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Abstract—Protein sequence homology detection is a fun-
damental problem in computational molecular biology, with
a pervasive application in nearly all analyses that aim to
structurally and functionally characterize protein molecules.
While detecting homology between two protein sequences is
computationally inexpensive, detecting pairwise homology at
a large-scale becomes prohibitive, requiring millions of CPU
hours. Yet, there is currently no efficient method available
to parallelize this kernel. In this paper, we present the key
characteristics that make this problem particularly hard to
parallelize, and then propose a new parallel algorithm that
is suited for large-scale protein sequence data. Our method,
called pGraph, is designed using a hierarchical multiple-master
multiple-worker model, where the processor space is parti-
tioned into subgroups and the hierarchy helps in ensuring
the workload is load balanced fashion despite the inherent
irregularity that may originate in the input. Experimental
evaluation demonstrates that our method scales linearly on
all input sizes tested (up to 640K sequences) on a 1,024 node
supercomputer. In addition to demonstrating strong scaling,
we present an extensive study of the various components of
the system and related parametric studies.

Keywords-Parallel protein sequence homology detection; par-
allel sequence graph construction; hierarchical master-worker
paradigm.

I. INTRODUCTION

Protein sequence homology detection is a fundamental
problem in computational molecular biology, where given
a set of protein sequences, the goal is to identify highly
similar pairs of sequences. In graph-theoretic terms, if we
were to represent the input protein sequences as vertices and
pairwise sequence similarity as edges, then the problem of
pairwise homology detection is equivalent of constructing
the graph.

Homology detection is widely used in nearly all anal-
yses targeted at functional and structural characterization
of protein molecules [8]. Most notably, the operation is
heavily used in clustering applications, where the problem
is to partition the input sequences such that all proteins
that are “related” to one another by a pre-defined degree
of sequence homology are grouped together. Clustering has
become highly significant of late because of its potential
to uncover thousands of previously unknown proteins from
metagenomic data sets. Metagenomics [5], which is a rapidly

emerging sub-field, involves the study of environmental
microbial communities using novel genomic tools. In 2007, a
single study that surveyed an ocean microbiota [16] resulted
in the discovery of nearly 4 × 103 previously unknown
protein families, significantly expanding the protein universe
as we know it. As protein families are defined as groups
of functionally related proteins, homology detection and
clustering play a central role during family identification.

While there are numerous software options available for
protein sequence clustering (e.g., [2], [3], [4], [8], [11]), all
of them assume that the graph is already constructed and
available as input. However, modern-day use-cases such as
the ocean metagenomic sequence clustering suggest that this
is not the case. This is because these large-scale projects gen-
erate sequence information of their own and hence will have
to contend with detecting the sequence homology among all
new sequences and against sequence information generated
from previous projects. For example, the ocean metagenomic
project alone generated more than 17 million new protein
(ORF) sequences and this set was analyzed alongside over
11 million sequences downloaded from public protein se-
quence databanks (for a total of 28.6 million sequences).
Consequently, the most dominant phase of computation in
the entire analysis was the detection of pairwise sequence
homology, which alone took 106 CPU hours, even after
using heuristic approaches to compute homology [16]. Our
own experience with the homology detection phase [15] is
further confirmation for the challenges that confront this
problem.

In this paper, we propose a new parallel algorithm for car-
rying out sequence homology detection of large-scale protein
sequence data. Through detection, the resulting output is the
sequence graph which can be directly used as input for the
subsequent clustering step.

Developing a scalable solution for this problem using
parallel processing is essential for this emerging application
domain as it can help reduce the time to solution and
enable larger data sets to be analyzed. The problem also has
several attributes that make it interesting from the standpoint
of parallel algorithm development. (i) Input size: Firstly,
the problem is data-intensive. Tens of millions of protein
sequences are already available from public repositories
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(e.g., CAMERA http://camera.calit2.net/). (ii) Work pro-
cessing rate: The rate at which work is processed could
be highly irregular. Detecting pairwise sequence homology
is equivalent to the problem of finding optimal alignment
[13], the time for which is proportional to the product of
lengths of the strings being aligned. However, due to the
large variance in the input protein sequence length, the time
to process each unit of work could also vary significantly,
as will be shown in Section IV. (iii) Work generation rate:
To avoid a brute-force all-against-all sequence comparison, a
string index such as suffix tree [9] or look-up table [1] is used
so that only pairs satisfying an exact matching criterion need
to be further evaluated [15], [16]. However, the rate at which
the pairs are generated could be irregular. For instance, same
sized portions of the suffix tree index could result in the
generation of drastically different number of sequence pairs
for alignment, as will be shown in Section IV. A priori
stocking of pairs that require alignment is also not an option
because of a worst-case quadratic explosion of work. (iv)
Local availability of data: Finally, the ready in-memory
availability of sequence data during alignment processing
cannot be guaranteed under distributed memory machine
setting because of large input sizes. Alternatively, moving
computation to data is also virtually impossible because a
pair listed for alignment work could involve any two input
sequence. The algorithm proposed in this paper addresses
all these challenges.

A. Contributions

In this paper, we present a novel algorithm for carrying
out large-scale protein sequence homology detection. Our
algorithm, called pGraph1, is designed to take advantage
of the large-scale memory and compute power available
from distributed memory parallel machines. The method
uses a hierarchical multiple-master multiple-worker model
to dynamically distribute tasks corresponding to both work
generation and work processing in a load balanced fashion.
The processor space is organized into subgroups with each
subgroup consisting of a producer (for work generation), a
master (for work distribution) and a fixed number of workers
acting as consumers of work. This producer-consumer model
of organizing a subgroup helps decouple work generation
from work processing. In addition, a dedicated supermaster
is tasked with the responsibility of ensuring that the tasks are
evenly shared among subgroups. The multiple-master model
also helps avoid single point bottlenecks.

Experimental results show that this new approach achieves
linear scaling on 1,024 nodes for the range of input tested
(up to 640,000 sequences). More notably, the method was
able to maintain parallel efficiency at more than 90% over
all processor size tested. In addition to scalability results,
we also present a thorough report on the system behavior

1stands for “protein sequence homology Graph construction”

by components. Though presented in the context of protein
sequence graph construction, our method could be extended
to other data-intensive applications where there is irregular-
ity in work generation and/or in work processing.

The paper is organized as follows. Section II presents
the current state of art for parallel sequence homology
detection. Section III presents our proposed method and
implementation details. Experimental results are presented
and discussed in Section IV, and Section V concludes the
paper.

II. RELATED WORK

Sequence homology between two protein sequences can
be evaluated using rigorous optimal alignment algorithms
[10], [13] or heuristic alignment methods such as BLAST
[1]. Protein sequence clustering is a well researched topic
with numerous algorithms and software tools (e.g., [2], [3],
[4], [8], [11]). While sequence homology is a fundamental
computational kernel within clustering applications, there
are currently no efficient parallel algorithms. In order to
accommodate for the 106 CPU hours, the ocean metage-
nomics project [16] used an ad hoc parallel strategy, where
an all-against-all sequence comparison using BLAST was
manually partitioned across 125 dual processors systems
and 128 16-processor nodes each containing between 16GB-
64GB of RAM.

Recently, we proposed a parallel method [15] for the
problem of protein clustering. The main contribution of this
method was that it showed how to break a single large
graph problem into multiple disjoint subproblems. This was
achieved by first enumerating all connected components
so that the individual components can be post-processed
independently for dense subgraph detection. However, de-
tecting connected components also involves enumerating all
the edges of the graph through sequence homology detec-
tion. While performance tests demonstrated linear scaling
up to 128 processors for 160,000 sequences, the phase
for pairwise sequence homology detection failed to scale
linearly for larger number of processors [15]. The cause
for the slowdown was primarily the irregularity that was
observed between pair generation and alignment computa-
tion. Interestingly, the same scheme had demonstrated linear
scaling on DNA sequence clustering problems earlier [7].
This is the motivation behind our newly proposed design
which decouples the work generation (producer) from work
processing (consumer).

Our observations of a higher complexity for metagenomic
protein data when compared to DNA data are consistent with
other previous studies. For example, in the human genome
assembly project [14], the all-against-all sequence homology
detection of roughly 28 million DNA sequences consumed
only 104 CPU hours. Contrast this with the 106 CPU hours
observed for analyzing roughly the same number of protein
sequences in the ocean metagenomic project [16].
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Figure 1. Tree-based filtering scheme used by our approach for protein
sequence homology detection. GST stands for Generalized Suffix Tree.

III. METHODS

Notation: Let S = {s1, s2, . . . sn} denote the set of n
input protein sequences. Let p denote the set of processors.
Let G = (V,E) denote a graph defined as V = S and
E = {(si, sj) | si and sj have a significant sequence
similarity}.

Problem statement: Given a set S of n protein sequences
and p processors, the protein sequence graph construction
problem is to construct G in parallel.

Given S, the primary question is to detect if there exists an
edge between any two vertices. While it is computationally
inexpensive to determine an optimal alignment between two
average-length protein sequences, performing hundreds of
millions to billions of alignment computations could be
highly prohibitive (e.g., [15], [16]). There are two indepen-
dent ways to reduce the computational burden — one is to
use algorithmic heuristics (see Section III-1) and another is
to use high performance computing (see Section III-A).

1) Generating pairs: A brute-force approach to detect
the presence of an edge is to enumerate all possible pairs
of sequences and retain only those as edges which pass the
alignment test. Such an approach would evaluate

(
n
2

)
pairs

for alignment, and hence is not a scalable solution. Alterna-
tively, since alignments represent approximate matching, the
presence of long exact matches can be used as a necessary
but not sufficient condition [7]. This approach can filter out a
significant fraction of poor quality pairs and thereby reduce
the number of pairs aligned significantly (e.g., by > 70%
[15]). Figure 1 illustrates the tree based filtering scheme.

To implement exact matching, we use the maximal match
detection algorithm described in [7]. This method generates
only those pairs that show high promise for passing the
alignment test. It first builds a Generalized Suffix Tree (GST)
data structure [9] as a string index for the strings in S. The
tree index is generated as a forest of subtrees and then the
individual subtrees are traversed to generate pairs. The pair
generation process may exhibit nonuniformity in the sense
that subtrees with the similar size could produce drastically
different number of pairs and/or at different rates (as shown
in Section IV). This is because the composition of a subtree
is purely data-dependent and if a section of subtree receives
a highly repetitive fraction of the input sequences then it is
bound to generate a disproportionately large number of pairs.
The tree construction code outputs the GST as a forest of
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Figure 2. The hierarchical multiple-master multiple-worker design of the
pGraph approach showing the interaction of the individual components
within and outside the subgroups.

subtrees on to the file system, with a small fixed number of
sub-trees in each file.

A. pGraph: Parallel graph construction

In this section, we present a novel and efficient parallel
algorithm to compute sequence alignments on the pairs
generated from the tree index and output edges of the graph
G. Our method uses a hierarchical multiple-master multiple-
worker model to counter the challenges posed by inherent
irregularities of pair generation and alignment rates.

The system architecture is illustrated in Figure 2. The
inputs include the sequence set S and the tree index T . The
tree index is available as a forest of k subtrees, which we
denote as T = {t1, t2, . . . tk}. In both theory and practice,
the value of k tends to be of the order of n, which is good
for parallel distribution for large values of n. The output
of pGraph is the set of all edges of the form (si, sj) s.t.,
the sequences si and sj pass the alignment test based on
user-defined cutoffs. Given p processors and a small number
q ≥ 3, the parallel system is partitioned as follows: i) one
processor is designated to act as the supermaster for the
entire system; and ii) the remaining p − 1 processors are
partitioned into m subgroups such that each subgroup has
exactly q processors2. Furthermore, a subgroup is internally
organized with one processor designated to the role of a
producer, another to the role of a master, and the remaining
q − 2 processors to the role of a consumer.

At a high level, the producers are responsible for pair gen-
eration, the masters for distributing the alignment workload
within their respective subgroups, and the consumers for
computing alignments. The supermaster plays a supervisory
role to ensure load is distributed evenly among subgroups.
Nevertheless, there are several design considerations that
need to be taken into account. In what follows, we explain

2With the possible exception of one subgroup which may obtain less
than q processors if (p − 1)%q �= 0.
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these factors and present algorithms and protocols for each
component in the system.
Notation: Let:
Pbuf ← a fixed sized pair buffer at the producer;
Mbuf ← a fixed sized pair buffer at the master;
Cbuf ← a fixed sized pair buffer at the consumer;
Sbuf ← a fixed sized pair buffer at the supermaster;
b1 ← batch size (for pairs) from producer or supermaster
to master;
b2 ← batch size (for pairs) from master to consumer;

Producer: The primary responsibility of a producer is to
load a subset of subtrees in T and generate pairs using the
maximal matching algorithm in [7]. Pairs could be allocated
for alignment computation by communicating them to the
local master in the subgroup and have the master assign pairs
to its consumers. However, such an approach runs the risk
of a potential bottleneck situation where a producer receives
a subtree that generates a significantly large volume of pairs
and/or generate pairs that take significantly long alignment
times. Another issue is the timing of communicating the
pairs for alignment allocation. The memory limitation at the
producer limits the size of Pbuf used for temporary pair stor-
age. On the other hand, immediately dispatching the pairs
as they are generated may increase communication overhead
or may overrun Mbuf . Assigning subtrees to producers will
also have to be done dynamically at a fine granular level as
otherwise it may result in nonuniform distribution of pairs
across subgroups.

To overcome the above challenges, the algorithm shown in
Algorithm 1 is followed. Initially, a producer fetches a batch
of subtrees (available as a single file) from the supermaster.
The producer then starts to generate and enqueue pairs
into Pbuf . Subsequently, the producer dequeues and sends
b1 pairs to the master. This is implemented using a
nonblocking send so that when the master is not yet ready
to accept pairs, the producer can continue to generate
pairs, thereby allowing masking of communication. After
processing the current batch of subtrees, the producer
requests another batch from the supermaster. Once there
are no more subtrees available, the producers dispatch pairs
to both master and supermaster, depending on whoever is
responsive to their nonblocking sends. This strategy gives
the producer an option of redistributing its pairs to other
subgroups (via supermaster) if the local master is busy. In
fact, we show in the experimental section that the strategy
of using the supermaster route pays off significantly and
ensures the system is load balanced.

Master: The primary responsibility of a master is to
ensure all consumers in its subgroup are always busy with
alignment computation. The main challenge in this setup is
to ensure that a master’s local buffer for storing pairs (Mbuf )
is not overrun by an overactive producer or is starved due to

Algorithm 1 Producer
1. Request a batch of subtrees from supermaster
2. while true do
3. Ti ← received subtrees from supermaster
4. if Ti = ∅ then
5. break while loop
6. end if
7. repeat
8. if Pbuf is not FULL then
9. Generate at most b1 pairs from Ti

10. Insert new pairs into Pbuf

11. end if
12. if sendP→M completed then
13. Extract at most b1 pairs from Pbuf

14. sendP→M ← Isend extracted pairs to master
15. end if
16. until Ti = ∅
17. Request a batch of subtrees from supermaster
18. end while
19. /* Flush remaining pairs */
20. while Pbuf �= ∅ do
21. Extract at most b1 pairs from Pbuf

22. if sendP→M completed then
23. sendP→M ← Isend extracted pairs to master
24. end if
25. if sendP→S completed then
26. sendP→S ← Isend extracted pairs to supermaster
27. end if
28. end while
29. Send END signal to supermaster

a slow producer. Either of these could happen because the
pair generation rate is data-dependent. The above challenge
is overcome as follows (see Algorithm 2).

Initially, to ensure that there is a steady supply and
dispatch of pairs, the master listens for messages from
both its producer and consumers. However, once |Mbuf |
reaches a preset limit called τ , the master realizes that
its producer has been more active than the rate at which
pairs are processed at its consumers, and therefore shuts off
listening to its producer, while only dispatching pairs to its
consumers until |Mbuf | ≤ τ . The rationale for this strategy
is the practical expectation that pair generation tends to
happen much faster than pair alignment. More importantly,
this strategy helps to keep the consumers always busy with
alignment computation. Since consumers are the majority in
the system, this has a direct scalability implication. When
the producer has exhausted sending all its pairs, the master
can fallback on the supermaster to provide pairs.

As for serving consumers, the master maintains a priority
queue, which keeps track of each of its consumers based
on the latter’s most recent status report to the master.
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Priority is defined based on the number of pairs left to be
processed at the consumer’s Cbuf . Priority is implemented
in the master as follows: at any given iteration, pairs are
allocated in batches of size b2 and send to consumers in
the decreasing (or, nonincreasing) order of priority. While
frequent updates from consumers could help the master
to better assess the situation on each consumer, such a
scheme will also increase communication overhead. As a
tradeoff, we implement a priority queue by maintaining
only three levels of priority depending on the condition
of a consumer’s Cbuf : 1

2 -empty, 3
4 -empty, and completely

empty. This also implies that the master, instead of pushing
pairs on to consumers, waits for consumers to take the
initiative in requesting pairs, while reacting in the order of
their current workload status.

Algorithm 2 Master
1. τ : predetermined cutoff for the size of Mbuf

2. Q: priority queue for consumers
3. while true do
4. /* Recv messages */
5. if |Mbuf | > τ then
6. msg ← post Recv for consumers
7. else
8. msg ← post open Recv
9. if msg ≡ pairs then

10. Insert pairs into Mbuf

11. if msg ≡ END signal from supermaster then
12. break while loop
13. end if
14. else if msg ≡ request from consumer then
15. Place consumer in the appropriate priority queue
16. end if
17. end if
18. /* Process consumer requests */
19. while |Mbuf | > 0 and |Q| > 0 do
20. Extract a highest priority consumer, and send ap-

propriate amount of pairs
21. end while
22. end while
23. /* Flush remaining pairs to consumers */
24. while |Mbuf | > 0 do
25. if |Q| > 0 then
26. Extract a highest priority consumer, and send ap-

propriate amount of pairs
27. else
28. Waiting consumer requests
29. end if
30. end while
31. Send END signal to consumers

Consumer: The primary responsibility of the consumer is

to compute optimal alignments using the Smith-Waterman
algorithm [13] for the pairs allocated to it by its master
and output results. The main challenge is to ensure that a
consumer does not starve for work. The consumer follows
Algorithm 3. The consumer maintains a fixed size pair buffer
Cbuf . When the master sends a new batch of b2 pairs, it
starts processing them one at a time. When Cbuf reaches
half size, the consumer sends out a message to the master
updating its new buffer status, and continues processing of
the remaining pairs in Cbuf . At this stage, it also posts a
nonblocking receive to accept new pairs from master while
it is computing alignments. The send is also implemented
as nonblocking to allow for further communication masking.
Another message is sent out at the 1

4 stage, but only after
checking the status of the previous receive. If the master had
sent pairs in the meantime, then the pairs are inserted into
Cbuf and the processing continues. Alternatively, if there
were no messages from the master and Cbuf becomes empty,
the consumer sends another message to inform the master
that it is starving and waits for the master to reply.

Before aligning a batch of pairs, the consumer has
to ensure that the sequences needed are available in the
local memory. While the local memory on a consumer
may not be always sufficient to store the entire set of
input sequences (S), it could be used to cache many
strings. We use a parameter ψ ≤ n for this purpose. At
initialization, all consumers load an arbitrary collection ψ
sequences from I/O. This statically allocated buffer is then
used as a string cache during alignment computation. Only
strings which are not in the local cache are fetched from I/O.

Supermaster: The primary responsibility of the super-
master is to ensure both the pair generation workload and
pair alignment workload are balanced across subgroups. To
achieve this, the supermaster follows Algorithm 4. At any
given iteration, the supermaster is either serving a producer
or a master. For managing the pair generation workload,
the supermaster assumes the responsibility of distributing
subtrees (in batches) to individual producers. The super-
master, instead of pushing subtree batches to producers,
waits for producers to request for the next batch. This
approach guarantees that the run-time among producers, and
not the number of subtrees processed, is balanced at program
completion.

The second task of the supermaster is to serve as a conduit
for pairs to be redistributed across subgroup boundaries. To
achieve this, the supermaster maintains a local buffer, Sbuf .
Producers can choose to send pairs to supermaster if their
respective subgroups are saturated with alignment work. The
supermaster then decides to push the pairs (in batches of
size b1) to masters of other subgroups, depending on their
respective response rate (dictated by their current workload).
This functionality is expected to be brought into effect at
the ending stages of producers’ pair generation, when there
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Algorithm 3 Consumer
1. ψ: number of sequences to be cached statically
2. EMPTY, HALF, QUARTER: 0, b2

2 and b2
4 buffer status

3. Scache ← load ψ sequences from I/O
4. RecvC←M ←post nonblocking receive for master
5. while true do
6. if |Cbuf | > 0 then
7. Prefetch sequences /∈ Scache for next batch of pairs
8. if END signal from master then
9. break while loop

10. else
11. Extract and align next pair in Cbuf

12. end if
13. end if
14. if |Cbuf | = 0 and RecvC←M not completed then
15. Send EMPTY status to master
16. Wait for pairs from master
17. end if
18. if RecvC←M not completed then
19. if |Cbuf | = b2

2 then
20. Send HALF status to master
21. else if |Cbuf | = b2

4 then
22. Send QUARTER status to master
23. end if
24. else
25. Insert received pairs into Cbuf

26. RecvC←M ←post nonblocking receive for master
27. end if
28. end while

could be a few producers that are still churning out pairs in
numbers while other producers have completed generating
pairs. As a further step toward ensuring load balanced distri-
bution at the producers’ ending stages, the supermaster sends
out batches of a reduced size, b1

2 , in order to compensate for
the deficiency in pair supply. Correspondingly, the masters
also reduce their batchsizes proportionately at this stage.
As will shown in our experimental section, the supermaster
plays a key role in load balancing of the entire system.

B. Implementation

The pGraph code is implemented in C/MPI. All param-
eters described in the algorithm section were set to values
based on preliminary empirical tests. The default settings
are as follows: b1 =30,000; b2 =2,000; |Pbuf | = 5 × 107;
|Mbuf | = 6× 104; |Cbuf | = 6× 103; |Sbuf | = 4× 106.

IV. EXPERIMENTAL RESULTS & DISCUSSION

A. Experimental setup

Our parallel algorithm, pGraph, was tested on a set
of 640,000 randomly sampled protein sequences from the
ocean metagenomic data set (downloaded from the CAM-
ERA portal). This sequence data set has a total of 1.6 ×

Algorithm 4 Supermaster

1. Let P = {p1, p2, ...} be the set of active producers
2. RecvS←P ← Post a nonblocking receive for producers
3. while |P | �= 0 do
4. /* Serve the masters*/
5. if |Sbuf | > 0 then
6. mi ← Select master for pairs allocation
7. Extract and Isend b1 pairs to mi

8. end if
9. /* Serve the producers*/

10. if RecvS←P completed then
11. if msg ≡ subtree request then
12. Send a batch of subtrees (Ti) to corresponding

producer
13. else if msg ≡ pairs then
14. Insert pairs in Sbuf

15. end if
16. RecvS←P ← Post a nonblocking receive for pro-

ducers
17. end if
18. end while
19. Distribute remaining pairs to all masters in a round-robin

way
20. Send END signal to all masters

108 amino acid residues. The mean±σ sequence length is
255 ± 195 residues; smallest sequence length is 28 and
the longest is 5,290. Subsets of smaller size ranging from
20K, 40K, . . ., 320K were extracted from the 640K input
for scalability tests. The platform used for scalability test
was the Chinook supercomputer at the EMSL facility in
Pacific Northwest National Laboratory. The supercomputer
is a 160 TFlops Red Hat Linux system consisting of 2,310
HP DL185 nodes dual socket, 64-bit, Quad-core AMD 2.2
GHz Opteron processors. Each core has access to 4 GB
RAM. The network interconnect is Infiniband.

In order to generate the tree index required for all input
sets, we used our suffix tree construction code. On the
640K input, the program output a forest containing 167,870
subtrees. The construction was so quick that even a single
processor run took only under 7 minutes on the 640K input.
For readers interested in the scalability results for the suffix
tree construction method, please refer to [7].

Even though 4 GB RAM was available to each core, to
simulate a larger input scenario, each consumer was allowed
to buffer only n

2 randomly sampled sequences for all runs
reported. In all our experiments, we fixed the subgroup size
to 16 (i.e., 1 producer, 1 master, 14 consumers) based on
preliminary empirical tests.

B. Performance evaluation

Table I shows the total parallel run-time of pGraph both
as a function of n and p. As can be observed, the run-
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Input number Number of processors (p) Number of pairs

of sequences(n) 16 32 64 128 256 512 1,024 (in millions)

20K 445 215 106 53 26 15 - 6.5
40K 1,406 677 332 164 83 42 21 16.9
80K - 10,224 5,042 2,516 1,277 674 360 48.5
160K - - 8,795 4,401 2,221 1,165 600 125.6
320K - - - 9,804 4,914 2,476 1,301 365.7
640K - - - 15,278 7,709 3,935 2,064 590.1

Table I
THE RUN-TIME (IN SECONDS) OF pGraph ON VARIOUS INPUT AND PROCESSOR SIZES. AN ENTRY ‘-’ MEANS THAT THE CORRESPONDING RUN WAS

NOT PERFORMED. THE LAST COLUMN SHOWS THE NUMBER OF PAIRS ALIGNED (IN MILLIONS) AS A FUNCTION OF INPUT SIZE.
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Figure 3. (a) Speedup and (b) Parallel efficiency of pGraph. The speedup computed are relative, and because the code was not run smaller processor
sizes for larger inputs, the reference speedups at the beginning processor size were assumed at linear rate — e.g., a relative speedup of 32 was assumed
for 160K on 32 processors. This assumption is valid because it is consistent with the speedups observed at the processor size for smaller inputs.

time roughly halves each time the number of processors
is doubled from p = 16 to 1, 024, for all inputs tested.
The speedup chart in Figure 3a confirms this linear scaling
behavior, as all speedups were close to ideal. For instance,
the speedups on all inputs were well above 900 on 1,024
processors (e.g., 947 for 640K). It is noteworthy that the
linear speedup is achieved even on an input as small as
20K on up to 512 processors. These results demonstrate
the effectiveness of load distribution strategies used in the
proposed algorithm.

Figure 3b shows the parallel efficiency of the system. As
shown, the system is able to maintain an efficiency well over
90% for nearly all inputs and processor sizes, implying a
strong scaling behavior. For certain input and processor size
combinations, n = 40K and p = 64, the efficiency observed
was greater than 100% due to superlinear speedups at those
points relative to the previous processor size. This could
happen when the system does a slightly better job at load
balancing when increased from a processor size of p

2 to a
size of p.

Table I also shows the growth of run-time as a function of

the input size. The growth in run-time with input size cannot
be analytically determined as it is strictly input dependent.
For the inputs tested, we observed the run-time to typically
increase 2-4 times with doubling of n. Table I also shows
the number of pairs aligned as a function of the input
size. Again, the growth of this term is input-dependent,
while observations show that the increase is roughly 2-
4 times with doubling of n. There are a few anomalous
cases where the run-time growth is disproportionately higher
than the growth in the number of pairs aligned — e.g.,
observe rates of increase from 40K to 80K. We found the
cause to be the result of a sudden increase in the input
sequence length and standard deviation — e.g., the mean±σ
of input sequence length increased from 205 ± 118 in the
40K input to 256± 273 in the 80K input, thereby implying
increased computation costs for an average unit of alignment
computation.

To better understand the overall system’s linear scaling
behavior, we conducted a thorough study of the behavior of
every component within our system. While we present below
the results using n = 160K as a case study, the trends hold
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for all other inputs.
Consumer behavior: At any given point of time,

a consumer is in one of the following states: i) (align)
compute sequence alignment; or ii) (I/O) load sequences
for alignment; or iii) (comm) send request to master; or
iv) (idle) wait for master to allocate pairs. Figure 4 shows
the breakdown of an average consumer as a function of p.
The results show that an average consumer spends more
than 95% of its time in alignment computation regardless
of the value of p, indicating a healthy sign for scalability.
Performing I/O consumes only about 4.5% of the total time
even though only half the number of sequences were locally
cached. Time spent on all other calls is negligible. As a
future improvement, we plan to totally eliminate I/O on
consumers by having all the input sequences in S loaded
in a distributed fashion among all consumers within each
subgroup, and using MPI one-sided communication to fetch
the sequences over the network.
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Figure 4. Run-time breakdown for an average consumer (n = 160K).

Master behavior: At any given point of time, a master
within a subgroup is in one of the following states: i) (idle)
waiting for consumer requests; or ii) (comm) sending pairs to
a consumer; or iii) (comp) performing queue and pair buffer
operations. Ideally, in the interest of master’s availability,
one would expect the master to be idle most of the time.
Figure 5 shows that this is indeed the case, with each master
spending nearly all its time idle. This shows the merit of
maintaining manageably small subgroups in our design.

Figure 6 shows the status of a master’s pair buffer during
the course of the program’s execution. As can be seen,
the master is able to maintain the size of its pair buffer
steadily. This shows that the priority protocol implemented
by the master is highly effective. Maintaining a steady size
at the master’s pair buffer is critical to ensure that the
inflow and outflow of work are regulated. The result is
significant especially considering the nonuniformity in the
rates at which pairs are generated from the producer, and
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Figure 5. Run-time breakdown for an average master (n = 160K).

pairs are aligned at the consumers.
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Figure 6. The status of Mbuf on a master as execution progresses. The
trend holds for all masters tested.

Producer behavior: The primary responsibility of a
producer is to ensure that the master is fed with new batch
of pairs whenever the latter needs it. Figure 7 shows the
number of trees each producer processes within a system
of 64 subgroups, and the number of pairs generated locally
from those set of trees. The figure validates one aspect of
the metagenomic protein sequence input that the number
of trees does not necessarily correlate to the volume of
pairs generated, as this term is tree-dependent. However, the
uniformity in the pair generation time of all the producers
(as shown in the top chart of Figure 7) demonstrates the
effectiveness of our dynamic tree distribution scheme. Note
that the pair generation time for all producers is only ∼ 11%
of the total run-time. This observation, coupled with the
fact that the masters are idle for more than 99% of their
time, indicates a potential for exploring an alternative design
where producers and masters can be collapsed. However,
such an approach runs the risk of the master becoming less
responsive to its consumers and therefore will have to be
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more carefully investigated.
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Figure 7. (a) Plots showing the number of trees processed, the number of
pairs generated and the run-time of the producer in each of the 64 subgroups
for the 160K input.

Supermaster behavior: At any given point of time, the
system’s supermaster is in one of the following states: i)
(producer polling) checking for messages from producers; ii)
(master polling) checking status of masters. Figure 8 shows
that the supermaster spends roughly about 10% to 15% of its
time the polling the producers and the remainder of the time
polling the masters. This is consistent with our empirical
observations, as producers finish roughly in the first 10%-
15% of the program’s execution time, and the remainder is
spent on simply distributing and computing the alignment
workload.
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Figure 8. Run-time breakdown for the supermaster (n = 160K).

Does the supermaster really help in ensuring load is
balanced across the subgroup boundaries? To answer this
question, we made a modified implementation — one that
uses supermaster only for distributing trees to producers
but not for redistributing pairs generated across groups.

This modified implementation was tested against the de-
fault implementation where the supermaster is allowed to
redistribute pairs as well. The results are shown in the plot
in the lower half of Figure 9. As is evident, the scheme
without the supermaster’s redistribution mechanism pays a
heavy penalty in performance as one particular subgroup
(ID: 25) acts as a bottleneck for the entire system, delaying
the program’s completion time by at least 50%. This is
expected because a subgroup without support for redistribut-
ing its pairs is forced to get all its locally generated pairs
aligned by its local consumers, and the combined variability
in pair generation and alignment computation is likely to
generate nonuniform workload and therefore create parallel
bottlenecks. In contrast, the scheme with supermaster’s
involvement in redistribution would have helped out such
bottleneck subgroups by redistributing their pairs to other
subgroups (as corroborated by Figure 9).

The top portion of the Figure 9 shows the difference in the
number of pairs generated within a subgroup vs. the number
of pairs aligned by that subgroup. The large difference is a
manifestation of the supermaster’s redistribution mechanism.
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Figure 9. The distribution of run-time and alignment computation over
64 subgroups (i.e., p = 1, 024) for the 160K input. The plot below shows
the benefit of redistributing pairs across subgroups using the supermaster,
and the plot above shows the difference in the number of pairs generated
and aligned within each group.

C. Other parametric studies

Effect of string caching: To check the effect of caching
strings locally at each consumer, we repeated all our tests
but with each consumer caching all n sequences in its local
memory3. As expected there was a marginal improvement
in consumer’s run-times — e.g., the new run on 160K using
1,204 processors took 563 s to complete, when compared to
600 s in the code that cached only n

2 strings (see Table I).
However, no significant differences were observed in the
speedup or efficiency trends.

3Table not shown due to lack of space.
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Effect of batchsize: We studies the effect of changing the
master to consumer batchsize (b2) on performance. smaller
the value of b2, the better granularity the master has to
avoid load imbalance situations within its group (given the
variance in alignment computation times). On the other
hand, a larger value may prove better at decreasing the total
number of communication rounds. In fact, if the batchsize is
doubled, the master would communicate with each consumer
half as less. To assess this trade-off, we varied batchsize from
500 through 8K and p from 128 to 1,024, and measured the
run-time of the system for n = 160K (under the setting of
full string cache at the consumers). We observed that the
break-even point for this trade-off appeared when batchsize
was small (500 to 2K). In the interest of space, we show the
results only for p = 1, 024 in Table II, but the trend holds
for other processor sizes.

p
Batchsize

0.5K 1K 2K 4K 8K

1,024 672 563 583 698 838

Table II
RUN-TIME (IN SEC) AS A RESULT OF CHANGING THE BATCHSIZE FROM

MASTER TO CONSUMER ON THE 160K INPUT.

V. CONCLUSIONS

Protein sequence homology is a fundamental problem in
protein bioinformatics, one that is becoming increasingly
important owing to high potential for discovery and increas-
ingly time consuming (millions of CPU hours) for large-
scale data. In this paper, we presented a novel parallel
algorithm for parallel protein sequence homology detection.
Our approach, pGraph, is built on a hierarchical multiple-
master multiple-worker model. The strengths of the approach
lies in its ability to negotiate effectively between irregularity
in the work generation phase and work processing phase,
its ability to mask all overheads introduced due to data
movement, and its ability to maintain a balanced system.
Experimental results demonstrate linear scaling behavior
virtually on all inputs tested up to 1,024 processors. Our
findings are further corroborated through extensive para-
metric and system behavior studies. Though developed in
the context of protein sequence clustering, the ideas in our
method could be applied to a broader range of data-intensive
applications where irregularity in work generation and/or
work processing could pose serious problems in scalability.

Further improvements such as I/O elimination on the
consumers have been planned. More parametric studies such
as the effect of changing subgroup size and buffer sizes are
required before scaling to larger parallel systems. Moving
forward, we plan to test our implementation on much larger
metagenomic data sets (e.g., on the 28.6 million ocean
metagenomic data), and using more than 1,024 processors.
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