
132

Florets for Chiplets: Data Flow-aware High-Performance

and Energy-efficient Network-on-Interposer for CNN

Inference Tasks

HARSH SHARMA , Washington State University, Pullman, WA, USA

LUKAS PFROMM , University of Wisconsin Madison, Madison, WI, USA

RASIT ONUR TOPALOGLU , Topallabs, Poughkeepsie, NY, USA

JANARDHAN RAO DOPPA , Washington State University, Pullman, WA, USA

UMIT Y. OGRAS , University of Wisconsin Madison, Madison, WI, USA

ANANTH KALYANRAMAN and PARTHA PRATIM PANDE , Washington State University,

Pullman, WA, USA

Recent advances in 2.5D chiplet platforms provide a new avenue for compact scale-out implementations

of emerging compute- and data-intensive applications including machine learning. Network-on-Interposer

(NoI) enables integration of multiple chiplets on a 2.5D system. While these manycore platforms can deliver

high computational throughput and energy efficiency by running multiple specialized tasks concurrently,

conventional NoI architectures have a limited computational throughput due to their inherent multi-hop

topologies. In this paper, we propose Floret, a novel NoI architecture based on space-filling curves (SFCs).

The Floret architecture leverages suitable task mapping, exploits the data flow pattern, and optimizes the

inter-chiplet data exchange to extract high performance for multiple types of convolutional neural network

(CNN) inference tasks running concurrently. We demonstrate that the Floret architecture reduces the latency

and energy up to 58% and 64%, respectively, compared to state-of-the-art NoI architectures while executing

datacenter-scale workloads involving multiple CNN tasks simultaneously. Floret achieves high performance

and significant energy savings with much lower fabrication cost by exploiting the data-flow awareness of the

CNN inference tasks.

CCS Concepts: • Hardware → Analysis and Design of Emerging Devices and Systems; • On-chip

Resource Management; • Emerging Architectures; • System on Chip; • Algorithms; • Interconnects ;

Additional Key Words and Phrases: Chiplet Architecture, In-Memory Compute, CNN Inferencing, Server-

Scale Computing, High-Performance Computing, Space Filling Curve, Network-on-Package

This article appears as part of the ESWEEK-TECS special issue and was presented in the International Conference on

Hardware/Software Codesign and System Synthesis (CODES +ISSS), 2023. This work was supported, in part by the US

National Science Foundation (NSF) under grants CNS-1955353 and Semiconductor Research Corporation under task ID

3012.001 and task ID 3014.001.

Authors’ addresses: H. Sharma, J. R. Doppa, A. Kalyanraman, and P. P. Pande, Washington State University, School of Electri-

cal Engineering and Computer Science, Pullman, WA, 99163, USA; emails: {harsh.sharma, doppa, ananth, pande}@wsu.edu;

L. Pfromm and U. Y. Ogras, University of Wisconsin-Madison, Department of Electrical and Computer Engineering, Madi-

son, WI, 53706, USA; emails: lukaspfromm@gmail.com, uogras@wisc.edu; R. O. Topaloglu, Topallabs, Poughkeepsie, NY,

USA; email: rasit@topallabs.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org .

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1539-9087/2023/09-ART132 $15.00

https://doi.org/10.1145/3608098

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 132. Publication date: September 2023.

https://orcid.org/0000-0002-0334-4269
https://orcid.org/0000-0002-7905-9843
https://orcid.org/0000-0001-8759-6959
https://orcid.org/0000-0002-3848-5301
https://orcid.org/0000-0002-5045-5535
https://orcid.org/0000-0003-3495-2264
https://orcid.org/0000-0002-5930-8531
mailto:permissions@acm.org
https://doi.org/10.1145/3608098
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3608098&domain=pdf&date_stamp=2023-09-09

132:2 H. Sharma et al.

ACM Reference format:

Harsh Sharma, Lukas Pfromm, Rasit Onur Topaloglu, Janardhan Rao Doppa, Umit Y. Ogras, Ananth Kalyan-

raman, and Partha Pratim Pande. 2023. Florets for Chiplets: Data Flow-aware High-Performance and Energy-

efficient Network-on-Interposer for CNN Inference Tasks. ACM Trans. Embedd. Comput. Syst. 22, 5s, Article

132 (September 2023), 21 pages.

https://doi.org/10.1145/3608098

1

C

a

c

(

m

b

o

o

m

s

i

c

l

m

c

s

o

p

s

o

S

c

a

s

a

e

r

c

o

d

s

m

C

A

 INTRODUCTION

hiplet-based architectures that integrate multiple small dies on an interposer are drawing the
ttention of leading silicon manufacturers due to their higher energy efficiency and lower fabri-
ation cost [1]. Chiplet-based systems (also known as 2.5D systems) connect multiple small dies
chiplets) through a network-on-interposer (NoI). Designing chiplet-based systems targeted for

achine learning (ML) workloads is a relatively unexplored and promising direction since ML is
ecoming ubiquitous in many real-world applications.
ITRS 2.0 and IRDS roadmaps highlight the unprecedented need for memory and processing

ver the next decade [2 –4]. This need dictates the design of large-scale chips with high mem-
ry and compute capability, offering a high degree of parallelism. Such large-scale chips include
ultiple processing cores, scaling from a few tens to even hundreds. This large-scale integration

ignificantly increases the area of monolithic chips [2]. One of the major challenges in the silicon
ndustry is the exploding fabrication cost as the monolithic chips approach the reticle limit. The
hiplet-based design concept offers a promising solution for reducing the manufacturing cost of
arge monolithic chips [1].

Recent works have proposed several NoI architectures for efficient communication between
ultiple chiplets on a 2.5D system [5 –8]. Existing NoI architectures assume a single and typi-

ally fixed application workload executed one at a time, so that the NoI can be optimized for a
pecific application class mapped onto the chiplet-based system. Offline application-specific NoI
ptimization is challenging in some real-world settings for two main reasons. First, multiple ap-
lication workloads with varying inputs may need to be executed simultaneously in a real-world
cenario (e.g., inferencing for different images using the same deep model). Second, various types
f workloads may appear at any given time (e.g., inferencing tasks with different deep models).
pecifically, the mapping of the neural layers onto the chiplets needs special attention for multiple
oncurrent convolutional neural network (CNN) based inference tasks. Since each neural layer of
 CNN typically sends data to the subsequent layer (i.e., the data flow graph is mostly linear), con-
ecutive neural layers need to be mapped to neighboring chiplets to reduce latency. Existing NoI
rchitectures are primarily based on standard multi-hop regular topologies such as mesh, torus,
tc. These NoI architectures do not guarantee contiguously placed chiplets to map successive neu-
al layers. Hence, we aim to design an NoI architecture where the chiplets are connected in a
ontiguous path (through NoI) so that the communicating neural layers are highly probable to run
n neighboring chiplets without introducing a significant volume of long-range and multi-hop
ata exchange. Multiple CNN inference workloads (e.g., object detection, scene understanding in
elf-driving cars, augmented/virtual reality) frequently appear on the cloud infrastructure where
ultiple users schedule requests concurrently [9 , 10]. Below, we describe occurrences of multiple
NNs in server-scale applications, encompassing various real-world scenarios:

• Real-time video analytics: Real-time video analytics is a challenging task that requires
high performance and low latency. Multiple CNNs can be used to improve the performance
and accuracy of real-time video analytics. For example, one CNN can be used to detect
objects in a video stream, while another CNN can be used to classify those objects. This
CM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 132. Publication date: September 2023.

https://doi.org/10.1145/3608098

Florets for Chiplets 132:3

Fig. 1. Illustration of the SFC-based architecture called Floret for a 100-chiplet-based system with five SFCs

on the interposer network. The top-level network allows continuity among the multiple SFCs on the NoI.

w

t

b

s

c

p

t

S

o

t

e

F

t

m
can be used for applications such as security surveillance, autonomous driving, and video
content analysis [53].

• Cloud computing: Cloud computing is used to process large amount of data, which is
generally expensive. Multiple CNNs can be used to improve the performance and cost-
effectiveness of cloud computing. For example, multiple CNNs can be used to process dif-
ferent parts of a large dataset in parallel to create ensemble models. This can help to reduce
the time to process the dataset, and it can also help to reduce the cost of cloud computing.
Moreover, ensembles of multiple CNNs are effectively utilized in Facebook servers to pro-
vide image tagging, feed suggestions among other applications [55].

• Edge computing: Multiple CNNs can be used to process data locally at the edge. This can
help to improve performance and reduce latency and can protect sensitive data. Specifically,
this will improve performance and reduce latency for applications that require real-time
processing of data as in the case of augmented/virtual reality (AR/VR) applications [54].

Prior studies sought to improve cloud capacity, application scheduling, and resource utilization
hile executing ML workloads concurrently on the cloud [11 , 12]. In this work, our aim is to cap-

ure cloud-scale computing via chiplet-based systems. We propose a novel NoI topology inspired
y space-filling curves (SFCs) referred to as Floret. An example is shown in Figure 1 . The proposed
olution enables incoming neural layers associated with CNN inference tasks to be mapped onto
ontiguous chiplets to avoid long-range communication. Specifically, we leverage the space-filling
roperty to generate a path where a single curve, without any gaps, traverses the area of the in-
erposer with no closed loops. We first divide the chiplet-based system into multiple SFCs. Each
FC stitches a set of chiplets along the 2D planar path, as illustrated in Figure 1 . Each SFC consists
f a head and a tail connecting a group of chiplets in a contiguous path. We also need to minimize
he inter-SFC path length among the non-overlapping SFCs to reduce latency in long-range data
xchanges.

The advantages of the proposed mapping along the space-filling path of the NoI are two-fold.
irst, neural layers of any CNN task get mapped to contiguous chiplets and executed in the order
hey appear until the system is fully utilized. Second, the space-filling NoI architecture, which
inimizes the inter-SFC data exchange, reduces the latency when we need to find contiguous
ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 132. Publication date: September 2023.

132:4 H. Sharma et al.

c

t

i

S

v

w

F

O

2

f

e

c

2

T

m

t

w

a

t

2

d

n

a

i

T

d

u

c

t

s

f

o

a

t

R

A

hiplet resources belonging to different SFCs. Instead of one monolithic SFC, we use multiple SFCs
o introduce inherent redundancy in the system, which is beneficial when executing multiple CNN
nference tasks concurrently; hence the name “Floret” – to imply a cluster of multiple connected
FC “petals”. Experimental evaluation with multiple CNN inference tasks running concurrently for
arious system sizes demonstrates that SFC-enabled NoI outperforms existing NoI architectures
ith significant energy savings.
Contributions: The key contribution of this paper is the algorithmic development to enable

loret NoI optimized for CNN inference tasks and its comprehensive experimental evaluation.
ur major contributions include:

(1) We propose a novel NoI architecture called Floret with multiple non-overlapping SFCs
specifically targeting running multiple concurrent CNN inference tasks.

(2) We propose a new type of SFC called the Floret curve that is targeted for chiplet-based
systems, and using this Floret curve we propose a novel NoI architecture along with a
mapping algorithm to efficiently map successive neural layers to contiguous chiplets for
achieving high performance and energy efficiency.

(3) Experimental results show that the Floret architecture can achieve up to 58% and 64%
reduction in latency and energy respectively compared to state-of-the-art counterparts.

The rest of the paper is organized as follows. Section 2 describes the relevant prior work on
.5D systems and NoI architectures. Section 3 presents the design and optimization principles
or executing the CNN inference tasks on the Floret architecture. Section 4 presents the detailed
xperimental results and analysis. Finally, Section 5 concludes the paper by highlighting the salient
ontributions and pointing to the future directions.

 RELATED WORK

he manufacturing cost of monolithic chips is increasing rapidly with the growing die area require-
ents of emerging applications. First, fewer large chips can be integrated for a given wafer size

han many smaller ones, decreasing the area utilization [2]. Second, when defective, a larger die
astes more silicon area than its relatively smaller counterparts. Most chip vendors and foundries

re moving towards non-monolithic alternatives such as 2.5D interposer-based systems to parti-
ion the on-chip resources into smaller discrete cores called chiplets [1 , 13 , 14]. The emergence of
.5D chiplet platforms provides a new avenue for compact scale-out implementations of various
eep learning (DL) applications. Integrating multiple small chiplets on a large interposer enables
ot only significant cost reductions and higher manufacturing yield compared to 2D ICs [1], but
lso better thermal efficiency than 3D ICs [13] and ease of heterogeneous integration [2]. Design-
ng both general-purpose and application-specific 2.5D-based systems have been explored so far.
he design and fabrication of interposers also add significant non-recurring engineering costs and
evelopment cycles which might be prohibitive for application-specific designs having low vol-
me. To address this challenge, a General Interposer Architecture (GIA) is proposed, to amortize
osts and accelerate integration flows of interposers across different chiplet-based systems effec-
ively [15].

The recently proposed SIAM framework enables fast design space exploration of 2.5D-based
ystems [6]. SIAM employs ReRAM-based chiplets that can be used both as memory and to per-
orm in-situ multiply-and-accumulate (MAC) operations [6 , 16]. Since DL workloads rely heavily
n such MAC operations, ReRAM-based architectures are excellent candidates for DL training
nd inferencing [17 –19]. ReRAM-based heterogeneous architectures were proposed to improve
he accuracy of trained models while also addressing communication bottlenecks [20 , 21]. Thus,
eRAM-based 2.5D architecture can outperform CP Us/GP Us for almost all types of DL workloads
CM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 132. Publication date: September 2023.

Florets for Chiplets 132:5

a

c

[

n

o

f

[

p

i

i

c

h

u

[

f

a

t

c

p

s

M

3

c

a

t

b

p

[

s

d

l

l

b

o

i

s

a

t

[

c

h

r

i

p

p

c

s they support near-data computation [22]. Recent prior work has devised ReRAM-based DL ac-
elerators that overcome the limited write endurance and high write energy costs of ReRAMs
 23 , 24]. Yet, the evaluation framework proposed in SIAM assumes a mesh-based NoI, which is
ot scalable for multiple concurrent CNN tasks and large system sizes. SIMBA introduces tiling
ptimizations on fixed NoI topologies for executing DL model such as ResNet50 [7]. NN-Baton
ocuses on choosing a specific design allocation across several benchmarks on a fixed topology
 8]. However, NN-Baton does not consider the scale of the data centers where the number of DL
arameters reach order of billions. To this end, silicon-photonic interposers have been proposed to
mprove the latency and bandwidth [25]. A reconfigurable Silicon-Photonic 2.5D NoI architecture
s proposed to dynamically deploy inter-chiplet photonic gateways to improve the overall network
ongestion. An application specific architecture using photonics called BiGNoC is proposed, which
ighlights how network-on-chip can be designed for manycore chiplet-based system to meet the
nique communication requirements of big data analytics applications but at the intra-chiplet level
 26]. Moreover, the NoI paradigm becomes crucial due to the high communication demand arising
rom integrating an increased number of chiplets on the same substrate [1 , 6].

Space-filling curves (SFCs) represent a specialized class of algorithmic mapping techniques that
re widely used to generate locality-preserving data structures in numerous scientific applications
hat do spatial and range queries [27 –29]. More specifically, an SFC maps a multi-dimensional point
loud onto a single dimension; therefore, each SFC represents a linear ordering of the input set of
oints. Numerous types of SFCs have been defined over the decades, including simple schemes
uch as row/column major curves to more sophisticated curves such as the Hilbert curve [28],
orton or Z-curve [30], or onion curve [31]. For a review of classical SFCs, please refer to [32 ,

3]. SFCs come with various provable properties. One such property concerning locality is called
lustering [34 , 35], which is a measure of the number of hops taken along the linear ordering of
n SFC, to access neighboring data in the multi-dimensional point cloud. Some curves, such as
he Hilbert and Z-curves in particular, have demonstrated a better clustering property over others
oth in theory and practice [32 , 34 , 36 , 37]. SFCs have been predominantly used in databases and in
arallel scientific computing [37]; for exploring data layouts in memory for multi-core platforms
 38]; and in bioinformatics for creating locality-preserving layouts for DNA nanostructures [39],
equence alignment [40] and phylogenetic inference [41].

Despite their popularity in various engineering domains, SFCs have not yet been explored for
esigning NoI-based manycore chiplet architectures or for accelerating machine learning work-
oads. Most previously proposed NoI architectures are based on conventional multi-hop networks,
ike mesh and torus. Recently, the Kite family of NoI topologies has been proposed for a 2.5D-
ased system considering synthetic traffic/workloads [5]. However, Kite is also primarily based
n a Torus architecture, and all such regular NoI architectures are not workload-aware. Emerg-
ng DL applications use more than a billion parameters [6 , 17]. We increasingly rely on large-
cale manycore computing platforms to execute these massive workloads. It has been shown that
 significant portion (about 30–75%) of the overall execution time of DL workloads arises from
he communication among the processing elements, which is hidden by overlapped computation
 42]. This characteristic necessitate communication aware paradigms for designing such NoI ar-
hitectures for DL workloads. Recently, application-specific NoI design for 2.5D-based systems
as been explored using ML-based techniques [17]. However, this work is oblivious to the occur-
ence of real-world data-center scale ML application workloads for executing concurrent CNN
nference tasks with unseen neural networks. The goal of this paper is to precisely fill this im-
ortant gap in the existing state-of-the-art NoI architectures by proposing novel design princi-
les for chiplet-based systems, which are well-suited for executing multiple CNN inference tasks
oncurrently.
ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 132. Publication date: September 2023.

132:6 H. Sharma et al.

3

T

p

k

b

2

t

3

P

[

c

s

t

b

A

F

a

o

o

c

c

(

c

1

l

t

i

T

t

o

c

p

R

v

a

a

w

i

t

n

o

p

3

T

m

A

 DESIGN AND OPTIMIZATION OF THE SFC-ENABLED

NETWORK-ON-INTERPOSER

his section presents the overview and design methodology of the Floret architecture. We start by
resenting the salient features of the chiplet configuration considered here. We then describe the
ey principle to design the overall Floret architecture using multiple space-filling curves. It should
e noted that the proposed methodology is generic, and it can be used to design other large-scale
.5D chiplet systems. This work focuses on the NoI level optimization aspects without modifying
he design of individual chiplets.

.1 ReRAM-based 2.5D Chiplet Architecture

rocessing-in-memory (PIM) is a promising technique to accelerate deep learning (DL) workloads
 19]. PIM-enabled architectures improve energy efficiency by reducing communication between
omputing cores and the main memory [43]. Crossbar arrays (CBAs) are the most popular repre-
entation for PIM. They are highly efficient for matrix-vector multiplication (MVM), which forms
he core of many DL and scientific computing algorithms. Prior work has investigated binary CBAs
ased on various memory technologies, including phase change memory (PCM), Resistive Random
ccess Memory (ReRAM), Spin-Transfer Torque Magnetic RAM (STT-MRAM), and Ferroelectric
ield-Effect Transistor Memory (FeFETs), and has experimentally demonstrated their functionality
t various scales [44 –46]. In this work, we employ ReRAM-based chiplets as the enabling technol-
gy to accelerate CNN inference tasks, noting that the proposed architecture and associated design
ptimization methodologies are also applicable to other CBA-based PIM chiplets. The chiplets are
onnected through NoI routers and links, which enable high-bandwidth communication. Each
hiplet is composed of 16 tiles and peripheral circuits such as accumulator, buffer, activation units
ReLU in our work), and pooling unit. Within each chiplet, a mesh-based network-on-chip (NoC)
onnects the tiles, where each tile comprises multiple processing elements (PEs) that consists of
28 × 128 ReRAM crossbar arrays. It should be noted that within chiplets the number of tiles is
imited (e.g., 16 tiles in the Floret architecture). Hence, a simple mesh-based NoC is sufficient as
here is no scope for any significant multi-hop or long-range data exchange. In other words, the
ntra-chiplet latency and energy costs are negligible compared to inter-chiplet data exchange costs.
herefore, we focus on optimizing the NoC/NoI interconnectivity at the entire system level. Note

hat the Floret architecture is independent of the NoC architecture used within a chiplet, and so
ur proposed design methodology is generic enough to work with any interconnect used within
hiplets.

The target chiplet architecture has 40 PEs inside each tile, connected through an H-Tree-based
oint-to-point network. In our approach, we assume that all CNN weights are transferred to the
eRAM chiplets from the DRAM before performing CNN inference, which is consistent with pre-
ious investigations [18 , 23 , 47]. Following prior work, we also assume that the global buffer is
vailable for processing weights due to storing activations from the previous layer for a residual
ddition operation that is prevalent in dense (DenseNet) and residual (ResNet) class of neural net-
orks [6]. The number of PEs necessary to map a neural layer is dependent on several factors,

ncluding kernel size, number of input and output features, and bit precision. These factors de-
ermine the number of tiles required for each neural layer, as well as the total number of chiplets
eeded to map the whole neural network. It is possible to fit multiple layers on a single chiplet
r a single layer to spread across multiple chiplets. In a server-scale scenario, the number of CNN
arameters can reach billions, leading to heavily utilized chiplets.

.2 Space-filling Curve Enabled NoI Architecture

he problem: Given the need to execute various deep learning tasks simultaneously [14 , 42],
odern-day servers and high-end processors need to be designed to target a workload consisting
CM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 132. Publication date: September 2023.

Florets for Chiplets 132:7

o

e

i

n

i

c

l

s

t

l

t

o

l

S

t

n

T

c

c

s

l

s

t

t

p

(

a

e

c

a

F

i

t

t

“

a

a

a

L

p

n

t

w

t

S

f a mixture of tasks. We consider CNNs with different neural layer architectures – including lin-
ar (e.g., VGG), residual (e.g., ResNet), and dense (e.g., DenseNet) connections – for performing
nference tasks while designing a chiplet-based system. However, mapping different CNNs dy-
amically to a chiplet-based system is challenging. The common property of CNN inference tasks

s that activations flow from the i th layer to the (i + 1) th layer. Hence, there is a need to maintain
ontiguity on the physical NoI layer, to the extent possible, between any two consecutive neural
ayers to reduce communication overhead. Since existing NoI architectures are primarily based on
tandard multi-hop regular topologies such as a mesh or a torus, it may not always be possible
o find contiguously placed chiplets available to map successive neural layers. If two consecutive
ayers of a CNN are mapped far apart, it will lead to long-range multi-hop communication through
he NoI. This, in turn, will degrade the performance and energy efficiency of the NoI. Hence, our
bjective is to design an efficient NoI architecture which is capable of co-locating adjacent neural
ayers.

In theory, this design problem can be viewed as one of embedding a linear ordering (i.e., an
FC) of chiplets over the given topology. However, there may be multiple CNN tasks that need
o be dynamically mapped to the system, and each such task may consist of different numbers of
eural layers. Furthermore, the number of chiplets needed to execute each layer may also vary.
herefore, the problem becomes one of generating multiple SFCs , each with its own sequence of
hiplets to map to the neural layers of any of the tasks. Moreover, as the different CNN tasks
omplete, the chiplets used for that task need to be reassigned to newer tasks. If a consecutive
equence of chiplets is not sufficient to accommodate all the layers of a CNN task, the spill over
ayers will need to utilize chiplets in other parts of the NoI (i.e., from other SFCs) so as to en-
ure successful completion. Therefore, the placement of the SFCs and the resulting hop separa-
ion between them become important measures to reducing CNN task execution times. Taken
ogether, these factors – i.e., the need to accommodate multiple SFCs, the dynamic nature of map-
ing those SFCs to multiple CNN tasks, and the need to potentially hop from one SFC to another
for the same task) – all make this a challenging problem, one where classical SFC designs may not
pply.

Approach: In this work, we present a custom-designed SFC called the Floret curve that is
quipped to address all the aforementioned challenges. In particular, our approach connects the
hiplets (in the order the neural layers are mapped) along the contiguous path formed by the Floret
rchitecture in a two-dimensional (2D) space, as illustrated in Figure 1 . The intuition behind the
loret architecture is to subdivide a multi-dimensional space into smaller contiguous segments (or
ndividual SFCs), and then to stitch those pieces together; hence the term “Floret” as the resulting
opology can be viewed as a cluster of individual SFCs (or petals). The resulting curve is a con-
inuous, non-intersecting (planar) path that covers all the chiplets in the system – hence the term
space-filling”.

Definition of a Floret curve: More formally, let C denote the set of n chiplets distributed across
 given 2D grid coordinate system. The chiplets are numbered arbitrarily from [0 , n − 1] . For ex-
mple, the chiplets in Figure 1 are numbered in row major fashion along the grid. Given n and
 constant λ, a Floret curve (denoted by Π) is a collection of λ individual SFCs { Π0 , Π1 , . . . Πλ−1 }.
et ψ = � n

λ
�. Then, each of the λ SFCs represents a sequence of ψ chiplets that are contiguously

laced along the grid. In other words, each SFC covers a distinct subset of size ψ chiplets such that
o two SFCs intersect. Each SFC (Πi) has a dedicated head (h i) and a corresponding tail (t i) on
he other end, connecting ψ − 2 chiplets in between. As an example, Figure 1 shows a Floret curve
ith five SFCs. One can view this Floret curve also as a hierarchical design with two levels, where

he top level corresponds to the λ head-tail pairs and the next level consists of all the individual
FCs.
ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 132. Publication date: September 2023.

132:8 H. Sharma et al.

c

l

t

e

p

t

t

a

a

t

b

s

c

n

t

s

u

t

i

i

t

A

f

i

c

c

1

o

A

3.2.1 Algorithm for Designing Floret Curves. Next, we describe our algorithm to design a Floret
urve, given C , the set of n chiplets on a 2D grid, 1 and λ, the number of different SFCs. At a high
evel, the algorithm has two major steps. First, a subset of λ chiplet pairs of the form 〈 head h i ,
ail t i 〉 are selected, one pair for each SFC Πi . Next, using the head and the tail chiplet pairs as
nd points of a Πi , we fill the remaining λ − 2 chiplet locations for Πi . Algorithm 1 shows the
seudocode for our design approach. In what follows, we provide details for each step.
For the first step of choosing λ head-tail chiplet pairs, note that the search space is (n 2 λ) in

heory. However, during mapping phase, since the same CNN task may possibly use chiplets from
wo or more SFCs, it is important to reduce the average number of hops separating the tail of
n SFC to a head of another SFC. Therefore our search objective becomes one of minimizing this
verage path length d between the tail of one SFC to the heads of the other non-overlapping SFCs:

Mi ni mi ze : d =
1

p

∑

i, j ∈ [0 , λ−1]

| t i − h j | w he r e i� j, p= 2 (λ2)
(1)

Here the distance between any tail-to-head pair is calculated as the Manhattan distance over
he 2D grid. Minimizing this average distance measure d is imperative as communication delays
etween tail of one SFC and the head of the next SFC can have a significant impact on the overall
ystem performance. We follow an iterative approach to identify λ head-tail pairs. Intuitively, con-
entrating all the λ head-tail pairs at the center of the NoI architecture is expected to reduce the
umber of hop counts between an arbitrary tail and an arbitrary head. Alternatively, if one were
o spread out the head-tail pairs across the NoI, inter-SFC hop count can only increase. Using this
imple yet key insight, our algorithm selects head-tail pairs from the center of the NoI. In partic-
lar, we identify a subset of 2 λ chiplets along a pair of central columns (as shown in Figure 1 . If
he length of a column is not adequate to accommodate all the λ chiplet pairs, then we iteratively
dentify further evenly spaced pairs of columns from either side of the center until all pairs are
dentified. This algorithm effectively performs a block decomposition of the columns starting from
he center and radiating outwards.

LGORITHM 1 : Algorithm for designing floret architecture

Once the head-tail pairs are selected, the next step is to fill (or complete) each of the λ SFCs
rom their respective heads to their tails (as shown in Algorithm 1 : lines 2 through 7). The goal
s to create each of the λ SFCs, Πi with head h i and tail t i , of length ψ . The important design
onsideration is to maintain contiguity for the chiplets assigned to the same SFC. This problem
an be effectively solved as an instance of the Euclidean traveling salesman problem (TSP) problem
 Even though the algorithm presented is for a 2D grid system of chiplets, we argue later on how the algorithmic method-

logy is generic enough to be extended to other symmetric topologies [5].

CM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 132. Publication date: September 2023.

Florets for Chiplets 132:9

[

s

c

2

o

r

f

p

c

p

e

S

i

S

m

b

t

T

[

p

a

r

S
 48]. More specifically, let G (V , E) denote the initial (planar) graph corresponding to the 2D grid
ystem – i.e., V corresponds to the set of all n chiplets, and E consists all the 1-hop neighboring
hiplet pairs on the grid. Our algorithm iteratively enumerates one SFC at a time (for loop in line
 of Algorithm 1), such that during the i th iteration we enumerate SFC Πi . Since an SFC is a linear
rdering of ψ chiplets contiguously located along the grid, the problem of finding an SFC can be
educed to one of finding the Hamiltonian subpath of length ψ on the planar G . Furthermore, to
acilitate tail to head inter-SFC transfers during mapping, we treat it as a planar Hamiltonian cycle
roblem. Since the cost is dictated by the number of hops (along the grid), the goal becomes one of
omputing a minimum cost planar Hamiltonian cycle, which is an instance of the Euclidean TSP
roblem [49]. Therefore, as shown in lines 3–5 of Algorithm 1 , we call a TSP solver on G to obtain
ach SFC. It should be noted that the graph G needs to be updated after the enumeration of each
FC. Specifically, at the end of every step i , after we generate Πi , we remove all edges in E that are
ncident on the vertices selected as part of Πi . This step ensures none of the chiplets from previous
FCs are eligible for inclusion in any of the subsequent SFCs – thereby ensuring that all SFCs are
utually disjoint in their chiplet space.
For the TSP computation step in line 5 of Algorithm 1 , we implemented a recursive backtracking-

ased TSP solver that works on the tour length ψ . This implementation explores all possible tours
hrough a recursive search process. Backtracking is a powerful technique for solving the Euclidean
SP (over planar graph G), which can be computationally expensive for large problem instances
 49]. However, this is a preprocessing step (and is hence a one-time cost) and the sizes of G (V,E) in
ractice is expected to be small for the target platforms. For instance, computing all the SFCs for
 system with n = 36 and λ = 6 SFCs, took only 10 milliseconds.

Additional remarks:

(a) The TSP formulation makes our algorithmic approach more generic to be extended to de-
sign Floret curves for additional topologies and not just for the 2D grid (which we selected
for ease of exposition). In particular, any NoI topology can be represented in the form of a
graph, and our TSP solver implementation does not make any assumptions on planarity of
the graph. However, as the planarity assumption is removed, then the degree distribution
of the vertices in the graph can no longer be bounded to a constant. This could lead to
increased execution times for the TSP solver.

(b) Even though the proposed algorithm for Floret curve design was presented for a 2D grid
system of chiplets, the design methodology is generic enough to be extended in princi-
ple to other symmetric topologies – e.g., Kite, Butter Donut, Double Butterfly [5]. This is
because our algorithm to assign the head-tail pairs simply relies on starting at the center
of the NoI and radiating outwards iteratively. However, given that CNNs primarily rely
on communicating between neighboring layers, a simple 2D grid topology is sufficient to
serve as the breadboard for generating our Floret curve architecture.

(c) A key parameter to the Floret architecture design is the number of SFCs (λ). Intuitively,
having too many SFCs unnecessarily increases the top-level network size. On the other
hand, too few SFCs will reduce the number of router ports, which could degrade redun-
dancy across SFCs and could hamper the overall achievable performance. Minimizing the
average hop count between tails and heads of non-overlapping SFCs provides us with
the optimum number of SFCs and the router port configurations for each system size.
Section 4.2 evaluates this tradeoff in selecting an optimum number of SFCs.

3.2.2 Algorithm for Mapping CNN Workloads to the Floret Architecture. We describe the algo-
ithm to dynamically map a workload of CNN tasks to the Floret architecture (as designed in
ection 3.2.1). The input is a workload consisting of a set of CNN tasks (W = { w i }), each consisting
ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 132. Publication date: September 2023.

132:10 H. Sharma et al.

o

c

n

f

w

(

c

n

t

w

o

d

s

f

g

a

(

T

t

a

t

u

w

w

r

t

A

A

f multiple neural layers. The output is a mapping Φ : W → 2 C , which maps each w i to a subset of
 i chiplets along the Floret curve; here, c i denotes the number of chiplets required to execute all the
eural layers of w i . The value of c i can be precomputed by adding the number of chiplets required
or computing each layer of a CNN tasks. Note that multiple layers of an individual CNN can fit
ithin a single chiplet (i.e., c i ≤ 1), or alternatively, a single layer could require multiple chiplets

i.e., c i > 1). However, with CNN inference tasks, communication typically occurs between two
onsecutive layers. For this reason, the Floret architecture is well positioned to keep the commu-
icating pairs of chiplets near to one another.
Algorithm 2 details the major steps of the mapping procedure to map W to the Floret archi-

ecture. We start by considering the workload W as a queue of multiple CNN tasks. For each
 ∈ W , we first compute the number of chiplets (c) required. Initially, all chipets across all λ SFCs
f Π are considered available. We track a next pointer to point to the next chiplet along Π that is
ue for assignment. Initially, next is initialized as the head chiplet of the first SFC (Π0).
The major function that computes Φ(w) for any given task w is BlockAs s iдn(w , Π, next , c, n

′),
hown in line 5 of Algorithm 2 . This function maps the task w to a sequence of c chiplets, starting
rom the next position along Π. Note that the actual chiplet coordinates for this next position is
iven by Π−1 (next). The BlockAs s iдn function returns when all the c chiplets were successfully
ssigned in the mapping process. During the course of mapping, there are two subcases to consider.
a) When all the chiplets along the current SFC have been assigned, we move on to another SFC.
his SFC is chosen based on the proximity of its head to the tail of the current SFC. Subsequently,

he assignment of the remaining layers resumes on the next SFC. This process is iterated until
ll layers are successfully assigned. (b) Note that it is possible that along the assignment process,
he next chiplet to be assigned is occupied with another task. In this case, the procedure waits
ntil it becomes available. Once all the chiplets in the system are utilized, then we will have to
ait till a set of contiguous chiplets required for the incoming neural layer becomes free. This
ould happen when a prior loaded CNN finishes execution on the Floret, which would in turn

elease a contiguous region for the new CNN. Once contiguous chiplets become available, then
he inter-chiplet data flow still follows the one-hop path.

LGORITHM 2 : Mapping algorithm for floret architecture

The above mapping approach has multiple advantages:

• First, chiplet resources become available for new layer allocation in the order they were
mapped. The activations would be transferred sequentially among contiguously placed
chiplets as the computation moves from the first layer to the output layer of the CNN.
CM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 132. Publication date: September 2023.

Florets for Chiplets 132:11

4

I

p

t

p

4

a

a

c

h

fl

[

m

t

a

i

g

N

i

e

f

c
• Second, we utilize all the available chiplets as per the computational requirements of the
neural layers.

• Third, the mapping algorithm is deadlock-free, because the mapping process treats the list
of tasks (W) as a queue, assigning one CNN task at a time. Deadlocks could happen only if
either there is a cyclic dependency between two tasks (which is not possible here as CNN
tasks are mutually independent), or if there are two concurrent mapping threads that are
stuck and waiting for one another to release their resources (also not possible here due to
the sequential queue-based mapping of the workloads).

• Finally, our mapping approach exploits the inherent redundancy built in the NoI architec-
ture via multiple available SFCs. In particular, if during the course of assignment, we reach
the tail of one SFC, we have more than one option for selecting the next SFC. For instance,
in the Floret architecture shown in Figure 1 , tail T 1 is connected to two heads (H 1 , H 2)
within just 1-hop distance. In fact, this connectivity can further be increased to include H 5

as well if we decide to retain the original 2D grid level links in the top-level network. This
implies that if an assignment reaches T 1 and if there are more chiplets needed to complete
that inference task, then there are between 2 to 3 options for switching to another SFC,
all at a 1-hop distance. Our mapping algorithm can select the next SFC in a reconfigurable
manner. This property is also vital to extend our architecture in the future toward providing
fault-tolerant executions. A formal analysis of these properties of the Floret architecture
could provide further insights; however, it is out of scope for this paper. Instead, we focus
on the key ideas, concepts, and a thorough experimental evaluation.

 EXPERIMENTAL RESULTS

n this section, we present a detailed performance analysis and experimental evaluation of the
roposed NoI architecture for various CNN inferencing tasks. We also present a detailed compara-
ive performance evaluation with respect to existing state-of-the-art NoI designs for chiplet-based
latforms.

.1 Experimental Setup

4.1.1 System Specification and Evaluation Setup. To demonstrate the scalability of the Floret
rchitecture, we consider four different system sizes (n) with 36, 64, 81, and 100 chiplets. We use
 modified NeuroSim to partition and map CNN tasks onto a 2.5D-based system [50]. The inter-
hiplet traffic is generated by the activations between the neural layers. Each chiplet in our design
as 64KB of buffer space to compute the activations associated with the skip connections, which
ow through the same NoI links. This buffer size was sufficient for computing residual activations,
 7 , 14]. When there are non-contiguous neural layers, the inter-chiplet data exchange involves
ulti-hop paths. Each chiplet covers about 2 . 64 mm

2 area, including the peripherals. All the NoI
opologies are simulated using the BookSim simulator [51]. The inputs to the BookSim simulator
re the connectivity between NoI routers and the inter-chiplet traffic for the concurrent CNN
nference tasks. It outputs the area, latency, and energy consu mption of the NoI. We use the Nvidia
round-referenced signaling (GRS) parameters for chiplets on a 32nm technology to evaluate the
oI area and power consumption [7]. Table 1 shows the other system-level parameters considered

n the performance evaluation [16 , 52]. We note that the experimental analysis and performance
valuation considered in this paper is valid for other technology parameters.

4.1.2 Datasets and DL Workloads. We evaluate the Floret architecture on multiple CNN in-
erencing tasks running concurrently. Table 2 shows different neural networks executed on the
orresponding datasets, and their number of parameters. As the system size increases, we use
ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 132. Publication date: September 2023.

132:12 H. Sharma et al.

Table 1. NoI Hardware Parameters Considered

for Evaluation

NoI Hardware Parameters Value
NoI frequency 1.15 GHz
NoI bus width 32
One-hop NoI link length 1.449 mm

Quantization bit 8
Technology 32nm

Link Frequency 0.6 ns/mm

Table 2. List of Neural Networks for Inferencing Along with Their Corresponding Number of CNN

Parameters with (a) CIFAR-100, (b) ImageNet Dataset

Table 3. List of CNN Tasks in a Workload for Inferencing Along with Their Total Number of Parameters

with (a) CIFAR-100, (b) ImageNet Based Dataset

I

T

n

C

i

s

b

p

N

t

A

mageNet-based CNNs with more parameters to illustrate the merits of the proposed architecture.
able 3 shows the naming convention of the CNN tasks in each workload along with their total
umber of parameters with (a) CIFAR-100 and (b) ImageNet datasets. Tables 3 (a) & (b) show the
NNs executed simultaneously on the 2.5D system. Various combinations of the neural networks

n Table 2 are executed concurrently to capture the workloads (WL) considered in the experimental
etup. We evaluate 36 chiplet system using workloads running for CIFAR-100 dataset. For scala-
ility, we evaluate 64, 81 and 100 chiplet system on ImageNet based workloads as the number of
arameters approach in the order of billions. As an example, WL1 consists of sixteen instances of
 N 2 (ResNet34), along with one instance of N N 7 (VGG19), and so on. We cover the whole spec-

rum by randomly choosing each of the CNNs such that at least 90% of the 2.5D system is always
CM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 132. Publication date: September 2023.

Florets for Chiplets 132:13

Fig. 2. Illustration of the optimal number of SFC for (a) 36 chiplets, (b)64 chiplets, (c)81 chiplets, and (d) 100

chiplet system.

u

i

S

m

N

d

t

F

4

I

p

o

H

i

i
tilized. Note that the general concept behind our NoI design is applicable to any type of CNN
nference tasks.

4.1.3 Baseline NoI Design. We compare the performance of Floret against three baselines: Kite,
IAM, and a recently proposed application-specific NoI architecture SWAP [5 , 6 , 17]. Kite is pri-
arily a Torus-based NoI, and SIAM is essentially a 2-D mesh NoI. The application-specific SWAP
oI is an irregular architecture where the chiplets and the associated links are placed as per specific
esign time considerations for a given set of CNN applications. We set the same system parame-
ers and evaluate over the same CNN workloads for all four architectures (Kite, SIAM, SWAP, and
loret) for a fair comparison.

.2 Optimum Number of SFCs

n this sub-section, we evaluate the optimum number of SFCs which would occur on the inter-
oser network considering the average hop count (H avд) bet ween an y two communicating pair
f chiplets for a CNN task. Figure 2 shows the optimum number of SFCs with varying system size.
ere, we consider iso-chiplet area configuration, i.e., each individual chiplet is of the same size

rrespective of the system size. As the number of chiplets, n , increases from 36 to 64 to 100, the
nterposer area also increases while the size of each of the individual chiplet remains the same.
ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 132. Publication date: September 2023.

132:14 H. Sharma et al.

Fig. 3. Normalized NoI latency for the 36-chiplet Floret architecture with equal and unequal SFC lengths.

This shows that having unequal SFC lengths is not advantageous compared to having equal length of SFCs.

W

v

w

h

t

i

4

I

f

v

w

t

c

c

fi

c

o

l

o

h

n

w

4

E

e

a

i

y

w

S

t

t

A

e observe that the optimum number of SFCs lie between four to six as the number of chiplets
ary. Due to the iso-chiplet but increasing interposer area assumption the number of SFCs remains
ithin a limited range for varying system size. These SFC configurations minim ize the averag e
op count of the top level network (6, 4, 5, 5 SFCs in case of 36-,64-,81- and 100- chiplets respec-
ively). Ultimately, the minimization of H avд leads to higher performance benefits of Floret over
ts counterparts.

.3 Effect of SFC Lengths

n this sub-section, we evaluate the effect of keeping SFCs of equal length (as is part of our de-
ault design) versus allowing them to vary in their lengths on the interposer network. SFCs with
arying lengths could lead to traffic imbalance and thereby, latency degradation for the system;
hereas an even length reduces such imbalances and could deliver better performance. To test

his hypothesis, we experimented with different (unequal) lengths for the SFCs of the Floret ar-
hitecture, and compared them with the performance derived from the equal length setting. We
onsider the Floret architecture with 36 chiplets as an example here. For the equal-length SFC con-
guration, each SFC consist of 6 chiplets. However, for the unequal-length configuration the SFCs
ontain 8 , 7 , 7 , 5 , 4 , 5 chiplets respectively. Figure 3 shows the comparison between the latency
btained under these two settings, for a 36-chiplet system. It is clear that the Floret with unequal-
ength SFC degrades performance compared to the equal-length SFC configuration, corroborating
ur hypothesis. This happens since when SFCs are of different lengths then the distance between
ead-tail pairs in the top-level network increases. This results in latency degradation. It should be
oted that there are other configurations possible for the unequal-length scenario. In each case,
e expect to see similar trends. For brevity, we show the result for only one configuration.

.4 Variation of Number of Router Ports

ach NoI architecture consists of inter-chiplet routers and links. Since each architecture has differ-
nt connectivity, this section compares the distribution of the number of router ports in the Floret
rchitecture against the other state-of-the-art counterparts. We also compare the number of links
nvolved in each architecture. Figures 4 (a)–(d) show the router-port configurations for all four s
stem sizes considered in this work. We observe that four-port routers are the most frequent ones
ith Kite. SIAM with mesh NoI mostly consists of routers with three and four ports. In contrast,

WAP primarily uses two- and three-port routers, where the links are on average longer due to
he small-world network approach [17]. However, all the routers in Floret except the heads and
ails have only two ports. The peak moves towards the left, demonstrating that the frequency of
CM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 132. Publication date: September 2023.

Florets for Chiplets 132:15

Fig. 4. Variation of router-port configuration for Kite, SIAM, SWAP and SFC for a 2.5D system with (a) 36

chiplets, (b) 64 chiplets, (c) 81 chiplets and (d) 100 chiplets. Peak of the plot is observed to be moving towards

the case of Floret which is based on SFC.

r

b

K

c

r

b

f

f

F

t

e

r

c

m

h

w

b

F

t

s

w
outers with fewer ports is increasing in the case of Floret, with the mean router port frequency
eing between two and three. Similarly, as the system scales to higher number of chiplets, both
ite and SIAM have an average port count of around four, as shown in Figure 4 (b), (c), & (d). In
ase of SWAP, the mean router port frequency lies between two and three with some four port
outer for larger-system size. Reducing the number of router ports also decreases the total num-
er of links. Figure 5 compares the number of links in each of the considered architecture for all
our system sizes. From Figure 4 and Figure 5 , it is evident that Floret has smaller routers and
ewer associated links compared to all the other architectures. As a result, the total NoI area of
loret is significantly smaller than the other architectures. It should be noted that only reducing
he number of links and router port size on their own does not necessarily lead to performance and
nergy efficiency. To achieve these benefits, it is crucial to consider the length of the links between
outers because the communication delay depends on the link lengths. Therefore, the communi-
ation delay should be considered while evaluating the NoI architecture. Kite, for example, has
ostly two hop links and the routers are inherently bigger. SIAM, being principally a 2D Mesh,

as single hop link connections to its neighboring chiplets. However, SIAM ha s bigger routers
ith higher number of router-ports. SWAP has reduced number of links and smaller router ports,

ut not all links are necessarily single hop. SWAP also has some longer links like four or five hops.
loret mainly consists of routers with fewer ports and most links being one-hop connections. In
he top-level network, we allow the tail of one SFC to communicate with the heads of other SFCs
eparated by at most three hops. Within each SFC, all the intra-SFC connections are single hops
ith small router ports. All these factors together improve NoI performance and energy efficiency.
ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 132. Publication date: September 2023.

132:16 H. Sharma et al.

Fig. 5. Variation of number of links for Kite, SIAM, SWAP and Floret for a 2.5D system with (a) 36 chiplets,

(b) 64 chiplets, (c) 81 chiplets and (d) 100 chiplets. As the system size increases, the number of links is con-

sistently lower in case of SFC.

I

m

M

f

4

O

i

f

s

r

s

t

N

A

n the case of skip connections (such as those found in ResNet or DenseNet), we may have to com-
unicate among non-contiguous chiplets. However, that will still be consecutive single hop paths.
oreover, smaller routers, fewer links, and smaller link lengths reduce the NoI area and hence the

abrication cost, as highlighted in the following subsections.

.5 NoI Fabrication Cost

ne of the main advantages of 2.5D systems over monolithic architectures for large-scale designs
s the fabrication cost as the system requirement scales. Therefore, it is crucial to consider the
abrication cost of 2.5D systems along with performance and energy benefits in such a datacenter-
cale application. The NoI is the biggest contributor to the overall 2.5-D system area [1]. Hence,
educing the NoI area is important as the computational requirements are expected to grow at
cale [1 , 2]. This section discusses the relative fabrication cost improvement by Floret with respect
o previously proposed architectures. It has been already shown in existing literature that the total
oI area (A N oI) is proportional to the sum of the area of the NoI routers and the links [6]:

A N oI ∝ ��
�

n ∑

i= 1

A router i +

q ∑

j= 1

A l inks j
��
�

(2)
CM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 132. Publication date: September 2023.

Florets for Chiplets 132:17

w

n

S

r

t

n

s

w

w

n

n

o

N

w

s

W

t

r

t

t

n

6

c

w

F

a

4

T

d

r

o

p

c

a

l

F

b

∼

p

T
here A router i is the area of the i th router and A l ink j is the area of the j th link, n and q are the
umber of NoI routers and links respectively. Each chiplet is connected to an associated NoI router.
o, n denotes the total number of chiplets in the system, too. Therefore, increasing the number of
outer ports (both input and output) as well as NoI links increase the total NoI area. In case of
he SFC-based architecture, the number of routers and the corresponding links vary based on the
umber of SFC λ. As the chiplets in the top-level network have higher connectivity, the router
izes are bigger and hence the NoI area A S FC

is defined as:

A SFC

=
��
�

2 λ∑

i= 1

A inter −SFC

+

n−2 λ∑

j= 1

A intr a−S FC

��
�

(3)

here A inter−S FC

is the area of the top-level network and A intr a−S FC

is the area of the chiplets
ithin each SFC. Considering total number of chiplets as n and λSFCs on the interposer, the total
umber of chiplets in top-level network is 2 λ and the sum of all chiplets within SFCs is n − 2 λ. The
umber of links and the router sizes will vary if a particular chiplet exists in the top-level network
r not which was discussed in Section 4.3 above. Furthermore, the relative fabrication cost of two
oIs is expressed as [6 , 17]:

C N oI 1

C N oI 2

= e −D 0 (A N oI 2 −A N oI 1) (4)

here A NoI 1 and A NoI 2 are the NoI area under consideration. Equation (4) assumes that both the
ystem have same number of chiplets, with parameter D 0 representing the wafer defect density.
e consider a 2.5D system designed by AMD with 864 mm

2 interposer area and 64 chiplets as
he reference in this work [1]. It is evident from that the relative fabrication cost of Floret with
espect to any other architectures, like Kite, principally boils down to the difference between the
wo NoI areas. Since the NoI area increases with increasing number of router ports and NoI links,
he corresponding fabrication cost also increases. Considering the router-port configuration and
umber of links as shown in Figure 4 and Figure 5 , Floret reduces fabrication cost by about 80%,
1%, and 49% with respect to Kite, SIAM, and SWAP for a 36-chiplet system. The relative fabrication
ost for bigger system sizes reduces more for Floret as the reduction in the number of links is more
ith the increase in system size (Figure 5). In contrast, the average number of router ports for

loret remains almost unchanged. Moreover, Floret always has more shorter link s than any other
rchitectures considered here.

.6 NoI Performance and Energy Analysis

his section presents the NoI performance and energy efficiency of Floret compared to the baseline
esigns (Kite, SIAM, and SWAP). We benchmark the latency and energy consumption of the Flo-
et architecture compared to Kite, SIAM, and SWAP for five different CNN workloads (WL1-WL5
n CIFAR-100; WL6-WL10 on ImageNet) for each system sizes. Each workload has an equivalent
robabilistic occurrance of residual(ResNets), dense(DenseNet), and sequential (VGG) CNNs oc-
urring concurrently. This makes sure we cover the entire spectrum of the CNNs without inducing
ny inherent bias in the experimental evaluation.

Figure 6 (a) shows the latency of each NoI for the 36-chiplet system considering CNN work-
oads WL1 to WL5. Both latency and energy are normalized with respect to the corresponding
loret configuration for all system sizes. We observe that Floret architecture outperforms all the
aselines for all the system sizes. As an example, Floret improves the latency by ∼27%, ∼22%, and
25% compared to Kite, SIAM, and SWAP architecture for WL1, respectively. On average, Floret
erforms 23%, 18%, and 19% better than Kite, SIAM and SWAP for 36-chiplet system, respectively.
he highest latency improvement of 31% is achieved for WL4 in the 36-chiplet Floret with respect
ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 132. Publication date: September 2023.

132:18 H. Sharma et al.

Fig. 6. Comparison of NoI latency for 2.5D system with (a) 36 chiplets, (b) 64 chiplets, (c) 81 chiplets, and

(d) 100 chiplet system.

t

p

o

t

t

s

e

a

i

a

p

T

t

t

t

p

f

a

t

a

l

A

o Kite. For all other CNN workloads, Floret consistently outperforms the existing NoI counter-
arts in performance. Figures 5 (b)-(d) show the latency improvements for Floret compared to the
ther architectures for 64-, 81- and 100-chiplet systems. The average latency improvements for
hese system sizes for Floret are: 34%, 21%, and 24% with respect to Kite, SIAM and SWAP for
he 64 chiplet system; 45%, 32%, and 38% with respect to Kite, SIAM and SWAP for the 81 chiplet
ystem; 51%, 38%, and 45% with respect to Kite, SIAM and SWAP for the 100 chiplet system.

Floret not only reduces the inference latency of DL workloads but also achieves significant en-
rgy consumption savings. For example, Floret reduces the energy consumption by about 22%, 18%,
nd 20% compared to Kite, SIAM, and SWAP, with a 36 chiplet system for workload WL2 (shown
n Table 2 (a)). On average, Floret reduces energy consumption by 47%, 20% and 34% for Kite, SIAM
nd SWAP on 36-chiplet system. Figures 7 (b)-(d) show the reductions in energy consumption im-
rovements from Floret compared to the other architectures for 64-, 81-, and 100-chiplet systems.
he average energy reductions for these system sizes for Floret are: 51%, 23%, and 35% with respect

o Kite, SIAM and SWAP respectively for the 64 chiplet system; 54%, 25%, and 44% with respect
o Kite, SIAM and SWAP respectively for the 81 chiplet system; 59%, 29%, and 52% with respect
o Kite, SIAM and SWAP respectively for the 100 chiplet system. Both the energy and latency im-
rovements of Floret for biger system sizes demonstrate the scalability of the Floret architecture
or datacenter-scale DL application workloads.

We map each CNN layer in Kite, SIAM and SWAP following a greedy mapping algorithm that
llocate each incoming CNN layer to the next available chiplet. However, as these three architec-
ures have multi-hop paths between chiplets, it is not possible to get contiguous available chiplets
s the number of CNNs increase. Hence, it becomes imperative to map the consecutive neural
ayers to far-apart chiplets through multi-hop paths. Most importantly, for bigger system sizes
CM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 132. Publication date: September 2023.

Florets for Chiplets 132:19

Fig. 7. Comparison of NoI energy for 2.5D system with (a) 36 chiplets, (b) 64 chiplets, (c) 81 chiplets, and

(d) 100 chiplet system.

t

l

e

5

T

m

t

o

m

C

a

n

u

d

c

c

c

R

he multi-hop paths increase even more. On contrary, Floret always ensures communicating CNN
ayers get mapped to contiguous chiplets. Hence, Floret achieves better performance with lower
nergy consumption compared to other state-of-the-art NoI architectures.

 CONCLUSION

he emergence of 2.5D chiplet platforms provides a new avenue for compact scale-out imple-
entations of emerging compute- and data-intensive applications. Conventional NoI architec-

ures have a limited computational throughput due to the inherent multi-hop nature of the topol-
gy. We presented a novel space-filling curve-based NoI architecture, called Floret, which opti-
izes task mapping and inter-chiplet data exchange to extract high performance for concurrent
NN inference tasks representing data-center scale scenarios. We demonstrated that the data-flow
ware Floret architecture outperforms the state-of-the-art 2.5D manycore architectures with sig-
ificantly lower energy consumption and fabrication cost. Floret reduces the latency and energy
p to 58% and 64%, respectively, compared to state-of-the-art NoI architectures while executing a
iverse workload of CNN inference tasks. We also demonstrate that Floret reduces the fabrication
osts by up to 82% compared to existing NoI architectures. Optimized top-level network while
omplimenting the mapping along the space-filling path is the key to Floret’s benefits over its
ounterparts.

EFERENCES

[1] A. Kannan, N. Jerger, and G. Loh. 2015. Enabling interposer-based disintegration of multi-core processors. In Pro-

ceedings of the 48th International Symposium on Microarchitecture (MICRO) , 2015.

[2] D. Stow et al. 2017. Cost-Effective design of scalable high-performance systems using active and passive interposers.

In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD) .
ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 132. Publication date: September 2023.

132:20 H. Sharma et al.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

A

[3] J. A. Cunningham et al. 1990. The use and evaluation of yield models in integrated circuit manufacturing. IEEE

Transaction of Semiconductor Manufacturing (1990).

[4] International technology roadmap for semiconductors 2.0, 2015 edition, system integration. Report Ch 1, 2015. , Semi-

conductor Industry Association, 2015.

[5] S. Bharadwaj, J. Yin, B. Beckmann, and T. Krishna. 2020. Kite: A family of heterogeneous interposer topologies enabled

via accurate interconnect modeling. In Proceedings of 57th ACM/IEEE Design Automation Conference (DAC) .

[6] G. Krishnan et al. 2021. SIAM: Chiplet-based scalable in-memory acceleration with mesh for deep neural networks.

In ACM Transaction of Embedded Computer Systems 20, 5 (2021).

[7] Y. Shao et al. 2019. Simba: Scaling deep-learning inference with multi-chip-module-based architecture. In Proceedings

of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO) .

[8] Z. Tan, H. Cai, R. Dong, and K. Ma. 2021. NN-Baton: DNN workload orchestration and chiplet granularity exploration

for multichip accelerators. In Proceedings of the International Symposium on Computer Architecture (ISCA) .

[9] S. Bergsma, T. Zeyl, A. Senderovich, and J. Beck. 2021. Generating complex, realistic cloud workloads using recurrent

neural networks. In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles . 376–391.

10] https://w w w.cloudera.com/content/dam/w w w/marketing/resources/ebooks/how- to- take- ai- applications- from-

concept- to- reality- with- cml- on- aws.pdf.landing.html

11] A. Verma, M. Korupolu, and J. Wilkes. 2014. Evaluating job packing in warehouse-scale computing. In Proceedings of

the International Conference on Cluster Computing (CLUSTER) .

12] D. C. Juan, L. Li, H. K. Peng, D. Marculescu, and C. Faloutsos. Beyond Poisson: Modeling inter-arrival time of requests

in a datacenter. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining .

13] N. Jerger, A. Kannan, Z. Li, and G. Loh. 2014. NoC architectures for silicon interposer systems: Why Pay for more

Wires when you Can Get them (from your interposer) for Free?. In Proceedings of the 47th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture (MICRO) . 458-470.

14] B. Zimmer et al. 2020. A 0.32–128 TOPS, scalable Multi-Chip-Module-based deep neural network inference accelerator

with ground-referenced signaling in 16 nm. IEEE Journal of Solid-State Circuits 55, 4 (2020).

15] F. Li et al. 2022. GIA: A reusable general interposer architecture for agile chiplet integration. In Proceedings of the 41st

IEEE/ACM International Conference on Computer-Aided Design .

16] P. Vivet et al. 2021. IntAct: A 96-Core processor with six chiplets 3D-stacked on an active interposer with distributed

interconnects and integrated power management. IEEE Journal of Solid-State Circuits 56, 1 (2021).

17] H. Sharma et al. 2022. SWAP: A server-scale communication-aware chiplet-based manycore PIM accelerator. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems 41, 11 (2022), 4145–4156.

18] S. Mittal. 2019. A survey of ReRAM-based architectures for processing-in-memory and neural networks. Machine

Learning and Knowledge Extraction 1, 1 (2019).

19] A. Shafiee et al. 2016. Crossbars., ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic

in. In Proceedings of the International Symposium on Computer Architecture (ISCA) . 14–26.

20] L. Song, X. Qian, H. Li, and Y. Chen. 2017. PipeLayer: A pipelined ReRAM-Based accelerator for deep learning. In

Proceedings of the International Symposium on High-Performance Computer Architecture (HPCA) .

21] M. Giordano et al. 2021. CHIMERA: A 0.92 TOPS, 2.2 TOPS/W Edge AI accelerator with 2 MByte On-Chip foundry

resistive RAM for efficient training and inference. In IEEE Symposium on VLSI Circuits . 1–2.

22] B. Li et al. 2020. 3D-ReG: A 3D ReRAM-based heterogeneous architecture for training deep neural networks. In the

Journal of Emerging Technology of Computer Systems 16, 20 (2020).

23] P. Chi et al. 2016. PRIME: A novel processing- in-memory architecture for neural network computation in ReRAM-

Based main memory. In Proceedings of the International Symposium on Computer Architecture (ISCA) .

24] M. Imani, S. Gupta, Y. Kim, and T. Rosing. 2019. Floatpim: In-memory acceleration of deep neural network training

with high precision. In Proceedings of the 46th International Symposium on Computer Architecture (ISCA) .

25] T. Ebadollah, S. Pasricha, and M. Nikdast. 2022. ReSiPI: A reconfigurable silicon-photonic 2.5 D chiplet network with

PCMs for Energy-Efficient Interposer Communication. In Proceedings of the 41st IEEE/ACM International Conference

on Computer-Aided Design .

26] S. V. R. Chittamuru et al. 2018. BiGNoC: Accelerating big data computing with application-specific photonic network-

on-chip architectures. IEEE Transactions on Parallel and Distributed Systems 29, 11 (2018), 2402–2415.

27] H. Sagan. 2012. Space-filling curves. Springer Science & Business Media (2012).

28] D. Hilbert. 1891. Uber die stegie abbildung einer linie auf flachenstuck. Mathematische Annalen 38 (1891), 459–460.

29] G. Morton. 1966. A computer oriented geodetic data base and a new technique in file sequencing. In IBM , Ottawa,

Canada, 1966.

30] P. Xu and S. Tirthapura. 2012. A lower bound on proximity preservation by space filling curves. In Proceedings of the

26th International Parallel and Distributed Processing Symposium . 1295–1305.
CM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 132. Publication date: September 2023.

https://www.cloudera.com/content/dam/www/marketing/resources/ebooks/how-to-take-ai-applications-from-concept-to-reality-with-cml-on-aws.pdf.landing.html
https://www.cloudera.com/content/dam/www/marketing/resources/ebooks/how-to-take-ai-applications-from-concept-to-reality-with-cml-on-aws.pdf.landing.html

Florets for Chiplets 132:21

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

R

31] P. Xu, N. Cuong, and S. Tirthapura. 2018. Onion curve: A space filling curve with near-optimal clustering. In 2018).

In Proceedings of the 34th International Conference on Data Engineering (ICDE) .

32] D. DeFord and A. Kalyanaraman. 2013. Empirical analysis of space-filling curves for scientific computing applications.

In Proceedings of the 42nd International Conference on Parallel Processing .

33] M. Lindenbaum and C. Gotsman. 1996. The metric properties of discrete space-filling curves. IEEE Transactions on

Image Processing 5, 5 (1996), 794–797.

34] B. Moon, H. Jagadish, C. Faloutsos, and J. Saltz. 2001. Analysis of the clustering properties of Hilbert spacefilling

curve. IEEE Transactions on Knowledge and Data Engineering 13, 1 (2001).

35] S. Tirthapura, S. Seal, and S. Aluru. 2006. A formal analysis of space filling curves for parallel domain decomposition.

In Proceedings of the International Conference on Parallel Processing (ICPP’06) .

36] H. Jagadish. 1990. Linear clustering of objects with multiple attributes. In Proceedings of the ACM SIGMOD Interna-

tional Conference on Management of Data .

37] S. Aluru and F. E. Sevilgen. 1997. Parallel domain decomposition and load balancing using space-filling curves. In

Proceedings of the Fourth International conference on High-Performance Computing .

38] E. W. Bethel, D. Camp, D. Donofrio, and M. Howison. 2015. Improving performance of structured-memory, data-

intensive applications on multi-core platforms via a space-filling cur ve memor y layout. In Proceedings of the Interna-

tional Parallel and Distributed Processing Symposium (IPDPS) Workshop .

39] M. M. Haque, A. Kalyanaraman, A. Dhingra, N. Abu-Lail, and K. Graybeal. 2009. DNAjig: A new approach for building

DNA nanostructures. In Proceedings of the International Conference on Bioinformatics and Biomedicine .

40] S. Sarkar, G. R. Kulkarni, P. P. Pande, and A. Kalyanaraman. 2009. Network-on-chip hardware accelerators for bio-

logical sequence alignment. IEEE Transactions on Computers 59, 1 (2009), 29–41.

41] T. Majumder, P. P. Pande, and A. Kalyanaraman. 2013. High-throughput, energy-efficient network-on-chip-based

hardware accelerators. In Proceedings of the Sustainable Computing: Informatics and Systems 3, 1 (2013), 36–46.

42] S. Pati et al. 2023. Computation vs. Communication Scaling for Future Transformers on Future Hardware. In

arXiv:2302.02825 , 2023.

43] G. Karunaratne et al. 2020. In-memory hyperdimensional computing. Nature Electron 3 (2020), 327–337.

44] W. Chen et al. 2019. CMOS-integrated memristive non-volatile computing-in-memory for AI edge processors. Nature

Electron 2 (2019), 420–428.

45] X. Dong, C. Xu, Y. Xie, and N. Jouppi. 2012. NVSim: A Circuit-Level performance, energy, and area model for emerging

nonvolatile memory. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 31, 7 (2012).

46] K. Roy, I. Chakraborty, M. Ali, A. Ankit, and A. Agrawal. 2020. In-memory computing in emerging memory technolo-

gies for machine learning: An overview. In Proceedings of the 57th ACM/EDAC/IEEE Design Automation Conference

(DAC’20) .

47] Y. Kim, W. Yang, and O. Mutlu. 2015. RAMULATOR: A fast and extensible DRAM simulator. IEEE Computer Architec-

ture Letters 15, 1 (2015).

48] K. K. S. Murty. 1987. Some NP-complete problems in quadratic and nonlinear programming. Mathematical Program-

ming 39 (1987), 117–129.

49] T. K. Hazra and A. Hore. 2016. A comparative study of Travelling Salesman Problem and solution using different

algorithm design techniques. In Proceedings of the 7th Annual Information Technology, Electronics and Mobile Commu-

nication Conference (IEMCON) .

50] X. Peng et al. 2019. DNN +NeuroSim: An End-to-End benchmarking framework for compute-in-memory accelerators

with versatile device technologies. In Proceedings of the International Electron Devices Meeting (IEDM) .

51] N. Jiang et al. 2013. A detailed and flexible cycle-accurate network-on-chip simulator. In Proceedings of the IEEE

International Symposium on Performance Analysis of Systems and Software (ISPASS) . 86–96.

52] Intel. 2019. Intel Foveros Interconnect. [Online].

53] G. Gad et al. 2022. Deep learning-based context-aware video content analysis on IoT devices. Electronics 11, 11 (2022).

54] S. Kumar, L. Bhagat, and J. Jin. 2022. Multi-neural network based tiled 360 ° video caching with Mobile Edge Comput-

ing. Journal of Network and Computer Applications (2022).

55] U. Gupta et al. 2021. Chasing Carbon: The elusive environmental footprint of computing. In Proceedings of the Inter-

national Symposium on High Performance Computer Architecture (HPCA) , 854–867
eceived 23 March 2023; revised 2 June 2023; accepted 13 July 2023

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 132. Publication date: September 2023.

	1 INTRODUCTION
	2 RELATED WORK
	3 DESIGN AND OPTIMIZATION OF THE SFC-ENABLED NETWORK-ON-INTERPOSER
	3.1 ReRAM-based 2.5D Chiplet Architecture
	3.2 Space-filling Curve Enabled NoI Architecture

	4 EXPERIMENTAL RESULTS
	4.1 Experimental Setup
	4.2 Optimum Number of SFCs
	4.3 Effect of SFC Lengths
	4.4 Variation of Number of Router Ports
	4.5 NoI Fabrication Cost
	4.6 NoI Performance and Energy Analysis

	5 CONCLUSION
	REFERENCESendgraf

