimal score at cell
T[m,n]. However, this would require that the entire table be
stored, implying an O(mn) aggregate space complexity. To
allow retracing an optimal alignment in just O(*.*) space,
each PE stores all the entries in the last column of its block of
n/p columns and then uses this information to retrace. This
step can be achieved in O(n/p) computation time and
O(p) communication time. In the interest of space, we omit
the details of analysis and proofs, and refer the reader to the
original paper [15]. It has been proved that the algorithm has
an overall computation complexity of O(mn/p) and a
communication complexity of O(mlogp) on a distributed
memory parallel computer [15].

The AD algorithm. This requires that both the input
sequences s; and s are made available to all the PEs. For the
forward pass, the algorithm proceeds iteratively by comput-
ing one antidiagonal of DP table at each “time step”, where an
“antidiagonal” is defined as the subset of cells [i, j] that has the
samei + jvalue. Foran (m + 1) X (n + 1) DP table, there are a
total of m + n + 1 antidiagonals with values0,1,2,...,m +n,
and the algorithm computes the tth antidiagonal at time step t
(asshownin Fig. 4). All the cells within an antidiagonal can be
computed in parallel because the value at any T[i, j] depends
on the values already computed and available from previous
two time steps. The next question is to identify the PE that will
work on each cell of an antidiagonal. It turns out that the
assignment of PEs to cells does not matter for the overall
complexity as long as the number of PEs working on an
antidiagonal is maximized. Therefore, in this paper, we adopt
a strategy that will assign PEy, to the cells in the antidiagonal
that have the form [i, j] such that (i mod p) = k. This is shown

Authorized licensed use limited to: Washington State University. Downloaded on June 16,2010 at 22:14:21 UTC from IEEE Xplore. Restrictions apply.

SARKAR ET AL.: NETWORK-ON-CHIP HARDWARE ACCELERATORS FOR BIOLOGICAL SEQUENCE ALIGNMENT 33

(7 < 4
O &N L&
&\-@Q «;@Q &&Q

(1) oooo

Os

Fig. 4. Antidiagonal table computation. The numbers within the cells
represent the PE responsible for computing it.

in Fig. 4. We selected this cyclic allocation scheme because the
communication pattern that emerges from such a setting is a
simple neighborhood communication—i.e., the data that PEy
needs to compute a cell (i, j) are present either within itself or
in PEy_; (as shown in Fig. 4).

For the backward pass, the main challenge is to
reconstruct an optimal path in the absence of the entire
DP table stored at the end of the forward pass, as otherwise
the space complexity will be ©(mn). The algorithm by
Huang uses a variation of the Hirschberg technique for
space reduction [22], by identifying the cell (i',j’) in the
middle antidiagonal through which an optimal path must
have passed. Once such a cell is found, the problem space
can be recursively subdivided into reconstructing the paths
on the left-top and right-bottom sides of (i',j'). In this paper,
we developed another variant that directly uses the
Hirschberg technique. In this scheme, the special cell (7',]')
is defined to be ([m/2], j) through which an optimal path is
guaranteed to pass. We achieve this by propagating all
possible “candidate” cells during the forward pass such
that the candidate that propagates to the last cell (m + 1) x
(n+1) is the winner. Once such an (/,j) is found, the
original problem of retracing the DP table from (m+1,
n + 1) back to (0, 0) reduces to two disjoint subproblems:
1) retrace from (m+1, n+1) back to ([m/2],7) and
2) retrace from ([m/2],j) back to (0, 0). These two
subproblems can be solved using recursion. To maintain
parallel efficiency during these recursive steps, we partition
the processor space into two subsets such that the number
of PEs in each subset is proportional to the number of cells
for computation in the corre?porsding recursive step. The

m+n

AD approach also requires O(*= =) time and O(%’”) space.

4 NoC IMPLEMENTATION

4.1 Mapping the Sequence Alignment Algorithms to
NoC

Instead of depending on FPGAs or any other existing

processing platforms, we designed tiny PEs operating on a

particular segment of the table T, as explained in Section 3,

and integrating them using an NoC.

swich (@)

Processing Element I:l

Fig. 5. (a) Mapping of the PP algorithm into a mesh. (b) Mapping of the
AD algorithm into a mesh with an embedded ring.

4.1.1 The PP Implementation

The communication is always point-to-point and the PEs are
required to exchange a single integer number among them.
As an example, the interprocessor communication steps for a
system with eight PEs are shown in Fig. 3. Consequently,
instead of building a full-blown packet-switched network, a
simpler circuit-switched NoC is designed. The total time
required to complete a sequence alignment operation
depends on the computation time taken by each PE and the
communication time needed to exchange data among the
PEs. The algorithm is structured such that at every time step,
there is an O(n/p) local computation phase followed by a
communication phase. The communication carries out a
parallel prefix operation in O(log p) stages, but the overall
communication time will depend on the architecture of the
NoC and placement of the PEs. Therefore, it is important to
place the PEs in the NoC in such a way so as to reduce both the
latency and energy dissipation in communication. While
there are multiple NoC architectures [14], the hypercubic
topology is best suited for the parallel prefix operation. But a
physical realization of the NoC is limited by the layout
dimension of the chip, which is predominantly 2D in practice.
For a system size of p, if we construct a log,p-dimensional
hypercube, then the number of hops between any two PEs
is always 1. But as shown in Fig. 5a, if we embed a
log,p-dimensional hypercube into a D-dimensional mesh,
which is more realistic from an implementation perspective,
then the number of hops in the ith communication step is
given by (3):

L, =27l (3)

where i can range from 1 to log,p. Hence, the maximum
communication latency (in number of hops) between any
two PEs is given by (4):

Lmax =2 LIDE’%FIJ . (4)

Given that there are exactly [log, p| time steps within one
parallel prefix operation, the total communication time T (in
hops) of the parallel prefix operation is given by (5):

logy p

T=Y 27 (5)

Authorized licensed use limited to: Washington State University. Downloaded on June 16,2010 at 22:14:21 UTC from IEEE Xplore. Restrictions apply.

34

. ik
|
o
e »-
[
o>

.w
‘.»
[N
[1)
kS
\g K
.
\
~

o} 10 13 14

*—0 o—@ Comm step1=—— —— - Comm step 3 ——
Comm step2=-=====-

i 12 15/ 16

—Oo OO

(b)

Fig. 6. (a) The communication pattern for backward pass in PP. (b) The
communication pattern for backward pass in AD.

For 2D, the above series, and hence, T evaluate to (2\/5 X
p—2) if log p is even, and ((\%)p— 2) otherwise. Given
that there are O(logp) time steps, the above results yield
an average of O(p/logp) number of hops per time step for
both cases.

It is not practical to implement any arbitrarily higher
dimensional hypercube. For example, a system with 64 PEs
would necessitate construction of a 6D hypercube. Therefore,
for investigation, we designed a 2D mesh-based NoC for
carrying out sequence alignment. When the communication
pattern shown in Fig. 3 is mapped to a 2D mesh-based NoC,
even a data exchange between two hypercubic neighbors
may cost several hops. But a well-defined property of the
communication pattern in parallel prefix algorithm is that
PEs do not communicate arbitrarily. As an example, in a
system with 16 PEs, if the placement of Fig. 5a is followed,
then the worst-case communication latency arises while
communicating between PEs separated by two hops. With
increasing system size, this worst-case communication
latency will be more. For a system with 64 PEs, the worst-
case latency in a communication step will be four hops.

As explained above, the forward pass is followed by a
backward pass operation. This step is implemented using
p-1 neighbor PE communication exchanges, as the PEs
regenerate the path from cell [m, n] to [0, 0]. We modeled
this communication pattern as a Z space filling curve as
shown in Fig. 6a.

4.1.2 The AD Implementation

In the AD approach, the forward pass requires only a
neighborhood PE communication pattern, as explained in
Section 3. More specifically, the three values required to
compute T[i, j] are available from the previous two
antidiagonals, and because of the cyclic allocation strategy
that we used to map PEs onto the antidiagonals (see Fig. 4),
these cells are either present in the same PE or the previous
PE. The exception is the first PE which will depend on the last
PE due to the cyclic allocation. Therefore, it suffices to use a

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO.1, JANUARY 2010
ring topology. In our implementation, we achieve this by
embedding a ring into the mesh, and following the Moore
space filing curve, which is similar to the Hilbert curve [23] for
PE numbering. The placement of PEs is shown in Fig. 5b.

This interconnection enables single-cycle communication
among the neighboring nodes. At every time step, each PE
works on one antidiagonal of the DP table. If the length of
an antidiagonal is greater than the number of PEs, then the
cells are computed in multiple stages. The number of such
stages is given by

Stages per Anti Diagonals
(6)

_ Average Anti-Diagonal length. - m
- #PFs Top’

where m < n without loss of generality. The communication
steps follow each of the computation steps at each cell. This
implies that the total number of data exchanges is propor-
tional to (m + 1) x (n + 1). Note that this result is unlike the
PP approach; the communication volume is independent of
the number of PEs during the forward pass.

In our backward pass implementation, we partition the
processors into two subgroups, and the number of proces-
sors in each of the subgroups depends on the number of cells
in the two partitions. The processor grouping requires a
broadcast operation, as shown in Fig. 6b, to propagate the
new partitioning cell coordinate to all the PEs, which takes
O(logp) time (where p is the number of PEs).

4.2 NoC Switch Design

Due to the deterministic pattern of communication in case
of both the PP and AD techniques, we designed simple pass
transistor-based switch boxes [24] to forward the data from
one PE to the other, instead of designing network routers
for data communication.

In the PP approach, data exchanges between two
nonadjacent hypercubic neighboring PEs give rise to higher
communication delay. To reduce the delay, instead of
building a multihop or pipelined communication link
between two nonadjacent PEs, the switch boxes are designed
to establish a direct communication path (unpipelined or
single hop) between the PEs [25]. As an example, for the
mesh shown in Fig. 5a, a particular communication step
requires that PE; communicates with PE5, and simulta-
neously, PE; communicates with PEg. In this situation, the
switch box connected to 2 should be configured in such a
way that a direct communication link is established between
1 and 5 as shown in Fig. 7. The architecture of a switch is
shown in Fig. 8. Commensurate with all the time steps in the
parallel prefix operation (shown in Fig. 3), the switch is

Switch Box Switch Box

la—> Time step ‘t’
FEepony
-1 I | — Time step ‘1-1
Switch Box Switch Box ‘———

b Vo

} Vo

Fig. 7. Establishment of communication links facilitating bypass during parallel prefix.

Authorized licensed use limited to: Washington State University. Downloaded on June 16,2010 at 22:14:21 UTC from IEEE Xplore. Restrictions apply.

SARKAR ET AL.: NETWORK-ON-CHIP HARDWARE ACCELERATORS FOR BIOLOGICAL SEQUENCE ALIGNMENT 35

Processin
Port 1 IP°" 2 Elementg
/0 Port | *
Port 8 & [Eort3
e 2
Port 9
= €
Port 7| © o | Port4
«—> 9 o [
° Q
: =~
1/0 Port 1/0 Port
Port 6 IPortS

Fig. 8. Generic switch architecture for both PP and AD approaches.

designed to establish direct path between any two commu-
nicating neighbors in the vertical and horizontal directions.
For a system with 16 PEs, the communication steps within
the parallel prefix operation are shown in Fig. 9. In “Time
Step 1”7 of parallel prefix, the neighboring processing
elements communicate (like 1-2, 3-4, 5-6, etc.). For example,
to exchange data between PE; and PE,, the following pass
transistors will be on: Miphl and Mh1l of the switch
connected to PE;, and Miphl of the switch connected to
PE,. The same switch setup facilitates data transfer among
PE;-PE4, PE;-PEg...PE;5-PEs6. In the subsequent time steps,
other switches involved in the communication are config-
ured accordingly (by turning on suitable pass transistors in
the switches). With increasing system size, the number of
ports in the switches needs to increase to facilitate single-hop
or unpipelined communication. On the contrary, the number
of ports in the multihop scenario does not increase as the
message ripples through the intermediate switches. During
the backward phase, the data transfer is serial, and hence, no
new modification is required in the existing communication
infrastructure.

For the AD technique, during the forward phase, only
neighboring PEs communicate simultaneously. The back-
ward pass requires broadcasting of information, which is
implemented as shown in Fig. 6b. To achieve the simulta-
neous communication among multiple nonadjacent PEs
during this phase, the bypass strategy of the PP imple-
mentation is adopted here too.

5 EXPERIMENTAL RESULTS

Input data. Given that the complexities of the PSA
algorithms discussed above depend only on the lengths of
the sequences being compared (and not on the sequences
content), we used two arbitrary DNA sequences with lengths
1,024 characters each in all our experiments. In practice, the
length 1,024 represents the length range for sequences that
can be experimentally generated (or “sequenced”) using a
traditional Sanger sequencer [26]. These sequences consti-
tute a typical input in genome sequencing projects, where a
massive number of pairwise alignments are computed over
millions of such sequences. However, we also note that there
are DNA sequences of a vast length ranges in public
databases—from tens to hundreds of characters (e.g., short
reads from new generation sequencing), to thousands of
characters (genes), to tens of thousands to millions and even
billions of characters (fully assembled whole genomes). Even
though we selected 1,024 for our input tests, our NoC
implementations can be used to any of these length ranges as
long as the sequences fit in an on-chip memory. Fixing the
input size in all the experiments allowed us to conduct a fair
comparative evaluation of the different NoC architectural
topologies in our implementations.

Experimental setup. We present here experimental
results of our NoC implementations for the two algorithms
described in Section 3: PP and AD. We studied the timing
requirements and the energy dissipation for both cases.
Each character of a string was represented using 3 bits. This
is because the alphabet size of DNA sequences typically
used in practice is 5 ({a, ¢, g, t, n}). In all our implementa-
tions, the PEs need to exchange only integer data among
them. Each integer number used during the communication
was represented by 16 bits. Each PE was designed to
perform the required character comparison, which is the
primary unit operation in string alignment. The PEs were
implemented in RTL and then synthesized using the 90 nm
standard cell library from CMP (http://cmp.imag.fr/). The
PEs communicate with each other with the help of switches.
The switches mainly consist of pass transistor logic and
were designed using Cadence Spectra tools.

We considered two types of NoC implementations: 1) a
“Pipelined” communication scheme, where all the non-
adjacent PEs communicate in multiple hops step by step
and 2) an “Unpipelined” communication scheme, where the
nonadjacent hypercubic neighboring PEs communicate in a
single hop with the help of bypass. Performances of both

(@) (b)

Fig. 9. Different time steps in communication during parallel prefix (PP). The shaded arrows represent the different simultaneous communications
taking place for each parallel prefix step. (a) Time step 1. (b) Time step 2. (c) Time step 3. (d) Time step 4.

Authorized licensed use limited to: Washington State University. Downloaded on June 16,2010 at 22:14:21 UTC from IEEE Xplore. Restrictions apply.

36

IEEE TRANSACTIONS ON COMPUTERS, VOL.59, NO.1, JANUARY 2010

Time Requirements for String Length 1024

1.50E-05
300 %

increase
200 %
increase

O Un-pipelined
M Pipelined

1.00E-05 114%

increase

)
o
£
=

5.00E-06

0.00E+00 -

8 16 32 64
Number of PEs

128

Energy Dissipation Profile for String Length 1024

5.00E-05
@ Un-pipelined
o 0.84 %
4.00E-05 - ™ Pipelined s
3 3.00E-05
> T
o 7.43 % more
2 200E-05
w
1.00E-05
oooevce [T
8 16 32 64 128

Number of PEs

(a)

(b)

Fig. 10. (a) Time requirements comparison for PP. (b) Energy dissipation profiles for PP.

schemes were compared in terms of energy and timing. The
energy dissipation and the total time required in the
sequence alignment operation depend on the PEs and the
communication infrastructure. The energy dissipation and
delay of the communication infrastructure, in turn, depend
on two components, the switch blocks and the interswitch
wires. The energy dissipation and delay of the switch blocks
were determined using the CADENCE Spectra tool. The
clock frequency of operation was 1.667 GHz. The delay and
energy dissipation of the interswitch wires depend on their
capacitance, which was calculated by taking into account
each interswitch wire’s specific layout by the following
expression:

Cinterswitch = Cu;ire * Wi, +n-m- (CG + CJ): (7)

where C,,;,. represents the capacitance per unit length of the
wire, w;11; is the wire length between two communicating
switches, n is the number of repeaters, m represents the size
of those repeaters with respect to minimum size devices,
and finally, Cq and Cj represent the gate and junction
capacitance, respectively, of a minimum size inverter. The
energy dissipation and delay incurred by each PE are
obtained using Synopsys Design Vision.

5.1 Pipelined versus Unpipelined Implementation

As a first step, we compare and contrast the performance of
the NoC for the pipelined and the unpipelined implemen-
tations. We conduct this analysis only for the PP imple-
mentation. For the AD implementation, only neighborhood
PEs communicate (in a ring topology), and therefore, all
data transfers will be inherently single hop, no bypass
strategy is needed.

Figs. 10a and 10b show the timing and energy dissipation
profile of the NoC with varying system size. As can be
expected from Fig. 10a, the pipelined implementation takes
much longer time to complete than the unpipelined
implementation. The total time has two parts: communica-
tion time and computation time. With increase in system
size, the communication time increases because there will
be more number of time steps within each parallel prefix
operation in both the multihop and single-hop scenarios.
However, the computation time of each PE decreases due to
reduction in the substring length. But in the pipeline
scenario, the communication time dominates over the

computation time significantly (as an example, 14:1 ratio
for a system size of 64). This is true for the unpipelined case
as well, but the ratio is smaller (6:1 for the same system). As
a result, in the pipelined case, the rate of increase of overall
time with increasing system size is much higher than the
corresponding unpipelined implementation. Contrary to
the timing characteristics, the unpipelined case dissipates
more energy (as shown in Fig. 10b). This can be attributed
to various factors: 1) the increase in the interconnect length
traversed in one communication cycle, 2) buffers along the
path, and 3) increase in switch complexity.

It can be observed in Fig. 10 that the unpipelined
implementation provides significantly more savings in time
compared to the pipelined one, while resulting in very little
penalty in energy consumption for all system size. As an
example, for a system size of 128 PEs, the unpipelined
implementation achieves more than 300 percent improve-
ment in time while consuming only 0.84 percent more energy.
This result indicates the value added by the bypass strategy.
As a result of this analysis, we adopted the unpipelined
strategy in the final implementation of PP, and all the
corresponding results presented henceforth are for the
unpipelined implementation.

5.2 Energy and Timing Characteristics of the
PP Approach

Fig. 11 shows the energy and timing characteristics of our
NoC implementation of the PP approach. Fig. 11a shows
the energy dissipation profile with varying the number of
PEs for the PP operation. The two contributing factors are
the communication and computation energy. The increase
in the communication energy with system size is attributed
to the increase in total number of communication steps. On
the contrary, the computation energy reduces very slowly.
With doubling the system size, the work performed by each
PE reduces by half. Hence, the energy per PE also reduces.
It is observed that with doubling system size (halving the
string length handled by each PE), the factor of energy
reduction per PE is slightly more than 2. Consequently, the
total computation energy has a slow decreasing trend with
doubling system size. Overall, the net energy trend is
dominated by the communication energy.

The timing characteristics of our PP implementation are
shown in Fig. 11b. For a system with p PEs, each parallel
prefix operation involves O(log p) communication steps. As

Authorized licensed use limited to: Washington State University. Downloaded on June 16,2010 at 22:14:21 UTC from IEEE Xplore. Restrictions apply.

SARKAR ET AL.: NETWORK-ON-CHIP HARDWARE ACCELERATORS FOR BIOLOGICAL SEQUENCE ALIGNMENT 37

Energy Dissipation Profile for PP Approach

5.00E-05

4.50E-05 —o— Computation Energy

4.00E-05 1 —=Communication Energy

3.50E-05 +
= ——Total Energy //
; 3.00E-05 //
E) 2.50E-05
o
c 2.00E-05
w 1.50E-05

1.00E-05

5.00E-06

0.00E+00

8 16 32 64 128

Number of PEs

Timing characteristics for PP approach
8.00E-06 -
—— ion Ti
7 00E-06 Computaflon.Tlme?
~&—Communication Time
6.00E-06 —&—Total Time 7
E 5.00E-06
@ 4.00E-06 -
E
= 3.00E-06 -
2.00E-06
1.00E-06
0.00E+00
8 16 32 64 128
Number of PEs

(a)

(b)

Energy-Time Product for PP Approach
2.50E-10 -
——E-T Product
-~ 2.00E-10
4
2
‘S 1.50E-10 -
=
K
A 1-00E10 optimum number of
[PEs,
W 5.00E-11
1
0.00E+00 ‘
8 16 32 64 128
Number of PEs

Fig. 11. (a) System energy profile. (b) Timing requirements. (c) The E-T product for PP approach.

there are m rows, where m denotes the length of string s,
the total communication time for the entire alignment
operation is O(mlogp). Consequently, with increasing
number of PEs, the communication time increases. At the
same time with increasing system size, the number of
columns in the DP table, and hence, the overall workload
handled by each PE decrease. In fact, the computation time
of each PE almost halves with doubling the system size
until the input size becomes too small for the system size.
This explains the observed trend of the computation time in
Fig. 11b. Consequently, the total time needed to perform the
alignment operation, which is the sum of the computation
and the communication time, first decreases and reaches a
valley, but beyond a certain number of PEs, it again starts
increasing. In all our experiments, we observed that more
than 90 percent of the overall time was spent on the forward
pass of the algorithm.

To determine the optimum number of PEs, we consider
the variation of the energy-time product with respect to the
system size. In Fig. 1lc, it can be observed that for
comparing two strings of length 1,024, for the PP algorithm,
the optimum number of PEs turns out to be 16.

5.3 Energy and Timing Characteristics of the AD
Approach

Fig. 12 shows the energy and timing characteristics of our

NoC implementation of the AD approach. Fig. 12a shows

the energy characteristics. In the AD approach, the total
number of communication steps during forward pass is
O(mn), irrespective of the system size, where m and n are
the lengths of the two strings. This is because there is a data
exchange at every cell of the DP table. Consequently, the
communication energy in the forward pass remains un-
changed with increase in the system size. However, during
the backward pass, the communication energy increases
with the system size due to the broadcast operation. This
explains the slow rise in the total communication energy
shown in Fig. 12a.
The computation energy is given by

Comp.Energyap = E, x #PE x #Comp.cycles, (9)

where E, is the energy of a single processor per computa-
tion cycle. As the system size doubles, the number of total
computation cycles per processor halves. Therefore, the
product of these two factors is an invariant for a given input
size. Reduction in E, with increase in system size can be
explained as follows: At any given time step, all the PEs are
working on one antidiagonal. If the length of the anti-
diagonal is greater than the number of PEs, then the
antidiagonal has to be computed in more than one parallel
step. Consecutive parallel steps involve a certain number of
computation stages performed by each PE as given in (6),
which is inversely proportional to the system size. As a

Authorized licensed use limited to: Washington State University. Downloaded on June 16,2010 at 22:14:21 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL.59, NO. 1,

JANUARY 2010

38
Energy Dissipation Profile for AD Approach
7.00E-05
—o— Computation Energy
6.00E-05 | == Communication Energy /A
5.00E-05 - —&— Total Energy
s
> 4.00E-05 - T
o
@ 300E-05
|-t
w /
1.00E-05
0.00E+00
8 16 32 64 128 256
Number of PEs

Timing characteristics for AD Approach

1.00E-04 -
—&— Computation Time

8.00E-05 - \ =i Communication Time
‘—A—Total Time

6.00E-05

4.00E-05

2.00E-05

0.00E+00

32
Number of PEs

128

(@)

(b)

Energy -Time Product for AD Approach

4.00E-09 A\
0
2 3.00E-09
et
[3)
3
© 2.00E-09
o
o
Ly
W 1.00E-09

0.00E+00

8 16 32 64
Number of PEs

——E-T Product

Optimum number of
PEs
|

128

256

(©)

Fig. 12. (a) System energy profile. (b) Timing requirements. (c) The E-T product plot for AD approach.

result, if the number of PEs increases, the number of stages
per antidiagonal computation reduces. Consequently, the
number of times each PE is activated reduces, contributing
to lower overall computation energy. This is confirmed in
the results shown in Fig. 12a. Consequently, the total energy
first reduces (following the decrease in computation
energy) and then increases as communication energy starts

to dominate, as shown in Fig. 12a.
Both communication and computation time complexities

of the AD approach are O(@) Since in our experiments,
m =n, this is equivalent to O(W} Therefore, as the
system size doubles, the overall time halves as shown in
Fig. 12b. Fig. 12c shows the energy-time product for the
AD approach, and as can be observed, the optimum

number of PEs is 128.
Table 1 presents a comparative performance evaluation

between the PP and AD algorithms in terms of energy
dissipation and timing. It is evident that the PP approach
outperforms the AD both in terms of time and energy when
the system size is less than or equal to 64. But, as we
increase the number of processors beyond 64, the sharp rise
in the communication energy in PP attributes to rise in its
total energy. Thus, for large system sizes, AD approach
outperforms PP in terms of energy dissipation, though it
still takes more time.

5.4 Impact of Varying String Sizes

Initially, in our analysis, the lengths of the two strings were
maintained equal. Here, we study the effect of comparing
two strings of different lengths. Fig. 13 shows the impact of
varying the string sizes on the timing and energy
dissipation for the PP implementation. In order to allow
a fair comparison, we varied the string sizes but keeping
the total work (i.e., number of cells in the DP table) same.
We considered four different combinations for s; and ss. As
the number of rows is decreased and/or the number of
columns increased, the total time and energy both
decrease. This can be explained by the decrease in the
number of communication steps with decreasing number
of rows, though the total amount of computation still

TABLE 1
Comparative Evaluation of PP and
AD Schemes for 1IKX1K Data

System Energy (J) Time (s)
Size PP AD PP AD
8 5.57E-06 46.4E-06 7.24E-06 91.3E-06
16 7.01E-06 42.6E-06 5.15E-06 47 .4E-06
32 10.7E-06 39.8E-06 4.41E-06 25.7E-06
64 20.3E-06 38.9E-06 4.30E-06 15.3E-06
128 47.2E-06 43.2E-06 4.61E-06 10.4E-06

Authorized licensed use limited to: Washington State University. Downloaded on June 16,2010 at 22:14:21 UTC from IEEE Xplore. Restrictions apply.

SARKAR ET AL.: NETWORK-ON-CHIP HARDWARE ACCELERATORS FOR BIOLOGICAL SEQUENCE ALIGNMENT 39

Energy Dissipation for DNA Sequence Matching
3.50E-05 -
\ == Total Energy 64PE
3.00E-05 =& Total Energy 32 PE|
— 2.50E-05 —8—Total Energy 16 PE
2
> 2.00E-05
2
@ 1.50E-05 A
=
W 1.00E-05 \\
5.00E-06 -
0.00E+00 , w
(2K|500) (1K[1K) (500]2K) (250/4K)
Dimensions of the computation table (Row|Col)

Timing Requiments for DNA Sequence Matching

9.00E-06
8.00E-06
7.00E-06
6.00E-06 -
5.00E-06
4.00E-06
3.00E-06
2.00E-06
1.00E-06
0.00E+00

—o—Total Time 64PE ——
—&—Total Time 32PE —
—-Time Time 16PE __

Time (s)

N~
\

(2K|500) (1K[1K) (500(2k) (250/4K)

Dimensions of the computation table (Row|Col)

(a)

(b)

Fig. 13. (a) System energy profile. (b) Timing requirements plot obtained by varying the lengths of the strings using the PP implementation. The rows
correspond to the characters in s1 and the columns correspond to the characters in s2.

remains the same. For the AD approach, the computation
is always along the antidiagonal and the communication is
only with the neighboring PE. Hence, there is no change in
either time or energy when the string lengths were varied
keeping the area of the DP table the same.

Next, we increase the number of bits from 3 to 4 for
representing each of the characters of the DNA sequence to
accommodate standard ambiguous character encoding.
Tables 2 and 3 show the timing and energy statistics,
respectively, using the PP implementation. It can be
observed that the total time and total energy increase only
marginally from 3 to 4 bit representation.

5.5 Parallel Prefix Implementation on Protein
Sequence Data

We also undertook another case study with protein
sequences, which contain one of 20 amino acid residues at
each character position. In Fig. 14, we present the energy and
timing results on amino acid sequences of length 256 x 256
(to reflect the average length of a protein sequence). We
adopted the PP algorithm (5 bit representation for each
protein character) and used the PAM substitution matrix [27]
for assigning the score. The trend is very similar to that for
the DNA sequences of length 256 x 256 except for an increase
in time and energy. The energy increase has been a result of

TABLE 2
Timing Comparison for 1IKX1K Data
Number of PEs 3 bit (s) 4 bit (s)
64 4.30E-06 5.27E-06
32 4.41E-06 5.92E-06
16 5.15E-06 6.09E-06
TABLE 3
Energy Comparison for 1KX1K Data
Number of PEs 3 bit (J) 4 bit (J)
64 20.3E-06 21.9E-06
32 10.7E-06 11.4E-06
16 7.01E-06 7.50E-06

the increase in computation energy due to table lookup.
There is no change in the communication energy. The
increase in time is also due to the increase in computation
time. The same trend as DNA sequence matching is expected
while implementing using AD algorithm.

5.6 Discussion

To assess the real benefit that can be realized using our NoC
implementation, we compared our runtimes against other
hardware accelerator implementations and our own serial
implementation on a 2.3 GHz Xeon CPU. The results are
tabulated in Tables 4 and 5. The time needed to transfer the
sequences from main memory and writing back the resultant
path back to the main memory depends on the adopted
interface mechanism. If the NoC-based chip is used as a
coprocessor on the same mother board as the main
processor, then the total time was about 0.096 ps. This
number is derived using a bus width of 128 and a bus speed
of 1,333 MHz. On the other hand, if the PCI express 3.0 is
chosen as the interfacing standard, then the timing require-
ment is higher, which is around 2 pus. The coprocessor-based
implementation overhead is included in the timing data for
our NoC implementation presented in Tables 4 and 5. As can
be observed, our PP-based NoC implementation provides

Energy Dissipation Profile and Timing characteristics for
Amino Acid (256*256)
9.60E-07 | T 6.00E-06
—&—Total Energy
9.40E-07 | |—e—Total Time + 5.00E-06
= 9.20E-07 | | 400E06 =
0D 2
2 9.00E-07 - -
o -+ 3.00E-06 D
.E 8.80E-07 | g
1 2.00E-06 W
8.60E-07 2.00E-06
8.40E-07 + 1.00E-06
8.20E-07 0.00E+00
8 16 32 64
Number of Processors

Fig. 14. Energy dissipation profile and timing requirements for AA data.

Authorized licensed use limited to: Washington State University. Downloaded on June 16,2010 at 22:14:21 UTC from IEEE Xplore. Restrictions apply.

40 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO.1, JANUARY 2010
TABLE 4
Speedup of Various Accelerators over Our Serial Implementation
OUR NoC IMPLEMENTATION
Intel 2.3GHz GPU CBE CBE FPGA
Xeon CPU [8] [9] [10] [71
PP AD
Time (ms) 100 1.43 0.65 17.5 1 0.00439 0.01054

, Spestlup over se- 1 69.93 153.85 5.7 100 22779.04 9487.667
rial implementation

between 150 and 4,000-fold speedup over other existing
accelerators and more than well over 10*-speedup over the
serial implementation. If the PCI-based interface is used,
then our implementation also achieves between 100 and
2,700-fold speedup over the existing accelerators.

These estimates go well beyond demonstrating the
paradigm-shifting potential of NoC architectures over
bioinformatics applications. For example, the analysis of
over 28 million metagenomic sequences, which took months
to complete after parallelization at the coarse level [4], can be
completed in a matter of days using our NoC-based
hardware accelerator. The NoC architecture can not only
provide such high performance improvements but also, more
importantly, enable solving much larger problems than was

ever possible before under practical experimental settings.
Our research has also laid out a design template for the

future development of new acceleration models for other
related applications in bioinformatics. For instance, the
BLAST algorithm [28], which is an approximation method
for computing sequence alignments, is a popular tool for
detecting performing sequence database searches. Due to
large sequence database sizes, accelerating BLAST search
operations is performance-critical. Nevertheless, the under-
lying algorithm in BLAST also uses the Smith-Waterman
algorithm, while also implementing a prefiltering process
prior to computing alignment using a string lookup table data
structure. Consequently, an offshoot of our research could be
that NoC can be explored as a viable means for acceleration
for BLAST as well. Before such a project is undertaken,
however, a feasibility study should be conducted to assess
both the quality degradation, which is possible due to
approximation, along with the performance impact due to
implementing additional string data structures.

TABLE 5
Speedup over Existing Hardware Accelerators
Other Accelerators FPGA CBE CBE GPU
[7] [9] [10] (8]
Our PP 227.79 148 | 3986.3 | 325.74
Implemen-
: AD 94.87 | 61.67 | 1660.3 | 135.67
tation

6 CONCLUSION

Computational biology research has reached a critical
juncture, where the rate of data generation is rapidly
outpacing the rate at which it is processed. To close this
gap, hardware accelerators that can achieve significant
speedups are needed. Efficient accelerators can be designed
by integrating high number of processing cores in a single
die to exploit the coarse-grain parallelism inherent in
bioinformatics applications. The NoC paradigm enables this
high degree of integration. In this paper, we presented the
first optimized NoC architecture to efficiently parallelize
sequence alignment on chip. Design of the NoC is optimized
to significantly reduce the latency in communication
between the processing elements. By achieving significant
speedups over serial implementations and other state-of-
the-art hardware accelerators, we demonstrate the high
impact and transformative potential that NoC architectures
are capable of producing in bioinformatics research.

REFERENCES
[1] Benson et al., “GenBank,” Nucleic Acids Research, vol. 35, pp. D21-
D25, 2007.

[2] T.F. Smith and M.S. Waterman, “Identification of Common
Molecular Subsequences,” |. Molecular Biology, vol. 147, pp. 195-
197, 1981.

[3] S.B.Needleman and C.D. Wunsch, “A General Method Applicable
to the Search for Similarities in the Amino Acid Sequence of Two
Proteins,”]. Molecular Biology, vol. 48, pp. 443-453, 1970.

[4] S. Yooseph et al, “The Sorcerer II Global Ocean Sampling
Expedition: Expanding the Universe of Protein Families,” Public
Library of Science Biology, vol. 5, no. 3, 2007, doi:10.1371/journal.
pbio.0050016.

[5] J. Thompson et al., “CLUSTALW: Improving the Sensitivity of
Progressive Multiple Sequence Alignment through Sequence
Weighting, Position-Specific Gap Penalties and Weight Matrix
Choice,” Nucleic Acids Research, vol. 22, pp. 4673-4680, 1994.

[6] S. Dydel and P. Bala, “Large Scale Protein Sequence Alignment
Using FPGA Reprogrammable Logic Devices,” Proc. Conf. Field-
Programmable Logic and Its Applications, pp. 23-32. 2004.

[71 T. Oliver et al., “Using Reconfigurable Hardware to Accelerate
Multiple Sequence Alignment with ClustalW,” Bioinformatics,
vol. 21, no. 16, pp. 3431-3432, 2005.

[8] W. Liu, B. Schmidt, G. Voss, and W. Mueller-Wittig, “Streaming
Algorithms for Biological Sequence Alignment on GPUs,” IEEE
Trans. Parallel and Distributed Systems, vol. 18, no. 9, pp. 1270-1281,
June 2007.

[9] V. Sachdeva et al., “Exploring the Viability of the Cell Broadband
Engine for Bioinformatics Applications,” Parallel Computing,
vol. 34, no. 11, pp. 616-626, 2008.

[10] A. Sarje and S. Aluru, “Parallel Biological Sequence Alignments
on the Cell Broadband Engine,” Proc. IEEE Int’l Parallel and
Distributed Processing Symp., 2008.

Authorized licensed use limited to: Washington State University. Downloaded on June 16,2010 at 22:14:21 UTC from IEEE Xplore. Restrictions apply.

SARKAR ET AL.: NETWORK-ON-CHIP HARDWARE ACCELERATORS FOR BIOLOGICAL SEQUENCE ALIGNMENT 41

[11] S. Vangal et al., “An 80-Tile Sub-100-W TeraFLOPS Processor in
65-nm CMOS,” IEEE]. Solid State Circuits, vol. 43, no. 1, pp. 29-41,
Jan. 2008.

[12] LA. Khatib et al., “A Multiprocessor System-on-Chip for Real-
Time Biomedical Monitoring and Analysis: Architectural Design
Space Exploration,” Proc. IEEE Design Automation Conf. (DAC),
pp- 125-130, July 2006.

[13] L. Benini and G. De Micheli, “Networks on Chips: A New SoC
Paradigm,” Computer, vol. 35, no. 1, pp. 70-78, Jan. 2002.

[14] P.P. Pande et al., “Performance Evaluation and Design Trade-Offs
for Network on Chip Interconnect Architectures,” IEEE Trans.
Computers, vol. 54, no. 8, pp. 1025-1040, Aug. 2005.

[15] S. Aluru et al., “Parallel Biological Sequence Comparison Using
Prefix Computations,”]. Parallel and Distributed Computing, vol. 63,
pp. 264-272, 2003.

[16] E.W. Edmiston and R.A. Wagner, “Parallelization of the Dynamic
Programming Algorithm for Comparison of Sequences,” Proc. Int’l
Conf. Parallel Processing, pp. 78-80, 1987.

[17] X. Huang, “A Space-Efficient Parallel Sequence Comparison
Algorithm for a Message-Passing Multiprocessor,” Int’l]. Parallel
Programming, vol. 18, no. 3, pp. 223-239, 1989.

[18] S.Rajko and S. Aluru, “Space and Time Optimal Parallel Sequence
Alignments,” IEEE Trans. Parallel and Distributed Systems, vol. 15,
no. 12, pp. 1070-1081, Dec. 2004.

[19] O. Gotoh, “An Improved Algorithm for Matching Biological
Sequences,” |. Molecular Biology, vol. 162, pp. 705-708, 1982.

[20] A. Apostolico et al., “Efficient Parallel Algorithms for String
Editing and Related Problems,” SIAM]. Computing, vol. 19, no. 5,
pp. 968-988, 1990.

[21] D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer
Science and Computational Biology. Cambridge Univ. Press, 1997.

[22] D.S. Hirschberg, “A Linear Space Algorithm for Computing
Maximal Common Subsequences,” Comm. ACM, vol. 18, no. 6,
pp. 341-343, 1975.

[23] AR. Butz, “Alternative Algorithm for Hilbert’s Space Filling
Curve,” IEEE Trans. Computers, vol. 20, no. 4, pp. 424-426, Apr.
1971.

[24]].M. Rabaey et al., Digital Integrated Circuits: A Design Perspective.
Prentice Hall, 2003.

[25] J. Kim et al., “Flattened Butterfly Topology for On-Chip Net-
works,” IEEE Computer Architecture Letters, vol. 6, no. 2, pp. 37-40,
July-Dec. 2007.

[26] F. Sanger et al., “Nucleotide Sequence of Bacteriophage Lambda
DNA,”]. Molecular Biology, vol. 162, pp. 729-773, 1982.

[27] M.O. Dayhoff, RM. Schwartz, and B.C. Orcutt, “A Model of
Evolutionary Change in Proteins,” Atlas of Protein Sequence and
Structure, vol. 5, no. 3, pp. 345-352, Nat'l Biomedical Research
Foundation, 1978.

[28] S.F. Altschul et al, “Basic Local Alignment Search Tool,”
J. Molecular Biology, vol. 215, pp. 403-410, 1990.

Souradip Sarkar received the MS degree in
computer engineering from Washington State
University in 2007 and the MTech degree in
computer science from Indian Statistical Insti-
tute, Kolkata, in 2006. He is currently working
toward the PhD degree at the School of
Electrical Engineering and Computer Science
at Washington State University in Pullman. His
research interests include network-on-chip and
system-on-chip implementations of algorithms
for computational genomics applications, reconfigurable system archi-
tectures, and synchronization issues in multiple clock domain platforms.
He is a student member of the IEEE.

Gaurav Ramesh Kulkarni received the bache-
lor's degree in computer science and engineer-
ing from the University of Pune, India, in 2007.
He is currently working toward the master's
degree at Washington State University, Pullman.
His primary area of interest includes computa-
tional biology and high-performance computing.
He is a student member of the IEEE.

Partha Pratim Pande received the MS degree in
computer science from the National University of
Singapore in 2002 and the PhD degree in
electrical and computer engineering from the
University of British Columbia in 2005. He is an
assistant professor at the school of Electrical
Engineering and Computer Science, Washington
State University, Pullman. His primary research
. TN interests lie in the areas of design and test of
- networks on chip, fault tolerance and reliability of
multiprocessor SoC (MP-SoC) platforms, 3D integration, and on-chip
wireless communication network. He is serving on the program
committees of different international conferences like IOLTS, ATS,
MWSACS, DELTA, and NoCs. He is a member of the IEEE.

¢

8

A

Ananth Kalyanaraman received the BE degree
in computer science and engineering from
Visvesvaraya National Institute of Technology
in Nagpur, India, in 1998, and the MS and PhD
degrees in computer science and computer
engineering from the lowa State University, in
2002 and 2006, respectively. He is an assistant
professor at the School of Electrical Engineering
and Computer Science, Washington State Uni-
versity (WSU) in Pullman. He is also an affiliate
faculty in the Molecular Plant Sciences graduate program and the
Center for Integrated Biotechnology at WSU. Subsequently, he joined
the Computational Biology and Scientific Computing Laboratory at the
lowa State University. His research interests include computational
biology and bioinformatics, parallel algorithms and applications, and
combinatorial pattern matching. The primary focus of his work has been
on developing high-performance computing algorithms and software for
data-intensive problems in computational genomics. He is a recipient of
the Best Paper Awards at IPDPS 2006 and CSB 2005, and doctoral
fellowships from IBM Research and Pioneer Hi-Bred International, Inc.
He has developed several parallel programs, which are collectively used
in more than 100 research and corporate organizations for large-scale
computational genomics. He has served on several program commit-
tees including SC 2008, ICPP 2007, IPDPS 2007, HiPC 2008, and
HiICOMB 2008. He is a member of the ACM, the IEEE, the ISCB, the
LSS, and the SIAM. He is a member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: Washington State University. Downloaded on June 16,2010 at 22:14:21 UTC from IEEE Xplore. Restrictions apply.

