
CptS 121 - Program Design and Development

Exam 2 Review Guide

This document will serve as a guide to help you prepare for the second exam in CptS
121. You will find information about the exam format and topics you are expected to
review within this guide.

What to Bring?

▪ Your WSU ID
▪ Two sharp pencils
▪ A "cheat sheet" (see below)
▪ Calculators and other notes may not be used during the exam!

The "Cheat Sheet"

The exam will be closed-book, but you will be allowed a “cheat sheet": one side of a
page whose dimensions may not exceed 8-1/2" by 5-1/2" (i.e., one-half of a standard
sheet of notebook paper). You must present your cheat sheet to your instructor at
check-in, so that he can verify that it meets regulations. If you use a cheat sheet that
exceeds the allowable dimensions, or that has writing on both sides of the page, you
run the risk of its being confiscated prior to the exam. This policy will be strictly
enforced.

Exam Timeframe

Please be aware that, because you will be taking the exam during a normal lecture
period, time will be extremely tight for the exam. If you show up late to class, you
will have less time to take the exam. Note that, when you hand in your exam, you
will be required to present your WSU ID and your cheat sheet to the exam proctor.

Exam Format

Expect the exam to look like an hour version of quizzes, with a few more involved
problems that are more in the spirit of a lab exercise. Roughly 50% of the exam will
be dedicated to concepts, with the other 50% being dedicated to C programming
problems. For the concept section of the exam, expect true-false, fill-in-the-blank,
multiple-choice, and/or short-answer questions similar to those found on the quizzes.
For the programming problem section of the exam, I will present you with
programming problems, and you will be expected to write syntactically-correct C
code solutions that exercise good design. Note that your solutions do not have to be
documented!

Exam Coverage

The exam covers the second five weeks of the semester, chapters 5, 6, 7, 8, 10.1 –
10.5 of the Hanly and Koffman textbook.

Chapter 5: Iteration, Iteration, Iteration…

 Define what is repetition in programs
o Allows for a group of operations to be performed multiple times

 Apply and implement the 3 looping constructs supported in C
o for (), while (), do-while ()
o Recall these loop constructs may be transformed into one another

 Identify, apply, and implement the 5 major loop patterns
o Counting or counter-controlled loop, used with for () and while ()

▪ Indicates number of loop repetitions required are known before
loop execution, i.e. while (count < 10)

o Sentinel-controlled loop, used with for () and while ()
▪ Indicates loop until a special value is encountered, i.e. while

(array[i] != ‘\0’)
o Endfile-controlled loop, best suited to be used with for () and while ()

▪ Indicates loop until the end of a file is reached, i.e. while (status
!= EOF) or while (!feof (infile))

o Input validation loop, used with do-while ()
▪ Indicates loop until a value within valid range is entered by user,

i.e. do {//something} while (input != valid)
o General conditional loop, used with for () and while ()

▪ Indicates processing of data until a condition is met
 Define what is one iteration

o Discuss how loops are defined based on iterations
 Apply and implement nested loops

o Walking through a 2-dimensional array requires the use of nested loops
 What is an infinite loop?

o A loop which will execute “forever”
 Describe and apply compound assignment operators

o These include: +=, -=, *=, /=, %=
 Describe and apply the increment and decrement operators

o Post-increment (i++), pre-increment (++i), post-decrement (i--), and pre-
decrement (--i)

 Provide an example of an off-by-one loop error

Chapter 6: Modular Programming and Pointers

 Define what is a pointer
o A variable that contains the address of another variable
o Used as output parameters which send back results from functions

 Distinguish between output and input parameters
 Declare and apply pointers
 Distinguish between the multiple usages of the * operator with pointers

o int *ptr – indicates the declaration of a pointer
o *result = i + j – indicates the dereferencing of a pointer (the operator is

called the dereference or indirection operator)
 Define what is a direct value

 Define what is an indirect value
o Accessed via the dereference operator – meaning “follow the pointer”

 Apply logical memory diagrams of pointers and how they relate to their indirect
values

Chapter 7: Simple Data Types, Enumerated Types, and Arrays

 Identify the integer types in C
o short, unsigned short, int, unsigned, long, unsigned long

• signed indicates negative and positive numbers are supported,
this is the default type

 Identify the floating-point types in C
o float, double, long double

 Discuss problems with applying floating-point numbers to loop conditions
 Declare and apply enumerated types in C

o One example includes a Boolean type, where FALSE and TRUE may be
assigned a variable of this type

 Describe what is an array
o A collection of contiguous or adjacent memory cells associated with one

variable name and one type
o An array is considered a data structure

▪ A data structure is a way of storing and organizing information; a
composite of related data items

 Define what is a subscript and index
o Recall array indexing in C starts at 0. Why?

 Declare and apply single and 2-dimentional arrays
o Use an initializer list to initialize each item in an array
o Use loops to traverse through arrays

 Write functions which accept arrays (single and 2-dimentional) as parameters
 What happens when an array is passed to a function?

o The address of the 0th element, only, is copied and passed into the
function

 How are arrays and pointers related?
o Is array notation and pointer notation interchangeable?

▪ Pointer notation may always be used with arrays; array notation
may replace pointer notation only if the pointer points to the
start of an array

 Declare and apply parallel arrays
o Parallel arrays may be replaced by an array of structs

Chapter 8: Strings

 Define what is a string in C
o A character array which contains alphabetic, numeric, and special

characters, and is terminated by the null character (‘\0’)
 Declare and apply strings
 Declare and apply an array of strings

o An array of strings is simply a 2-dimensional array of characters where
each row represents a string and the max length of each string is
determined by the max number of columns

 Apply string library functions <string.h>
o strlen () – returns the length of a string, not including the null character
o strcpy () – makes a fresh character-by-character copy of a string
o strcat () – appends one string to the end of another string
o strcmp () – performs a character-by-character comparison based on

ASCII values
▪ returns 0 if the strings are equal (case does matter), < 0 if string1

is less than string2, or > 0 if string1 > string2
 Write functions which mimic the four listed string library functions above,

without calling the string library functions
o Apply array and/or pointer notation to these functions

 Declare and apply arrays of pointers, i.e. char *array_ptrs[10]
 Distinguish between scanf () and gets () related to strings
 Apply the character operations found in <ctype.h>

o These include: isalpha (), isdigit (), islower (), isupper (), toupper (),
tolower (), ispunct (), isspace (), isalnum ()

Chapter 10: Structs

 Define what is a structure in C
o A collection of related fields or variables under one name
o May be used to describe real world objects

 Define what is encapsulation
 Declare and apply structs

o Declare, initialize, and print out struct information
 Declare and apply arrays of structs
 What is the . operator and what is the -> operator?
 Can the assignment (=) operator be applied to structs?

o Yes, the assignment operator copies one struct to another

Other Topics

 Apply pointer arithmetic
o For example, ptr++, ptr + index, --ptr, etc.

Recommended Strategy for Preparing for the Exam

 I recommend that you use the following activities and materials to prepare for the
exam:

▪ Review quizzes and lab exercises: These may well be your best resource. An
excellent learning activity would be to retake the quizzes and review the lab
exercises.

▪ Lecture slides and example code: Study the lecture slides and example code.
Continue to complete extra coding examples on your own time.

▪ Read the textbook: Read or re-read chapters 5, 6, 7, 8, 10.1 – 10.5 in your
textbook. Solve the end-of-chapter exercises.

