
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3067665, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. X, NO. Y, YEAR 2021 1

Delta-Screening: A Fast and Efficient Technique
to Update Communities in Dynamic Graphs

Neda Zarayeneh, Member, IEEE, and Ananth Kalyanaraman, Senior Member, IEEE

Abstract—Detecting communities in time-evolving/dynamic networks is an important operation used in many real-world network
science applications. While there have been several proposed strategies for dynamic community detection, such approaches do not
necessarily take advantage of the locality of changes. In this paper, we present a new technique called Delta-Screening (or simply,
∆-screening) for updating communities in a dynamic graph. The technique assumes that the graph is given as a series of time
steps, and outputs a set of communities for each time step. At the start of each time step, the ∆-screening technique examines all
changes (edge additions and deletions) and computes a subset of vertices that are likely to be impacted by the change (using the
modularity objective). Subsequently, only the identified subsets are processed for community state updates. Our experiments
demonstrate that this scheme, despite its ability to prune vertices aggressively, is able to generate significant savings in runtime
performance (up to 38× speedup over static baseline and 5× over dynamic baseline implementations), without compromising on the
quality. We test on both real-world and synthetic network inputs containing both edge additions and deletions. The ∆-screening
technique is generic to be incorporated into any of the existing modularity-optimizing clustering algorithms. We tested using two
state-of-the-art clustering implementations, namely, Louvain and SLM. In addition, we also show how to use the ∆-screening
approach to delineate appropriate intervals of temporal resolutions at which to analyze a given input network.

Index Terms—Dynamic graphs, community detection, incremental clustering, modularity optimization.

F

1 INTRODUCTION

COMMUNITY detection is a fundamental problem in
many graph applications. The goal of community de-

tection is to identify tightly-knit groups of vertices in an
input network, such that the members of each “community”
share a higher concentration of edges among them than to
the rest of the network. Owing to its ability to reveal natural
divisions that may exist in a network (in an unsupervised
manner), community detection has become one of the fun-
damental discovery tools in a network scientist’s toolkit.
The operation is widely used in a variety of application
domains including (but not limited to) social networks,
biological networks, internet and web networks, citation
and collaboration networks, etc. [1].

Designing efficient algorithms and implementations for
community detection has been an area of active research
for well over a decade. While the community detection
problem is NP-hard [2], there are several efficient heuristics
and related software already available for static community
detection — e.g., [3], [4], [5], [6], [7], [8], [9]. For a review of
works in both sequential and parallel settings, please refer
to [1], [10].

However, many real-world networks are dynamic in na-
ture, where vertices and edges can be added and/or re-
moved over a period of time. For instance, consider a collab-
oration network, where over time, new collaborations can
be added between pairs of users, or existing collaborative
links may cease to exist [11]. Similarly, consider the social

• N. Zarayeneh and A. Kalyanaraman are with the School of Electrical En-
gineering and Computer Science, Washington State University, Pullman,
WA, 99164.
E-mail: {neda.zarayeneh, ananth}@wsu.edu

Manuscript received December 24, 2020; revised March 1, 2021.

interactions over time defining edge additions and removals
on a social network [12]. With increasing availability of high-
throughput sensing, numerous such network application
domains are experiencing an explosion of incrementally or
dynamically growing networks [13]. Therefore, analytical
solutions that factor in the dynamic evolving nature of these
graph inputs are necessary.

Owing to the increasing availability of such networks,
the problem of dynamic community detection has become
an actively researched topic of late [14], [15], [16], [17],
[18]. Section 2 provides an overview of related literature.
Broadly, these algorithms can be categorized in two types.
The first class are algorithms that identify communities from
each time snapshot of the network [19], [20], i.e., without
considering the information from previous time steps. These
algorithms tend to be better suited for networks that change
rapidly between time steps. The other class of algorithms
uses information from the community structures of the
previous time steps to compute the communities of new
time steps [14], [15], [21]. The idea is to reduce time to
solution by avoiding re-computation, while also helping
with easier tracking of communities across time steps. For
this latter class of algorithms, a key remaining challenge
in the design of these algorithms is in quickly identifying
the parts of the graph that are likely to be impacted by a
change (or collectively by a recent batch of changes), so that
it becomes possible to update the community information
with minimal recomputation effort [22], [23]. Approaches
that can efficiently exploit such dynamic features have the
potential to reduce the computational burden in dynamic
community discovery; however, such approaches have not
received much attention in the past.

Contributions: In this paper, we propose an algorithmic

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3067665, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. X, NO. Y, YEAR 2021 2

technique called Delta-Screening (or ∆-screening,
for short) that can quickly identify parts of the graph im-
pacted by a new batch of change. The input is a dynamic
graph with an arbitrary (T) number of time steps, and with
a new batch of edge additions and/or edge deletions at the
start of each time step1. Using this as input, our technique
selects vertices for processing at the start of each time step.

The technique is generic to any community detection
method that uses modularity [5] as its clustering objective.
Consequently, we present an incremental dynamic commu-
nity detection framework to detect communities from dy-
namic networks with multiple time steps. More specifically,
the main contributions are as follows:

i) We visit the problem of identifying vertex subsets that
are likely to be impacted by the most recent batch of
changes made to the graph. To address this problem,
we present a technique called ∆-screening, which
can be efficiently implemented and incorporated as
part of existing community detection methods that use
modularity.

ii) To demonstrate and evaluate this technique, we incor-
porated the technique into two well-known classical
community detection methods—namely, the Louvain
method [3] and the smart local moving (SLM) method
[7]—thereby generating two incremental clustering im-
plementations.

iii) Using these two implementations, we present a
thorough experimental evaluation on both synthetic
and real-world inputs. Our results show that the
∆-screening technique is effective in pruning work
(to reduce recomputation effort) without compromis-
ing on output quality. The algorithm shows up to 5×
speedup over the dynamic baseline and 38× over the
static baseline.

iv) In addition to demonstrating its performance benefits,
we also show how to use our approach to delineate
appropriate intervals of temporal resolutions at which
to analyze an input network.

The rest of the paper is organized as follows. We first
present a review of relevant literature. Then, we present
the ∆-screening technique, with provable guarantees.
Next, we present a unified clustering framework that uses
∆-screening for dynamic community detection. The ex-
perimental results section presents a thorough evaluation of
our implementations.

2 RELATED WORK

According to Rossetti and Cazabet [22] algorithms to com-
pute dynamic communities over time-evolving graphs can
be broadly classified into three types.

Static-based methods: One class of methods try to iden-
tify communities based on the current state of the network.
Typically, these methods follow a two-step strategy of first
identifying the best set of communities for the current
time step and then subsequently mapping them onto the
communities from previous generation(s) to track evolution.
Hopcroft et al. [19] present a method in which a static

1. Note that vertex additions and deletions can be implicitly encoded
as part of edge additions and deletions as well. We, therefore, only refer
to edge related events in the remainder of this paper.

community detection tool is individually applied to the
graphs at all time steps, and the results are later combined
by computing community similarities between successive
steps. Cuzzocrea et al. [20] also follow a similar approach,
while trying to recover the evolution of events by matching
the communities of two consecutive time steps using nor-
malized mutual information. Alternatively, Asur et al. [24]
apply a static community detection algorithm to construct a
binary matrix that represents node-to-community member-
ships for each time step. He et al. [25] extend the Louvain
algorithm [3] to detect community at each time step, while
performing community matching with the communities of
the previous time step. Seifikar et al. [26] also present an
extension of the Louvain algorithm, by using a compression-
based strategy to make the execution faster. Palla et al.
[27] present an algorithm based on clique percolation [28]
between consecutive time steps. Greene et al. [16] present
another variant of the two-step strategy, by mainly focusing
on a matching-based formulation to map the communities
of the latest time step to the communities of previous
generations.

In general, these static-based two-step algorithms are
not temporally smoothed—making tracking of communities
harder. Furthermore, these methods incur the additional
overhead of running static implementations at each time
step, and mapping of communities to track the evolution
also at every time step—making the approach expensive.

Stability-based approaches: Another class of methods
follow a strategy where communities of the current time
step are identified based on the communities detected at
previous time step(s). These incremental approaches have
the advantage of generating more stable communities over
time, thereby facilitating an easier tracking the evolution
of communities. However, the divergence from the static
methods is a potential quality concern for these methods
and needs to be evaluated.

Maillard et al. [21] present a modularity-based incremen-
tal approach extending upon the classical Clauset-Newman-
Moore static method [6]. Aktunc et al. [15] present the
dynamic smart local movement (DSLM) method as an ex-
tension of its static predecessor [7]. Xie et al. [29] present
an incremental method based on label propagation which
is a fast heuristic. Saifi and Guillaume [30] provide a way
to track and update community “cores” across time steps.
Zakrzewska and Bader [17] present another variant that
tracks the communities of a selected set of seed vertices
in the graph. The FacetNet approach introduced by Lin
et al. [31] is a hybrid approach that operates with a dual
objective of maximizing modularity for the current time
step while trying to also preserve as much of the previous
generation communities. While the modularity metric has
known to have limitations such as the resolution limit [32],
[33], it is still the most widely used objective in practice (as
represented in the aforementioned methods).

Agarwal et al. [18] propose an incremental approach
to detect communities based on permanence [34] as its
clustering objective. Zeng et al. [35] present a consensus-
based approach to finding communities across time steps.
Their approach uses a genetic algorithm to solve for a multi-
objective problem involving normalized mutual information
(NMI) and modularity. Another multi-objective algorithm

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3067665, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. X, NO. Y, YEAR 2021 3

was introduced in [36]. In a more recent study, Zhao et al.
[37] present an incremental algorithm to cases where bulk
changes happen via subgraph additions or deletions. Wu et
al. [38] present an incremental approach to detect overlap-
ping communities using a weighted network formulation.
DynaMo [39] is an incremental method that updates the
community structure at each time step according to the
changes in the graph. In other words, this approach also
avoids recomputing communities from scratch based on a
set of local rules. Our results section includes a comparison
with DynaMo.

Cross-time step approaches: Another class of meth-
ods work across time steps and identify communities at
any given time step based on the knowledge of the en-
tire graph across all time steps. Tantipathananandh et al.
[40] present an algorithm to identify temporally persistent
groups across multiple time steps, and use a combinatorial
optimization procedure to identify community structures.
Their algorithm assumes that different time steps could
contain information pertaining to different parts of the
graph. Bassett et al. [41] propose and evaluate the choice
of alternative null hypothesis models in modularity-based
dynamic community detection methods. Matias et al. [42],
[43] introduce a Poisson Process Stochastic Block Model
(PPSBM) to detect communities in temporal networks. Xu
and Hero [44] defined a dynamic stochastic block model in
which both affiliations and densities can change. In Viard
et al. [45] and Himmel et al. [46], the authors consider the
stream of the links and look for persistent minimal size
cliques. Bu et al. [47] presents a multi-objective optimization
framework for community detection.

The advantage of these cross-time step algorithms is that
they are better at detecting temporally persistent commu-
nities. However these algorithms require prior knowledge
of the global graph. In addition, several of these methods
compare the graphs and/or community states from multiple
time steps, incurring a higher runtime complexity.

The technique of ∆-screening proposed in this paper
is orthogonal to all the above efforts, in that it is aimed at
helping incremental methods (which fall into the category of
stability-based approaches) to be able to quickly identify the
relevant parts of the graph that are potentially impacted by a
recent batch of changes, so that the computation effort in the
incremental step can be reduced without compromising on
clustering quality. Consequently, the ∆-screening tech-
nique can be used to accelerate the computation in any of the
incremental approaches. We demonstrate in this paper, the
utility of this technique using the modularity-optimization
function. A preliminary version of the method proposed
in this paper appeared in [48]. That preliminary version of
the method only addressed edge additions. In contrast, the
work presented in this paper works for both addition and
deletion events.

3 METHOD

3.1 Basic Notation and Terminology

A dynamic graph G(V,E) can be represented as a sequence
of graphs G1(V1, E1), G2(V2, E2),. . . GT (VT , ET), where
Gt(Vt, Et) denotes the graph at time step t; we use nt = |Vt|

and Mt = |Et|. In this paper, we consider only undi-
rected graphs. The graphs may be weighted—i.e., each edge
(i, j) ∈ Et is associated with a numerical positive weight
ωij ≥ 0; if the graphs are unweighted, then the edges are
assumed to be associated with unit weight, without loss of
generality. We use mt to denote the sum of the weights of
all edges in Gt—i.e., mt =

∑
(i,j)∈Et

ωij . We denote the
neighbors of a vertex i as Γ (i) = {j | (i, j) ∈ Et}. We
denote the degree of a vertex i by d(i). The weighted degree
of a vertex i, denoted by dω(i), is the sum of weights of all
edges incident on i.

In this paper, we consider both incrementally growing
and incrementally shrinking dynamic graphs—i.e., edges
(and vertices) can be added and deleted at each time step.
We denote the newly added/deleted set of edges at any
time step t as ∆t, which is given by ∆t+ ∪ ∆t−, where
∆t+ = Et \ Et−1 and ∆t− = Et−1 \ Et.

We denote the set of communities detected at time step
t as Ct. Note that, by definition, Ct represents a partitioning
of the vertices in Vt—i.e., each community C ∈ Ct is a
subset of Vt; all communities in Ct are pairwise disjoint; and⋃
C∈Ct C = Vt.

For any vertex i ∈ Vt, we denote the community
containing i, at any point in the algorithm’s execution, as
C(i), following the convention used in [49]. Also, let ei→C
denote the sum of the weights for the edges linking vertex
i to vertices in community C—i.e., ei→C =

∑
j∈C∩Γ (i) ωij .

Furthermore, let aC denote the sum of the weighted degrees
of all vertices in C—i.e., aC =

∑
i∈C dω(i).

Given the above, the modularity, Qt, as imposed by a
community-wise partitioning Ct over Gt, is given by [5]:

Qt =
1

2mt
(
∑
i∈Vt

ei→C(i) −
1

2mt

∑
C∈Ct

a2
C) (1)

Given a community-wise partitioning on an input graph,
the modularity gain that can be achieved by moving a partic-
ular vertex i from its current community to another target
community (say C(j)) can be calculated in constant time
[3]. We denote this modularity gain by ∆Qi→C(j). More
specifically:

∆Qi→C(j) =
ei→C(j)∪{i} − ei→C(i)\{i}

2mt

+
dω(i).aC(i)\{i} − dω(i).aC(j)

(2mt)2

(2)

Note that if a vertex i is to migrate out of its current
community, it can realistically move only to a neighboring
community associated with one of its neighbors (as other-
wise the gain cannot be positive). Consequently, computing
a target community that yields the maximum modularity
gain for a given vertex, can be achieved in time proportional
to d(i). This result is used in many algorithms [3], [4], [7],
[49].

3.2 Problem Statement
We define the dynamic community detection problem as
follows.
Dynamic Community Detection: Given a dynamic graph
G(V,E) with T time steps, the goal of dynamic community
detection is to detect an output set of communities Ct at each

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3067665, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. X, NO. Y, YEAR 2021 4

time step t, that maximizes the modularity Qt for the graph
Gt(Vt, Et).

Since the static version of the modularity optimization
problem is NP-Hard [2], it immediately follows that the
dynamic version is also intractable.

For the static version, there exist several efficient heuris-
tics have been developed (as surveyed in [1]). These ap-
proaches can be broadly classified into three categories:
divisive approaches [50], [51], agglomerative approaches [5],
[6], and multi-level approaches [4], [7], [52]. Of these, the
multi-level approaches have demonstrated to be fast and
effective at producing high-quality partitioning in practice.
In Algorithm 1 we show a generic algorithmic pseudocode
for this class of approaches. While they vary in the specific
details of how each step is implemented, they share several
common traits (note that this description is for the static
case):
• At the start of each level, all vertices are assigned to a

distinct community id.
• An iterative process is initiated, in which all vertices

are visited (in some arbitrary order) within each it-
eration, and a decision is made on whether to keep
the vertex in its current community, or to migrate it
to one of its neighboring communities. This decision is
typically made in a local-greedy fashion. For instance,
in the Louvain algorithm [3], a vertex migrates to a
neighboring community that maximizes the modularity
gain of that vertex—i.e., let j ∈ Γ (i) ∪ {i}. Then,

C(i)← arg max
C(j)

∆Qi→C(j)

• When the net modularity gain resulting from an iter-
ation drops below a certain threshold τ , the current
level is terminated (i.e., intra-level convergence), and
the algorithm compacts the graph into a smaller graph
by using the information from the communities. This
procedure represents a graph coarsening step, and the
coarsened graph is subsequently processed using the
same iterative strategy until there is no longer an ap-
preciable modularity gain between successive levels.

Algorithm 1 succinctly captures the main steps of the
multi-level approaches.

3.3 A Naive Algorithm for Dynamic Community Detec-
tion

A simple approach to implement dynamic community de-
tection is to simply apply the static version of the algorithm
(Algorithm 1) on the graph at every time step. However,
such an approach could suffer from lack of stability in the
output communities. Furthermore, by ignoring the previous
community information, the algorithm is essentially forced
to recompute from scratch, and as a result evaluate the
community affiliation for all vertices at each time step.
This can be wasteful in computation. Consider an edge
(i, j) ∈ ∆t that has been newly introduced at time step t; it is
reasonable to expect that only those vertices in the “vicinity”
of this newly added edge to be impacted by this addition.
However, the naive strategy is not suited to exploit such
proximity information, thereby negatively impacting per-
formance particularly for large real-world networks where

Algorithm 1: Abstraction for Multi-level Ap-
proaches

Input: G(V,E)
Output: An assignment Π : V → Z

1 Initialize Π by setting C(v)← {v}, ∀v ∈ V
2 repeat
3 repeat
4 for each v ∈ V do
5 Compute a local (greedy) function

g(v, C(v))
6 C(v)← Update community assignment

for v using the results from g(v, C(v))
7 end
8 Compute a global quality function Q for Π
9 until Convergence based on Q

10 Review communities of Π (optional step)
11 G(V,E)← Coarsen by performing graph

compaction for next level
12 until Convergence based on Q
13 return Π

event-triggered changes tend to happen in a more localized
manner at different time steps. The ∆-screening scheme
described in this paper is aimed at providing an alternative
to this naive approach by overcoming the above set of
limitations.

3.4 The ∆-screening Scheme
In what follows, we describe our ∆-screening scheme
in detail. Given the graph (Gt) and changes (∆t) at time
step t, the goal of ∆-screening is to identify a vertex
subset Rt ⊆ Vt for reevaluation at time step t—i.e., any
vertex that is added to Rt by the ∆-screening scheme
will be evaluated for potential migration by the iterative
clustering algorithm (Algorithm 1); all other vertices are
not evaluated (i.e., they retain their respective community
assignment from the previous time step t − 1). The main
objective is to save runtime by reducing the number of
vertices to process, without significantly altering the quality.
Despite its heuristic nature, however, our ∆-screening
scheme is designed to preserve the key behavioral traits of
the baseline version (as we show in lemmas later in this
section).

Since at each time step t we could have both deletion
and addition of edges, at first we present our algorithm
in two parts, one for handling edge deletions and the
other for handling edge additions. Note that by capturing
edge additions and deletions, we also implicitly capture
vertex additions and deletions. Finally, we also present a
unified algorithm that accounts for time steps where both
additions and deletions occur. In the following sections, we
present our algorithms for edge additions,edge deletions,
and finally a combined framework to handle both events.

3.4.1 The ∆-screening Approach for Edge Additions
Let ∆t+ denote the set of edges added at time step t, and
Rt+ denote the set of nodes for reevaluation. Note that the
objective here is to compute Rt+. For simplicity, we will
assume that these edges did not exist with the same edge

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3067665, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. X, NO. Y, YEAR 2021 5

Algorithm 2: ∆-screening for edge additions at
time step t

Input: Gt, ∆t+

Output: Rt+: a subset of vertices for reevaluation
1 Rt+ ← ∅
2 Sort edges in ∆t+ based on source vertices
3 for each i ∈ S∆t

do
4 Let j∗ ← arg maxj∈T∆t (i){∆Qi→Ct−1(j)}
5 Let gain1 ← ∆Qi→Ct−1(j∗)

6 Let gain2 ← ∆Qj∗→Ct−1(i)

7 if gain1 ≥ gain2 and gain1 > 0 then
8 Rt+ ← Rt+ ∪ {i, j∗} ∪ Γ (i) ∪ Ct−1(j∗)
9 end

10 end
11 return Rt+

weight, at the previous time step t− 12 We also assume that
∆t+ is stored as a list of ordered pairs of the form (i, j). This
implies that for each newly added edge (i, j), there will be
two entries stored in ∆t+: (i, j) and (j, i), as the input graph
is undirected. We refer to the first entry (i) of an ordered pair
((i, j)) as the “source” vertex and the other vertex (j) as the
“sink”. Let S∆t denote the set of all source vertices in ∆t+,
and let T∆t(i) denote the set of all sinks (or “targets”) for a
given source i ∈ S∆t .

Algorithm 2 shows the algorithm for ∆-screening for
edge additions. The algorithm can be described as follows.
We initialize Rt+ to ∅. Subsequently, we examine all edges
of ∆t+ in the sorted order of its source vertices, breaking
ties arbitrarily. Sorting helps in two ways: it helps us to
consider all the new edges incident on a given source vertex
collectively and identify an edge that maximizes the net
modularity gain for the source (line 4 of Algorithm 2). This
way we are able to mimic the behavior of the baseline
versions which also use the same greedy scheme to migrate
vertices. Furthermore, this sorted treatment helps reduce
overhead by helping to update Rt+ in a localized man-
ner (relative to the source vertices) and avoiding potential
duplication in the computations associated with the source
vertex.

Once sorted, we read the list of edges added for each
source vertex, identify a neighbor (j∗) that maximizes the
modularity gain (line 4 of Algorithm 2), and update Rt+
based on that vertex (line 8). However, prior to updating
Rt+, we check if the selected vertex j∗ has a better incentive
to move to i’s community Ct−1(i) (line 7); if that happens,
then Rt+ is not updated from source i and instead, that
decision is deferred until j∗ is visited as the source. This way
we avoid making conflicting decisions between source and
sink, while decreasing the time for processing (by reducing
Rt+ size). Note that we only use the direction of migration
that results in the larger of the two gains for updating Rt+.
Note that the actual decision to migrate itself is deferred
until the stage of execution of the iterative clustering algo-
rithm. In other words, the ∆-screening procedure does
not modify the state of communities, but it sets the stage for
which vertices (in which communities) to be visited during

2. If not, then we can simply skip over such edges during processing.

the main iterative procedure.
The main part of Algorithm 2 is in line 8, where Rt+

is updated. Our scheme adds the following subset to Rt+:
vertices i and j∗, all neighbors of i (i.e., Γ (i)), and all
vertices in the community containing j∗. In what follows,
using a combination of lemmas, we show that the Rt+ so
constructed is positioned to capture all (or most of the)
“essential” vertices that are likely to be impacted by the
edge additions in ∆t+. In other words, if a vertex is left
out of Rt+, it can be concluded that it is less likely (if at all)
to be impacted by the changes to the graph, and therefore
it can stay in its previous community state—thereby saving
runtime.

Fig. 1. Figure showing the impact of a newly added edge (i, j), shown in
red dotted line. Representative cases of candidate vertices for potential
inclusion in Rt are shown highlighted as labelled vertices. Note that we
follow the naming convention of denoting the community containing a
vertex i by C(i). Also, note that not all edges are shown.

Provable Properties for ∆-screening: Edge additions
In the following lemmas, for sake of convenience (and

without loss of generality), we analyze the potential impact
of the event represented by moving i to j∗’s community.
Intuitively, the key to populating Rt+ is in anticipating
which vertices are likely to alter their community status
triggered by this migration event.

First, note that there are two simple cases. If one of
the two endpoints of an added edge is new, then the new
node will simply join the community of the other endpoint.
Also, if both endpoints are new, then they will be in a new
community with these two vertices. In what follows, we
prove certain properties for the more non-trivial cases.

Figure 1 shows the various representative cases that
originate for consideration in our lemmas.

First, we claim that any vertex that is a neighbor of i can
be potentially impacted.

Lemma 1. Let i′ be a neighbor of a vertex i that has a newly
added edge to j∗. Then, the community assignment for i′ at the
end of time step t, i.e., Ct(i′), could be potentially different from
its previous community Ct−1(i′).

Intuitively, a change in i’s community state could influ-
ence any of its neighboring vertices. For a formal proof, see
Supplementary section.

Next, we analyze the potential of vertices that are in
Ct−1(i) but not in Γ (i) to be impacted by the migration
of i. In fact, we conclude that there is no need to include
such vertices in Rt+.

Lemma 2. If i′ ∈ Ct−1(i), then at time step t, a change to the
community state of i′, Ct−1(i′), is possible, only if i′ is also a
neighbor of i.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3067665, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. X, NO. Y, YEAR 2021 6

Proof. We have already considered the case where i′ ∈ Γ (i)
(as part of Lemma 1 in the Supplementary section). There-
fore we only need to consider the case where i′ /∈ Γ (i).
This is represented by vertex label i2 in Figure 1. Since i2 is
already in Ct−1(i) and i2 does not share an edge with i, a
departure of i from Ct−1(i) can only positively reinforce i2’s
membership inCt−1(i). More formally, this can be shown by
comparing the old vs. new modularity gains, ∆Qi2→C(j∗),
resulting from moving i to Ct−1(j∗):

∆Qnew
i2→Ct−1(j∗) =

ei2→Ct−1(j∗) − ei2→Ct−1(i)\{i2}

2mt

+
dω(i2).(aCt−1(i)\{i2} − dω(i))

(2mt)2

−
dω(i2).(aCt−1(j∗) + dω(i))

(2mt)2

=∆Qold
i2→Ct−1(j∗) −

2dω(i2).dω(i)

(2mt)2

Since the new modularity gain is less than the old, vertex
i2 will have no incentive to change community status, and
therefore can be excluded from Rt.

Note that the above proof only analyzes the direct impact
that vertex i’s migration from Ct−1(i) will have on non-
neighbor vertices of Ct−1(i). However, there could still be
an indirect impact (cascading from Lemma 1)—e.g., the
migration of a vertex i1 ∈ Γ (i) may trigger the migration of
a vertex i2 /∈ Γ (i) but in Γ (i1), and so on. However, intu-
itively, as this distance from the locus of change increases,
the likelihood of its impact can be also expected to decay
rapidly in practice (as observed in our experiments).

Next, we analyze the potential impact of i’s migration
on members of j∗’s community.

Lemma 3. If a vertex j1 ∈ Ct−1(j∗), then at time step t, a
change to the community status of any such j1 is possible.

Proof. Intuitively, a new vertex (i) arrives in community
Ct−1(j∗), the degree of such a vertex contributes to the
negative term of modularity, thereby possibly influencing
the other vertices’ decision to remain in that community. A
formal proof is provided in the Supplementary section.

Finally, we analyze the impact of i’s potential migration
from Ct−1(i) to Ct−1(j∗), on vertices that are in neither of
those two communities and are also not in Γ (i).

Lemma 4. If k ∈ Vt\{C(i) ∪C(j)}, then at time step t, unless
k is also in Γ (i), there is no need to include k in Rt+.

Proof. We consider only vertices k /∈ Γ (i), as the other case
was already covered in Lemma 1. There are three subcases:
(A) k shares an edge with some vertex in Ct−1(i) except i;
(B) k shares an edge with some vertex in Ct−1(j∗); and
(C) k has no neighbors in Ct−1(i) or Ct−1(j∗).
However, in none of these cases a migration of i to Ct−1(j∗),
create an incentive for k to move to Ct−1(j∗). This can be
shown more formally using modularity gains as follows.

(A) This case is similar to the subcase (B) identified in the
proof of Lemma 1. The same argument holds.

(B) Any node k connected to Ct−1(j∗) which is located in
other communities have the following modularity gain
after moving i to Ct−1(j∗):

∆Qnew
k→Ct−1(j∗) ≈

ek→Ct−1(j∗) − ek→Ct−1(k)\{k}

2mt

+
dω(k).aCt−1(k)\{k}

(2mt)2

−
dω(k).(aCt−1(j∗) + dω(i))

(2mt)2

≈∆Qold
k→Ct−1(j∗) −

dω(k).dω(i)

(2mt)2

This implies that the modularity gain will decrease if k
were to migrate to Ct−1(j∗), and therefore k will choose
to remain in its current community.

(C) If a vertex is not connected to either Ct−1(i) or
Ct−1(j∗), such as the example k′ in Figure 1, then such
a vertex has no incentive to move to either of the two
communities.

Based on the above lemmas and arguments, the follow-
ing theorem follows.

Theorem 5. If an inter-community edge (i, j) is added, then the
set of vertices that could be possibly affected by this change is
given by: Rt+= Γ (i) ∪ (Ct−1(j) \ Γ (i)).

3.4.2 The ∆-screening Method for Edge Deletion
Similar to the ∆-screening approach for edge addition
introduced in the previous section, we identify a subset
of vertices for reevaluation, at each time step with edge
removals.

Algorithm 3 presents the ∆-screening scheme for
handling edge removals. We assume that ∆t− stores the set
of all deleted edges of a given time step t, and that for each
deleted edge (i, j), there will be two entries in ∆t−: (i, j)
and (j, i). We use the same definitions as in the previous
section, to denote the sets of source and sink vertices: S∆t

and T∆t(i), respectively, in this deletion batch.

Algorithm 3: ∆-screening for edge deletion at
time step t

Input: Gt, ∆t−
Output: Rt−: Subset of vertices for reevaluation

1 Rt− ← ∅
2 Sort edges in ∆t− based on the source vertices
3 for each source i ∈ S∆t do
4 flag = False
5 for each sink j ∈ T∆t(i) do
6 if Ct−1(i) = Ct−1(j) then
7 flag = True
8 end
9 end

10 if flag = True then
11 Rt− = Rt− ∪ Ct−1(i) ∪ Γ(i)
12 end
13 end
14 return Rt−

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3067665, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. X, NO. Y, YEAR 2021 7

In Algorithm 3, we have Gt and ∆t− as inputs, andRt−
as output. Here, Rt− represents the nodes that need to be
reevaluated.

At first, we observe that if the edge being removed is
between two different communities, then such a deletion
could not possibly result in a change of the existing com-
munity states (as the strength of the tie between the two
communities only becomes weaker). Therefore, we discard
such inter-community edge deletions from further consid-
eration in our ∆-screening scheme. Lines 4 through 9 of
Algorithm 3 implement this inter-community check for all
deleted edges incident on a source vertex. As the edge list
in ∆t− is kept sorted by source vertices (line 2), it is easy to
check and discard such source vertices that have all of their
incident deleted edges between two communities.

We therefore only consider source vertices i which have
at least one intra-community deleted edge incident on them—
i.e., edge (i, j) where Ct−1(i) = Ct−1(j). For such source
vertices, the update scheme to Rt− is shown in line 11 of
Algorithm 3. Our method adds all vertices in the community
containing i along with the neighbors of i, to Rt−. Through
a combination of lemmas (stated below), we show that this
update scheme sufficiently captures the effects of the new
batch of deletions.
Provable Properties for ∆-screening: Edge deletions

In the following lemmas we analyze the potential impact
of edge removals. Let (i, j) be an intra-community edge
being removed at time step t from community Ct−1(i)
(equivalently, Ct−1(j)). We consider the two following pos-
sibilities:
• Case A: the deletion event could result in the migration

of vertices i or j (or both) to a (different) neighboring
community;

• Case B: the deletion event could result in the breaking
of community Ct−1(i) into two or more smaller com-
munities.

Our main strategy is to populate Rt− to include those
vertices which are likely to alter their community states as a
result of this deletion event.

First, it should be clear that the deletion event has a
direct impact on the vertices i and j—i.e., it is possible that
either of i’s or j’s strength of connection to Ct−1(i) could
weaken as a result of this deletion, and therefore either of
these two vertices could possibly choose to leave Ct−1(i) at
time step t. Therefore, we simply include i and j as part of
our Rt−.

Next, we show that none of the vertices in Ct−1(i) other
than i and j, will have any incentive to migrate out of
Ct−1(i) to any of the neighboring communities3.

Lemma 6. Let (i, j) ∈ ∆t− be an intra-community edge to
be deleted. Consider a vertex i′ ∈ Ct−1(i) \ {i, j}. Then, the
modularity gain achieved by moving vertex i′ out of Ct−1(i) will
be zero or negative.

Proof. This case is represented by vertex labels i1 (immedi-
ate neighbor of i) and i2 in Figure 2. Here, removing the
edge (i, j) has no impact on the strength of vertex i1’s or

3. Note that this does not exclude the possibility of those ver-
tices choosing to separate into smaller contained communities within
Ct−1(i) at the end of time step t (case B above).

Fig. 2. Figure showing the impact of a deleted edge (i, j), shown in
red dotted line. Representative cases of candidate vertices for potential
inclusion in Rt are shown highlighted as labelled vertices. Note that we
follow the naming convention of denoting the community containing a
vertex i by C(i). Also, note that not all edges are shown.

i2’s connection to community Ct−1(i); i.e., the contribution
of these vertices to the positive term in Eqn. 1 will remain
the same. On the other hand, the negative term in Eqn. 1 for
the community Ct−1(i) will only improve with the removal
of edge (i, j), owing to reduced vertex degree. Therefore,
neither vertex i1 nor vertex i2 will have any incentive to
leave Ct−1(i) during time step t.

Even though the above lemma shows that none of the
vertices in Ct−1(i) other than i and j, have an incentive
to move out of Ct−1(i), we note that it is still possible for
those vertices to split to form smaller, sub-communities by
splitting Ct−1(i)—i.e., Case B. Intuitively, this is because of
the weakening of the strength of the intra-community edges
within Ct−1(i), resulting from the deleted edge. Therefore,
to consider this possibility, our ∆-screening method sim-
ply adds all the vertices in Ct−1(i) for re-evaluation (as
shown in line 11 of Algorithm 3).

Next, we consider the impact of the edge deletion (i, j)
on neighbors of i (alternatively, j) which are outside Ct−1(i).
The lemma is shown for only neighbors of i, and the same
argument holds for neighbors of j as well.

Lemma 7. Let (i, j) ∈ ∆t− be an intra-community edge to be
deleted. Consider a vertex k ∈ Γ (i)\Ct−1(i). Then, it is possible
for vertex k to have an incentive to change its community at time
step t.

Algorithm 4: Dynamic community detection using
∆-screening

Input: G1, {∆1+,∆1−, ...,∆T+,∆T−}
Output: {C1, C2, ..., CT }

1 Let C1 ← Static(G1) denote the initial step output
2 for each t ∈ {2, 3, ..., T} do
3 Initialize Ct ← Ct−1

4 //handle deletions
5 Gt ← Update Gt−1 using ∆t−
6 Compute Rt− ← ∆-screening(Gt,∆t−)
7 Update Ct ← Static(Gt,Rt−)—i.e., run static

clustering only for vertices in Rt−
8 //handle additions
9 Gt ← Update Gt using ∆t+

10 Compute Rt+ ← ∆-screening(Gt,∆t+)
11 Update Ct ← Static(Gt,Rt+)—i.e., run static

clustering only for vertices in Rt+
12 end
13 return {C1, C2, ..., CT }

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3067665, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. X, NO. Y, YEAR 2021 8

TABLE 1
Input network statistics. All the networks used have multiple time steps (shown in the rightmost column), and the cumulative number of edges

represents peak number of edges across all those time steps. Networks whose labels end in ’+’ correspond to growing networks (i.e., edges being
added each time step), and those that end in ’-’ correspond to shrinking networks. The networks whose labels are denoted by ’+/-’ have a

combination of edge additions and deletions at each time step.

Input Input graph No. vertices No. edges (peak) No. timesteps
Sy

nt
he

ti
c 50kll+, 50kll- 50,000 2,362,448 10

50kll+/- 50,000 2,256,197 10
50khh+, 50khh- 50,000 2,367,024 10

50khh+/- 50,000 2,260,550 10
5Mll+, 5Mll- 5,000,000 213,656,492 10

5Mll+/- 5,000,000 202,974,502 10
5Mhh+, 5Mhh- 5,000,000 213,771,700 10

5Mhh+/- 5,000,000 203,083,098 10

R
ea

l-
w

or
ld Arxiv HEP-TH+, Arxiv HEP-TH- 27,770 352,807 10

Arxiv HEP-TH+/- 27,770 352,807 10
Enron+ 36,692 183,831 45

sx-stackoverflow+, sx-stackoverflow- 2,601,977 63,497,050 2-28
sx-stackoverflow+/- 2,601,977 61,032,385 2-28

Proof. This case is represented by vertex label k in Figure 2.
A formal proof is provided in the Supplementary section.

Based on the above lemmas and arguments, the follow-
ing theorem follows.

Theorem 8. If an intra-community edge (i, j) is deleted, then
the set of vertices that could be possibly affected by this change is
given by: Rt−= Ct−1(i) ∪ Γ (i) ∪ Γ (j).

3.5 A General Framework for Dynamic Community De-
tection using ∆-screening

Here, we present our unified dynamic community detection
framework, based on the ∆-screening scheme, capable
of handling both edge additions and edge deletions. Algo-
rithm 4 summarizes the main steps of the algorithm over all
T time steps. Our algorithm uses ∆-screening to prune
the vertex space for processing, before handing over the
actual clustering task to a static clustering code of choice,
albeit only on the vertex subset selected in the Rt. We note
here that our algorithm is generic enough to be applied
to any modularity-based static clustering scheme (denoted
Static() in Algorithm 4). In this work, we used the Louvain
method [3] and smart local moving (SLM) method [7], as
choices for Static (described in the Experimental Evaluation
section).

At the start of every time step t, we assume that the batch
of changes ∆t arrives simply as an unordered collection of
edge additions and edge deletions (i.e., ∆t = ∆t+ ∪ ∆t−).
In our algorithm, we first sort out the additions from the
deletions, and then first process the edge deletions prior to
edge additions—as shown in Algorithm 4. The motivating
rationale behind this order of computation is a combination
of performance and quality—i.e., by first removing edges,
we shrink the graph and update the communities, before
growing the graph again using the added edges and up-
dating the communities. This strategy can be expected to
lower processing times for each batch than doing it in an
arbitrary order or handling additions first. Secondly, from

Fig. 3. Runtime comparison between processing edge deletion following
by edge addition vs. processing edge addition following by edge dele-
tion.

a qualitative standpoint, we note that the strict order used
in processing these edge additions and deletions could po-
tentially impact output clustering. Fig. 3 shows the runtime
comparison of first processing the edge deletions and then
edge addition and conversely, if the edge addition gets
processed first. The acquired clustering quality is 0.658227
and 0.652412, respectively, we have also checked the com-
munity overlap percentage for these two approaches and
obtained around 95% overlap. However, as shown in the
lemmas for our ∆-screening scheme, the effects of dele-
tions are expected to be within communities (splits) whereas
the effects of additions are expected to be across. Given
this complementary nature of their effects, our algorithm
chooses to optimize performance in practice by considering
deletions first. It is worth noting that the challenge imposed
by the order of processing the edge addition/deletion events
also applies to the static clustering, and is not unique to the
dynamic setting.

Note that there is also a simpler version that can be
implemented for both these methods—by following all steps
outlined in our approach except for ∆-screening and in-
stead trivially setting Rt=Vt. For a comparative assessment

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3067665, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. X, NO. Y, YEAR 2021 9

of the ∆-screening strategy, we implemented this baseline
version as well—we refer to the resulting implementations
as dyn-base4.

3.6 Algorithmic Complexity of ∆-screening

The ∆-screening procedures described for edge addi-
tions and edge deletions have a worst-case linear time
complexity in the size of the graph at time step t, i.e.,
O(nt +Mt). The worst-case represents a scenario where the
changes are distributed across the entire graph, possibly im-
pacting almost all of the previous communities. However, in
practice, both procedures are expected to take significantly
less time as the computations are localized to where the
changes (∆t) could have an impact.

Note that the time taken to compute the new clustering
after the ∆-screening step of that time step (denoted by Step
6 of Algorithm 4) will depend on the computational cost
of the underlying clustering algorithm. For instance, in the
case of the Louvain implementation [3], clustering involves
multiple iterations until a modularity-based convergence,
with each iteration performing a linear scan of vertices in
the worst-case. With the application of ∆-screening, we aim
to significantly reduce this number of vertices visited.

3.7 Software Availability

We have implemented the ∆-screening technique
and integrated it as part of the Louvain method.
This open source implementation is available at
https://bitbucket.org/nzarayeneh/dynamic community
detection/src/master/. The software package is
implemented in C++ and can be used for modularity-
based community detection on dynamic networks.

4 EXPERIMENTAL EVALUATION

4.1 Experimental Setup

All our experiments were conducted on a Linux compute
node with an 2.13GHz AMD Ryzen thread ripper 1920x
processor with 64 GB RAM.

Input data: For all our experiments, we used a combina-
tion of synthetic and realworld networks. Table 1 summa-
rizes the main input statistics for the inputs used. Figure S1
(in the Supplementary section) shows the numbers of edge
addition/deletions for the individual time steps.

As synthetic inputs, we used a collection of streaming
networks available on the MIT Graph Challenge 2018 web-
site [53]. We used two types of networks: i) Low block over-
lap, Low block size variation (abbreviated as “ll”), and ii)
High block overlap, High block size variation (abbreviated
as “hh”). These two types are in the increasing order of their
community complexity (ll<hh). However, in both cases,
the number of edges grows (or shrinks) linearly with each
time step (see figure S1. The datasets are available from sizes
of 1K nodes to 20M nodes, and each of these datasets has
ten time steps. For our testing purposes, we used the 50K
and 5M data sets as representatives of two size categories.

4. We note that our dyn-base for SLM method implementation is in
effect same as [15].

As real-world inputs, we used two networks down-
loaded from SNAP database [54]:

1) Arxiv HEP-TH: This is a citation graph for 27,770
papers (vertices) with 352,807 edges (cross-citations).
Even though the edges are directed, for the purpose
of analysis in this paper we treated them as undirected.
The dataset covers papers published between 1993 and
2002. Consequently, we partitioned this period into 10
time steps (one for each year).

2) sx-stackoverflow: This is a temporal network of in-
teractions on Stack Overflow, with 2, 601, 977 vertices
(users) and 63, 497, 050 temporal edges (interactions).
Interactions could be one of many types—e.g., a user
answers another user’s query, a user commented on
another user’s answers, etc. We treated all these interac-
tions equivalently (as edges), and for the purpose of our
analysis we used only the first instance of a user-user
interaction as an edge.

3) Enron email: This communication network covers all
the email communication within a dataset of around
half million emails. This data was originally made pub-
lic, and posted to the web, by the Federal Energy Reg-
ulatory Commission during its investigation. Nodes of
the network are email addresses, and edges represent
(undirected) email exchanges between pairs of users.
We partitioned this data set into 45 time steps based on
the dates of the emails.

For testing purposes, we constructed three types of net-
works using the above network inputs, as shown in Table 1:

• Networks whose labels end with ‘+’ are incrementally
growing networks—i.e., at each time step, edges are
only added. Note that these ‘+’ networks are the same
as the original input.

• Networks whose labels end with ‘-’ are incrementally
shrinking networks—i.e., at each time step, edges are
only deleted. We constructed this sequence by simply
reversing the time steps from the ‘+’ networks.

• Finally, networks whose labels end with ‘+/-’ contain
a combination of additions and deletions at each time
step. These networks were constructed by randomly
selected one edge (from the entire network) for deletion,
for every ten edges added in the given data set, at each
time step.

Implementations tested: In our experiments, we tested
the following implementations:

1) Static: This is a (static) community detection code run
from scratch, on the entire graph of a time step i
(after incorporation of all edge additions and removals).
Louvain [3] and SLM [7] are the two tools we used for
this purpose.

2) Baseline: This is a community detection code run incre-
mentally on the graph at each time step i. “Incremental”
here implies that at the start of every time step i, we
initialize the state of communities to that of the end
of the previous time step i − 1 (for i > 0). For this
purpose, we implemented our own incremental version
of the Louvain tool—we call this dyn-base; and for
SLM, we use the already available incremental version,
which is DSLM [15].

https://bitbucket.org/nzarayeneh/dynamic_community_detection/src/master/
https://bitbucket.org/nzarayeneh/dynamic_community_detection/src/master/

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3067665, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. X, NO. Y, YEAR 2021 10

(a) Average time per iteration for 5Mll+/- using Louvain algorithm (b) Average time per iteration for 5Mhh+/- using Louvain algorithm

(c) Average time per iteration for sx-stackoverflow+/- using Louvain
algorithm

(d) Average time per iteration for Enron+/- using Louvain algorithm

Fig. 4. The average runtime per iteration, for all levels across all time steps, for two representative inputs: 5Mll+/-, 5Mhh+/-, and sx-stackoverflow+/-.
The average is given by the mean time to execute an iteration within each level of a time step. Note that the variance of runtimes for the iterations
of a given level is expected to be small, since the number of vertices processed per iteration remains the same through the level. All runs reported
are from the Louvain-based implementations.

Fig. 5. The fraction of vertices processed at every iteration, given by
|Rt|
|Vt|

. A lower percentage corresponds to a larger savings in perfor-
mance.

3) ∆s: This is a modified baseline version incorporated
with our ∆-screening step to identify the Rt set for
use within each time step. We refer to the resulting two
implementations as dyn-∆s (Louvain) and dyn-∆s
(SLM).

4.2 Runtime and Quality Evaluation of ∆-screening

Table 2 shows a summary of all the runtime and qual-
ity results, comparing the ∆-screening implementation
(Louvain) against the static scheme, for all inputs tested. As
can be observed, the speedups obtained by ∆-screening
ranges from 1.13× to 38.62× over the static Louvain scheme
and from 1.14× to 5.55× over the dynamic Louvain base-
line. The smaller speedups belong to those networks with
smaller size or those synthetic networks where the location
of the changes were randomly distributed. In contrast, we
see higher speedups for larger real-world networks, and for
those synthetic networks where there is a stronger com-
munity structure (’hh’ label) and changes tend to happen
with more locality. These results are achieved with little
to no impact on the quality of the results (shown in the
modularity column). To further understand these results,
we present a thorough evaluation of the runtime and quality
results below.

Runtime Evaluation: First, we evaluate the impact
of ∆-screening technique on the clustering algorithm’s
performance and its filtering efficacy. Fig. 4 shows the run-
times for all clustering iterations within all the time steps,
for the different schemes on different inputs tested.

As can be observed, the dyn-∆s that uses
∆-screening, achieves the best performance, with

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3067665, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. X, NO. Y, YEAR 2021 11

(a) Runtime for 5Mll+,5Mll- network (b) Runtime for 5Mhh+,5Mhh- network

(c) Runtime for Arxiv HEP-TH+,Arxiv HEP-TH- network (d) Runtime for sx-stackoverflow+,sx-stackoverfl- network

Fig. 6. Parts (a), (b), (c), and (d) show the runtime for each time step, for the different growing inputs (’+’) and shrinking inputs (’-’).

the least runtime per iteration compared to both the static
and baseline schemes. In fact, for some iterations, dyn-∆s
is more than 5.74× faster the static scheme, and 3.4× faster
than the baseline implementation.

The runtime savings are a direct result of the reductions
in the number of vertices that are selected for processing
by ∆-screening (i.e., Rt set size). Fig. 5 shows the Rt
set sizes (as a percentage of the respective total number of
vertices), selected for processing at each time step for the
different inputs. Note that the location of the changes to
the graph has a direct bearing on the Rt selected, and this
accounts for the fluctuation in the Rt sizes. For instance,
for the input sx-stackoverflow+/- the size of the changes
increases linearly, but as we can see from Fig. 5. for time
step t2 the percentage of vertices eligible for re-evaluation
is low (around 25%) while for t8 it is higher (around 60%).
Upon further examination, we found that this variability is
because in t2 the fraction of edge additions falling within
communities is ∼ 72% and the fraction of edge removals
happening between two communities is ∼ 67%. In compar-
ison, these two corresponding percentages for time step t8
are ∼ 56% and ∼ 49% respectively. Therefore, for t2, most
of the changes do not add new work and hence generate
more savings, compared to time step t8.

On average, for the smaller inputs, approximately be-
tween 10% and 20% savings in the number of vertices is
achieved at any time step. Notably, for sx-stackoverflow,
which is also the largest network tested, the savings are
significantly larger, ranging from 80% (at time step t1) to

38% (at time step t9).
Even though both classes of input graphs (synthetic and

real-world) show linear growth rates in their respective
sizes, for the synthetic inputs it is harder to benefit from
∆-screening because edges are connected almost ran-
domly from new to existing vertices (by an edge sampling
randomized procedure described in [53]); therefore, the lo-
cation of the changes spreads throughout the whole network
which is not ideal for ∆-screening. Whereas, in the
real-world network sx-stackoverflow, we observed that the
changes tend to happen more in a localized manner, giving
a realistic opportunity to benefit from ∆-screening. This
locality of changes tend to have a significant impact on the
filtering efficacy of the ∆-screening technique. In fact,
even between the two real-world networks, we observed a
divergence—with the ArXiv HEP-TH input, the savings are
relatively modest, compared to the large savings achieved
for sx-stackoverflow.

Next, we evaluate the total runtime including the time
taken to execute all levels. Note that in multi-level codes, the
number of iterations per level may vary across the different
implementations. Fig. 6 shows the runtime as a function of
the time steps, for the different inputs tested.

In all the charts, static shows the runtime for static
Louvain algorithm; add base and add ∆s show the run-
times for the baseline and ∆s implementations for edge
additions (i.e., on the ‘+’ inputs); and del base and del ∆s
show the runtimes for the baseline (∆s) for edge deletions
(i.e., on the ‘-’ inputs).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3067665, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. X, NO. Y, YEAR 2021 12

TABLE 2
Summary of the results.

Input Time (sec) Modularity
static
(Louvain)

dyn base
(Louvain)

dyn ∆s
(Louvain)

speedup
(static)

speedup
(dynamic)

static
(Louvain)

dyn ∆s
(Louvain)

last time step
difference
(∆s - static)(%)

50kll+ 5.830 4.951 2.950 1.98× 1.68× 0.811420 0.810112 −0.161 %
50kll- 5.946 4.879 3.144 1.85× 1.22× 0.714571 0.714003 −0.079 %

50kll+/- 9.667 8.912 6.147 1.57× 1.45× 0.824450 0.821170 −0.397 %
50khh+ 8.379 7.856 2.975 2.82× 2.64× 0.644720 0.640160 −0.707 %
50khh- 9.749 8.729 3.269 2.98× 2.67× 0.616282 0.612346 −0.638 %

50khh+/- 17.853 14.936 6.966 2.56× 2.14× 0.675580 0.672290 −0.486 %
5Mll+ 11624.619 1355.518 809.842 14.35× 1.67× 0.773547 0.771104 −0.315 %
5Mll- 11624.619 2977.571 877.018 13.25× 3.40× 0.593547 0.596427 0.485 %

5Mll+/- 13674.270 2855.872 1785.081 7.66× 2.86× 0.798403 0.795219 −0.398 %
5Mhh+ 32300.000 1140.275 870.660 37.10× 1.31× 0.564018 0.679368 20.451 %
5Mhh- 34200.000 3812.027 975.146 35.07× 3.91× 0.544984 0.536693 −1.521 %

5Mhh+/- 38600.000 5543.045 999.454 38.62× 5.55× 0.675542 0.681642 0.902 %
Arxiv HEP-TH+ 0.399 0.260 0.218 1.83× 1.19× 0.664416 0.662571 −0.277 %
Arxiv HEP-TH- 0.399 0.401 0.352 1.13× 1.14× 0.822908 0.819265 −0.442 %

Arxiv HEP-TH+/- 0.537 0.498 0.389 1.28× 1.15× 0.661220 0.658227 −0.452 %
sx-stackoverflow+ 1283.967 663.398 489.933 2.62× 1.35× 0.453040 0.457285 0.937 %
sx-stackoverflow- 1283.967 686.977 379.788 3.38× 1.81× 0.419580 0.416115 −0.825 %

sx-stackoverflow+/- 2575.719 1526.548 1042.741 2.47× 1.46× 0.460410 0.457926 −0.539 %
Enron+ 275.844 136.429 70.231 3.93× 1.94× 0.689282 0.683282 −0.870 %

TABLE 3
Comparative evaluation of runtime and modularity for ∆-screening, DynaMo, and Batch algorithms. An entry ‘-’ implies the run did not

complete because of exceeding memory capacity.

Algorithms Arxiv HEP-TH+/- 50k ll+/- sx-stackoverflow+/-
Time (sec) Modularity Peak memory Time (sec) Modularity Peak memory Time (sec) Modularity Peak memory

∆-screening 0.218 0.658227 <1 GB 6.147 0.821170 0.64 GB 1042.741 0.457926 3.2 GB
DynaMo [39] 0.349 0.658180 3.2 GB 8.947 0.811556 54.6 GB - - -
Batch [14] 1.941 0.650531 3.3 GB 33.747 0.803625 55.7 GB - - -

We find that in all cases both baseline and ∆s implemen-
tations consistently outperform the respective static imple-
mentation, providing more than two orders of magnitude in
some cases. Between the baseline and ∆s implementations,
the difference varies based on the input. For the synthetic
inputs, both versions perform comparably with a slight
advantage to the ∆s implementation in some time steps.
As discussed earlier, this can be attributed to the random
nature of changes induced in the synthetic inputs. For the
real-world inputs, ∆s significantly outperforms baseline,
yielding over 4× speedup at some time steps (e.g., input:
sx-stackoverflow+; time steps t6, t8).

Fig. 7 shows the runtime performance of the unified
framework (i.e., to handle a combination of additions and
deletions; Algorithm 4), as a function of the time steps.
Here too, we observe a similar trend, with the ∆s scheme
clearly outperforming static and performing comparably or
outperforming the baseline.

Quality Evaluation: We also evaluated the quality, as
measured by the modularity of the output clustering [5],
achieved by the different clustering schemes. Figures S2
and S3 (in the Supplementary section) show the results of
our qualitative evaluation. Basically, in nearly all cases, we
observed no difference in the output modularity, across the
three schemes—implying that the performance gains from
∆-screening does not have any negative impact on the
quality.

4.3 Comparison with other tools

Louvain vs. SLM using ∆-screening: In order to demon-
strate the generic applicability of the ∆-screening scheme
for modularity optimizing frameworks, we also incorpo-
rated ∆-screening into the SLM algorithm [7]. Figure 8
shows a comparison between the runtimes for the Louvain
implementations versus the corresponding SLM implemen-
tations, for the ArXiv HEP-TH network input. First, we
note that the gap between the ∆-screening and static
implementations, is significantly larger for SLM than for
Louvain for this input. Secondly, note that the timings
for SLM are about an order of magnitude larger than the
timings for Louvain on this input. These results collectively
demonstrate that the ∆-screening scheme has an even
larger impact on generating savings for SLM than for Lou-
vain. We generally observed higher modularity values in the
output for SLM compared to Louvain.

∆-screening vs. DynaMo vs. Batch: We performed a
comparative evaluation of ∆-screening against two other
state-of-the-art methods, namely DynaMo [39] and Batch
[14] algorithms. Both provide incremental community up-
date implementations. The results are shown in Table 3. As
can be observed, ∆-screening outperforms these other
two methods in runtime and modularity of output, with
dynaMo coming in a close second on the runtime and
modularity. The memory footprint of the other two tools
were significantly larger than ∆-screening. For the larger
input (sx-stackoverflow), only ∆-screening was able to

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3067665, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. X, NO. Y, YEAR 2021 13

(a) Runtime for 5Mll+/- network (b) Runtime for 5Mhh+/- network

(c) Runtime for Arxiv HEP-TH+/- network (d) Runtime for sx-stackoverflow network

Fig. 7. Plots (a), (b), (c), and (d) show the runtime for each time step, for the network inputs which have both edge additions and deletions (’+/-’).

complete using the available memory (64 GB).

4.4 Effect of Varying the Temporal Resolution

In many real-world dynamic graph use-cases, even though
the input graph is available as a temporal stream, the
appropriate temporal scale to analyze them is not known
a priori. In fact, this scale is an input property that a domain
expert expects to discover through the process of computing
the dynamic communities. In order to facilitate such a study
through dynamic community detection, in this section, we
study the effect of varying the temporal resolution, as defined
by the number of time steps used to partition a graph
stream, on the output clustering.

More specifically, using the sx-stackoverflow input, we
first generated multiple temporal datasets, each of which
representing the input stream divided into a certain number
of time steps, ranging from {2, 4, 8, 12, 16, 20, 24, 28}
steps. Note that in this scheme, there are multiple nested
hierarchies—for instance, the 16-time steps partitioning can
be achieved by splitting each of the 8-time steps partitions
into two. Subsequently, we ran our ∆s-enabled incremental
clustering method on the different temporal input datasets
(we used the dyn-∆s for Louvain in this analysis).

Figure 9 shows the results of this temporal resolu-
tion study. More specifically, Figure 9a shows, for the sx-
stackoverflow+ input, the change in average modularity
as we increase the temporal resolution from coarser to
finer (left to right along the x-axis). Figure 9c shows the

same for the sx-stackoverflow+/- input. We observe that
the modularity values decline gradually until around 16
time steps, after which the decline starts to accelerate. The
decline in modularity suggests that the community-based
structure of the underlying network (at different scales)
starts to weaken as we increase the temporal resolution. This
is to be expected as the temporally binned graphs tend to
only become sparser with increasing resolution. Notably, the
more rapid slide that starts to appear after the 16 time steps-
resolution suggests that the community structure starts to
deteriorate after that resolution for this input.

Interestingly, this property is better captured by Fig-
ures 9b and 9d, which show the % savings in total run-
time achieved by our ∆-screening filtering scheme. Intu-
itively, when the % savings remains approximately steady
(highlighted by the plateau region from the resolution of
4 time steps to 16 time steps), it means that the nature of
the evolution of the graphs within those resolutions is also
relatively consistent. However, a steeper decline (on either
end of the plateau) suggests that under those temporal
resolution scales the temporally partitioned graphs become
either too sparse (right) or too dense (left).

Note that to be able to conduct these kinds of temporal
resolution studies, an application scientist should be able to
run the dynamic community detection algorithm multiple
times under different resolution configurations. This is one
of the motivations for a fast implementation in practice.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3067665, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. X, NO. Y, YEAR 2021 14

(a) Arxiv HEP-TH+ (using Louvain) (b) Arxiv HEP-TH+ (using SLM)

Fig. 8. Runtime comparison of ∆-screening scheme against the baseline and static schemes, for both Louvain and SLM implementations.
For instance, part (b) shows SLM as the static baseline (shown in black), dynamic SLM (dSLM) as the dynamic baseline (shown in red), and the
∆-screening version shown in blue.

(a) The change in average modularity achieved for different tempo-
ral resolutions using Louvain algorithm (input: sx-stackoverflow+)

(b) Percentage savings in total time for ∆-screening, com-
pared to baseline, for different temporal resolutions (input: sx-
stackoverflow+)

(c) The change in average modularity achieved for different tem-
poral resolutions (input: sx-stackoverflow+/-)

(d) Percentage savings in total time for ∆-screening, com-
pared to baseline, for different temporal resolutions (input: sx-
stackoverflow+/-)

Fig. 9. Plots showing the effect of varying the temporal resolution—as measured by the number of temporal bins (i.e., time steps) used to partition
the input graph stream. The resolution of partitioning changes from coarser to finer, from left to right on the x-axis.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3067665, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. X, NO. Y, YEAR 2021 15

5 CONCLUSION

Conducting community detection-based analysis on large
dynamic networks is a time-consuming step in many dis-
covery pipelines. In this paper, we visit a sub-problem in
this context—one of identifying vertices that are likely to
be impacted by a new batch of changes. We presented a
generic technique called ∆-screening that examines and
selects provably “essential” vertices for evaluation during
any given time step, based on the loci of the changes.

Subsequently we incorporated this technique into two
widely-used community detection tools (Louvain and SLM).
Our experiments demonstrated speedups of up to 5× and
38× respectively, over state-of-the-art dynamic and static
baseline implementation, without impacting the quality of
the output. These experiments were conducted for a col-
lection of synthetic and real-world inputs. Our tool is also
more memory efficient demonstrating the ability to run on
a larger input (sx-stackoverflow; 60M) where other imple-
mentations run out of memory. Our ∆-screening scheme
is generic and can be incorporated into any modularity-
optimizing community detection implementation. We also
used the ∆-screening implementation to identify appro-
priate temporal resolutions at which to observe community
structure within the dynamic network. Future research di-
rections include parallelization on multicore platforms; and
application to large-scale networks

toward a domain-specific analysis of the dynamic communi-
ties. The current implementation of the algorithm supports
only undirected graphs and extending the algorithm to
directed setting is also part of our future plan.

ACKNOWLEDGMENTS

We thank Dr. Aurora Clark for providing us valuable input
on potential scientific use-cases to motivate method devel-
opment. The research was supported in part by the U.S.
National Science Foundation (NSF) awards CCF 1815467
and OAC 1910213.

REFERENCES

[1] S. Fortunato, “Community detection in graphs,” Physics Reports,
vol. 486, no. 3-5, pp. 75–174, 2010.

[2] U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer,
Z. Nikoloski, and D. Wagner, “On modularity clustering,” IEEE
Transactions on Knowledge and Data Engineering, vol. 20, no. 2, pp.
172–188, 2008.

[3] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, 2008.

[4] P. De Meo, E. Ferrara, G. Fiumara, and A. Provetti, “Generalized
louvain method for community detection in large networks,” in
2011 11th International Conference on Intelligent Systems Design and
Applications. IEEE, 2011, pp. 88–93.

[5] M. E. Newman, “Fast algorithm for detecting community structure
in networks,” Physical Review E, vol. 69, no. 6, p. 066133, 2004.

[6] A. Clauset, M. E. Newman, and C. Moore, “Finding community
structure in very large networks,” Physical Review E, vol. 70, no. 6,
p. 066111, 2004.

[7] L. Waltman and N. J. Van Eck, “A smart local moving algorithm
for large-scale modularity-based community detection,” The Euro-
pean Physical Journal B, vol. 86, no. 11, p. 471, 2013.

[8] J. Xie, B. K. Szymanski, and X. Liu, “Slpa: Uncovering overlapping
communities in social networks via a speaker-listener interaction
dynamic process,” in 2011 IEEE 11th International Conference on
Data Mining Workshops. IEEE, 2011, pp. 344–349.

[9] M. Rosvall and C. T. Bergstrom, “Maps of information flow
reveal community structure in complex networks,” arXiv preprint
physics.soc-ph/0707.0609, 2007.

[10] A. Kalyanaraman, M. Halappanavar, D. Chavarrı́a-Miranda,
H. Lu, K. Duraisamy, P. P. Pande et al., “Fast uncovering of graph
communities on a chip: Toward scalable community detection on
multicore and manycore platforms,” Foundations and Trends® in
Electronic Design Automation, vol. 10, no. 3, pp. 145–247, 2016.

[11] R. Cazabet, G. Rossetti, and F. Amblard, “Dynamic community
detection,” Encyclopedia of Social Network Analysis and Mining, 2017.

[12] F. Liu, J. Wu, S. Xue, C. Zhou, J. Yang, and Q. Sheng, “Detecting
the evolving community structure in dynamic social networks,”
World Wide Web, vol. 23, no. 2, pp. 715–733, 2020.

[13] P. Holme and J. Saramäki, “Temporal networks,” Physics reports,
vol. 519, no. 3, pp. 97–125, 2012.

[14] W. H. Chong and L. N. Teow, “An incremental batch technique
for community detection,” in Proceedings of the 16th International
Conference on Information Fusion. IEEE, 2013, pp. 750–757.

[15] R. Aktunc, I. H. Toroslu, M. Ozer, and H. Davulcu, “A dynamic
modularity based community detection algorithm for large-scale
networks: DSLM,” in Advances in Social Networks Analysis and
Mining (ASONAM), 2015 IEEE/ACM International Conference on.
IEEE, 2015, pp. 1177–1183.

[16] D. Greene, D. Doyle, and P. Cunningham, “Tracking the evolution
of communities in dynamic social networks,” in 2010 International
Conference on Advances in Social Networks Analysis and Mining.
IEEE, 2010, pp. 176–183.

[17] A. Zakrzewska and D. A. Bader, “A dynamic algorithm for lo-
cal community detection in graphs,” in Proceedings of the 2015
IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining 2015. ACM, 2015, pp. 559–564.

[18] P. Agarwal, R. Verma, A. Agarwal, and T. Chakraborty, “Dyperm:
Maximizing permanence for dynamic community detection,” in
Pacific-Asia Conference on Knowledge Discovery and Data Mining.
Springer, 2018, pp. 437–449.

[19] J. Hopcroft, O. Khan, B. Kulis, and B. Selman, “Tracking evolving
communities in large linked networks,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 101, no.
suppl 1, pp. 5249–5253, 2004.

[20] A. Cuzzocrea, F. Folino, and C. Pizzuti, “Dynamicnet: an effec-
tive and efficient algorithm for supporting community evolution
detection in time-evolving information networks,” in Proceedings
of the 17th International Database Engineering & Applications Sympo-
sium, 2013, pp. 148–153.

[21] P. Maillard, R. Görke, C. Staudt, and D. Wagner, “Modularity-
driven clustering of dynamic graphs,” in Experimental Algorithms,
9th International Symposium, SEA 2010. Springer, 2009, pp. 436–
448.

[22] G. Rossetti and R. Cazabet, “Community discovery in dynamic
networks: a survey,” ACM Computing Surveys (CSUR), vol. 51,
no. 2, pp. 1–37, 2018.

[23] M. Takaffoli, “Community evolution in dynamic social networks–
challenges and problems,” in 2011 IEEE 11th International Confer-
ence on Data Mining Workshops. IEEE, 2011, pp. 1211–1214.

[24] S. Asur, S. Parthasarathy, and D. Ucar, “An event-based frame-
work for characterizing the evolutionary behavior of interac-
tion graphs,” ACM Transactions on Knowledge Discovery from Data
(TKDD), vol. 3, no. 4, pp. 1–36, 2009.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3067665, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. X, NO. Y, YEAR 2021 16

[25] J. He, D. Chen, C. Sun, Y. Fu, and W. Li, “Efficient stepwise detec-
tion of communities in temporal networks,” Physica A: Statistical
Mechanics and its Applications, vol. 469, pp. 438–446, 2017.

[26] M. Seifikar, S. Farzi, and M. Barati, “C-blondel: An efficient
louvain-based dynamic community detection algorithm,” IEEE
Transactions on Computational Social Systems, vol. 7, no. 2, pp. 308–
318, 2020.

[27] G. Palla, A.-L. Barabási, and T. Vicsek, “Quantifying social group
evolution,” Nature, vol. 446, no. 7136, pp. 664–667, 2007.

[28] I. Derényi, G. Palla, and T. Vicsek, “Clique percolation in random
networks,” Physical review letters, vol. 94, no. 16, p. 160202, 2005.

[29] J. Xie, M. Chen, and B. K. Szymanski, “Labelrankt: Incremental
community detection in dynamic networks via label propagation,”
in Proceedings of the Workshop on Dynamic Networks Management and
Mining. ACM, 2013, pp. 25–32.

[30] M. Seifi and J.-L. Guillaume, “Community cores in evolving net-
works,” in Proceedings of the 21st International Conference on World
Wide Web. ACM, 2012, pp. 1173–1180.

[31] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng, “Facetnet:
a framework for analyzing communities and their evolutions in
dynamic networks,” in Proceedings of the 17th International Confer-
ence on World Wide Web. ACM, 2008, pp. 685–694.

[32] S. Fortunato and M. Barthelemy, “Resolution limit in community
detection,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 104, no. 1, pp. 36–41, 2007.

[33] A. Lancichinetti and S. Fortunato, “Limits of modularity maxi-
mization in community detection,” Physical review E, vol. 84, no. 6,
p. 066122, 2011.

[34] T. Chakraborty, S. Srinivasan, N. Ganguly, A. Mukherjee, and
S. Bhowmick, “On the permanence of vertices in network com-
munities,” in Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2014, pp. 1396–
1405.

[35] X. Zeng, W. Wang, C. Chen, and G. G. Yen, “A consensus
community-based particle swarm optimization for dynamic com-
munity detection,” IEEE Transactions on Cybernetics, vol. 50, no. 6,
pp. 2502–2513, 2019.

[36] I. Messaoudi and N. Kamel, “A multi-objective bat algorithm
for community detection on dynamic social networks,” Applied
Intelligence, vol. 49, no. 6, pp. 2119–2136, 2019.

[37] Z. Zhao, C. Li, X. Zhang, F. Chiclana, and E. H. Viedma, “An
incremental method to detect communities in dynamic evolving
social networks,” Knowledge-Based Systems, vol. 163, pp. 404–415,
2019.

[38] L. Wu, Q. Zhang, K. Guo, E. Chen, and C. Xu, “Dynamic com-
munity detection method based on an improved evolutionary
matrix,” Concurrency and Computation: Practice and Experience, p.
e5314, 2019.

[39] D. Zhuang, M. J. Chang, and M. Li, “Dynamo: Dynamic com-
munity detection by incrementally maximizing modularity,” IEEE
Transactions on Knowledge and Data Engineering, 2019.

[40] C. Tantipathananandh, T. Berger-Wolf, and D. Kempe, “A frame-
work for community identification in dynamic social networks,”
in Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2007, pp. 717–726.

[41] D. S. Bassett, M. A. Porter, N. F. Wymbs, S. T. Grafton, J. M.
Carlson, and P. J. Mucha, “Robust detection of dynamic commu-
nity structure in networks,” Chaos: An Interdisciplinary Journal of
Nonlinear Science, vol. 23, no. 1, p. 013142, 2013.

[42] C. Matias and V. Miele, “Statistical clustering of temporal net-
works through a dynamic stochastic block model,” arXiv preprint
arXiv:1506.07464, 2015.

[43] C. Matias, T. Rebafka, and F. Villers, “A semiparametric exten-
sion of the stochastic block model for longitudinal networks,”
Biometrika, vol. 105, no. 3, pp. 665–680, 2018.

[44] K. S. Xu and A. O. Hero, “Dynamic stochastic blockmodels for
time-evolving social networks,” IEEE Journal of Selected Topics in
Signal Processing, vol. 8, no. 4, pp. 552–562, 2014.

[45] T. Viard, M. Latapy, and C. Magnien, “Computing maximal cliques
in link streams,” Theoretical Computer Science, vol. 609, pp. 245–252,
2016.

[46] A.-S. Himmel, H. Molter, R. Niedermeier, and M. Sorge, “Enumer-
ating maximal cliques in temporal graphs,” in 2016 IEEE/ACM
International Conference on Advances in Social Networks Analysis and
Mining (ASONAM). IEEE, 2016, pp. 337–344.

[47] Z. Bu, H.-J. Li, C. Zhang, J. Cao, A. Li, and Y. Shi, “Graph k-
means based on leader identification, dynamic game, and opinion

dynamics,” IEEE Transactions on Knowledge and Data Engineering,
vol. 32, no. 7, pp. 1348–1361, 2019.

[48] N. Zarayeneh and A. Kalyanaraman, “A fast and efficient incre-
mental approach toward dynamic community detection,” in Pro-
ceedings of the 2019 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining, 2019, pp. 9–16.

[49] H. Lu, M. Halappanavar, and A. Kalyanaraman, “Parallel heuris-
tics for scalable community detection,” Parallel Computing, vol. 47,
pp. 19–37, 2015.

[50] M. Girvan and M. E. Newman, “Community structure in social
and biological networks,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 99, no. 12, pp. 7821–
7826, 2002.

[51] S. Gregory, “A fast algorithm to find overlapping communities in
networks,” in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer, 2008, pp. 408–423.

[52] G. Karypis and V. Kumar, “A fast and high quality multilevel
scheme for partitioning irregular graphs,” SIAM Journal on scien-
tific Computing, vol. 20, no. 1, pp. 359–392, 1998.

[53] E. Kao, V. Gadepally, M. Hurley, M. Jones, J. Kepner, S. Mohindra,
P. Monticciolo, A. Reuther, S. Samsi, W. Song et al., “Streaming
graph challenge: Stochastic block partition,” in 2017 IEEE High
Performance Extreme Computing Conference (HPEC). IEEE, 2017,
pp. 1–12.

[54] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

Neda Zarayeneh received a BS degree in ap-
plied mathematics from Razi University, Kerman-
shah, Iran; an MS degree in applied mathe-
matics from University of Tehran, Tehran, Iran;
and an MS degree in computer science from
Texas A&M University-Commerce, Commerce,
TX, USA. Currently, Neda is a Ph.D. candidate in
computer science at Washington State Univer-
sity, Pullman, Washington. Her research inter-
ests include graph algorithms, network and data
science, and computational sciences.

Ananth Kalyanaraman (Senior Member, IEEE)
received the bachelors degree from the Visves-
varaya National Institute of Technology, Nagpur,
India, in 1998, and the MS and PhD degrees
from Iowa State University, Ames, Iowa, in 2002
and 2006, respectively. Currently, he is a profes-
sor and boeing centennial chair in computer sci-
ence, at the School of Electrical Engineering and
Computer Science, Washington State University,
Pullman, Washington. He also holds a joint ap-
pointment with Pacific Northwest National Lab-

oratory, Richland, Washington. His research focuses on developing
parallel algorithms and software for data-intensive problems originating
in the areas of computational biology and graph-theoretic applications.
He is a recipient of a DOE Early Career Award, Early Career Impact
Award, and two best paper awards. He serves on editorial boards of the
IEEE Transactions on Parallel and Distributed Systems and Journal of
Parallel and Distributed Computing. He is a member of ACM, IEEE, and
SIAM.

http://snap.stanford.edu/data

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. X, NO. Y, DATE 2021 1

Supplementary Material: Delta-Screening: A
Fast and Efficient Technique to Update

Communities in Dynamic Graphs
Neda Zarayeneh, Member, IEEE, and Ananth Kalyanaraman, Senior Member, IEEE

F

SUPPLEMENTARY MATERIALS

Lemma 1. Let i′ be a neighbor of a vertex i that has a newly
added edge to j∗. Then, the community assignment for i′ at the
end of time step t, i.e., Ct(i

′), could be potentially different from
its previous community Ct−1(i′).

Proof. There are two subcases: (A) if i′ is also in Ct−1(i); and
(B) otherwise.

Subcase (A) is represented by vertex label i1 in Figure 1.
If i were to leave Ct−1(i), the strength of the connection
of i1 to Ct−1(i) can only weaken because of a decrease in
the positive term of the modularity (Eqn. 1)). Even if the
negative term of the same equation also decreases (due to
departure of i from Ct−1(i)), it may or may not be sufficient
to keep i1 in Ct−1(i). Therefore, we add i1 to Rt.

Subcase (B) is represented by vertex label k in Figure 1.
Here, k is in a community different from Ct−1(i). However,
the situation with k is similar to that of i1 in subcase (A), as
k’s connection to its present community could potentially
weaken if it discovers a stronger connection to C(j∗) as a
result of i’s move. Therefore, we add k to Rt+.

Lemma 3. If a vertex j1 ∈ Ct−1(j∗), then at time step t, a
change to the community status of any such j1 is possible.

Proof. Regardless of whether j1 shares a direct edge with
j∗ or not, the migration of a new vertex (i) into its present
community (Ct−1(j∗)) increases the negative term in Eqn. 1.
This may or may not be accompanied with an increase in
the positive term as well (depending on whether j1 shares
an edge with the incoming vertex i). Consequently, we re-
evaluate the community status of such vertices, by adding
j1 to Rt.

Lemma 7. Let (i, j) ∈ ∆t− be an intra-community edge to be
deleted. Consider a vertex k ∈ Γ (i)\Ct−1(i). Then, it is possible
for vertex k to have a positive incentive to change its community
at time step t.

Proof. This case is represented by vertex label k in Figure 2.
First, we note that the deletion of edge (i, j) does not in

• N. Zarayeneh and A. Kalyanaraman are with the School of Electrical En-
gineering and Computer Science, Washington State University, Pullman,
WA, 99164.
E-mail: {neda.zarayeneh, ananth}@wsu.edu

Manuscript received December 24, 2020; revised March 1, 2021.

anyway change the strength of vertex k’s connection to its
own community Ct−1(k). However, if its neighbor i decides
to migrate to a different community, say Ct−1(j∗), then
vertex k’s strength to that community could also possibly
improve owing to its edge to i. This might result in an
increase in the positive term of Eqn. 1 relative to vertex k.
Consequently, k is influenced by this edge deletion.

Supplementary Results
Figure S1 shows the number of edges added and/or deleted
at every time step of the different inputs. Figures S2 and S3
show the quality (measured in modularity) as a function
of the time steps. As can be shown, all schemes deliver
comparable modularities.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. X, NO. Y, DATE 2021 2

(a) (b)

(c) (d)

Fig. S1. The evolution of network size with each time step, for the synthetic and real world inputs considered for testing.

(a) Modularity for 5Mll+/- network (b) Modularity for 5Mhh+/- network

(c) Modularity for Arxiv HEP-TH+/- network (d) Modularity for sx-stackoverflow+/- network

Fig. S2. Plots (a), (b), (c) and (d) show the change in average modularity across the different time steps, for different +/- inputs.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. X, NO. Y, DATE 2021 3

(a) Modularity for 5Mll+,5Mll- network (b) Modularity for 5Mhh+,5Mhh- network

(c) Modularity for Arxiv HEP-TH+,Arxiv HEP-TH- network (d) Modularity for sx-stackoverflow+,sx-stackoverflow- network

Fig. S3. Parts (a), (b), (c), and (d) show the change in average modularity with the time steps, for the growing and shrinking networks.

	Zarayeneh_TNSE21-earlyaccess
	Zarayeneh_TNSE21_supplementary_final

