
CptS 121 - Program Design and Development

Lab 3: Top-Down Design & Functional Decomposition

Assigned: Week of September 9, 2024
Due: At the end of the lab session

I. Learner Objectives:

At the conclusion of this programming assignment, participants should be able to:

 Analyze a basic set of requirements for a problem and develop a representative
structure chart

 Apply top-down design principles to a problem
 Utilize bottom-up C implementation for a problem
 Identify and implement programmer customized function prototypes, function

definitions, and function calls

II. Prerequisites:

Before starting this programming assignment, participants should be able to:

 Analyze a basic set of requirements for a problem
 Declare variables
 Apply C data types and associated mathematical operators
 Comment a program according to class standards
 Logically order sequential C statements to solve small problems
 Compose a small C language program
 Compile a C program using Microsoft Visual Studio 2022
 Execute a program
 Create basic test cases for a program

III. Overview & Requirements:

This lab, along with your TA, will help you navigate through modularizing your C solutions to

the provided problems. In this course we will use top-down design and divide-and-conquer

strategies to solve problems. Recall that in computer science the concept of top-down design

and functional decomposition refers to the process followed to manage the complexity of

problems by breaking them down into parts that are easier to understand, implement, and

maintain.

Labs are held in a “closed” environment such that you may ask your TA questions. Please use
your TAs knowledge to your advantage. You are required to move at the pace set forth by
your TA. You must work in teams assigned by your TA. However, I encourage you to compose
your own solution to each problem. Please help other students in need when you are finished
with a task. Have a great time! Labs are a vital part to your education in CptS 121 so work
diligently.

Tasks: Design, implement, compile, and test C solutions to the following problems. You must
use appropriate top-down design and functional decomposition with the problems. Your TA

should help you with this. Note: a structure chart is a good way of determining appropriate
functions for a problem. You should always have at least the following: one function that
gathers input, one function that performs the computation, and one function that displays the
result. Once you have completed a problem, demonstrate your solution to your TA. Please
collaborate with your teammates throughout solving these problems!

1. For this problem, please create one file (main.c) only. You will apply the 3-file
format/organization on the other problems. In lab 2 you should have completed a
solution to the following problem (but, this time around rewrite your solution to use
functions):

Write a program to calculate your body mass index (BMI). The BMI is a
measurement that uses your height and weight to determine if you are
underweight, a healthy weight, or overweight. Your program is required to
prompt the user for weight in pounds and height in feet. The height must then
be converted to inches (recall: 1 foot = 12 inches). Once the BMI has been
calculated display the resultant BMI value. Use the equation below to calculate
the BMI.

 BMI = ((weight in pounds) / (height in inches)^2) * 703

Note: a BMI of less than 18 indicates you are underweight, >= 18 and < 25
means you are at a healthy weight, >= 25 and < 30 means you are
overweight, and > 30 indicates obesity. You do NOT need to classify the BMI
value in the program. This would require "if" statements, which you have
not learned yet!

We will practice top-down design in this problem. First, we need to analyze the
problem and determine subproblems. Second, we need to draw a structure chart to
show the relationships between subproblems. The original problem is to compute BMI.

 Original Problem – Level 0

 In order to compute the BMI, we need to get inputs from the user for weight (in
pounds) and height (in feet).

 Subproblems – Level 1

We also need to convert the height in feet to inches, calculate the BMI based on given
user inputs, and display the BMI. Converting height in feet to inches is really a detailed
subproblem of calculating the BMI, so it should be placed in level 2 of the chart.

Compute BMI

Get
Weight

Get
Height

 Subproblems – Level 1 Cont.

 Detailed subproblems – Level 2

The complete structure chart with data flow information is listed below:

Data flow:
(1) Weight in pounds
(2) Height in feet
(3) Weight in pounds, Height in feet
(4) BMI
(5) BMI
(6) Height in feet
(7) Height in inches

You should implement the following functions based on the subproblems:

 double get_weight (void) // prompts the user for weight in pounds, and
returns the weight

 double get_height (void) // prompts the user for height in feet, and returns
the height

 double convert_feet_to_inches (double height_in_feet) // converts the
height of the user from feet to inches, and returns the height in inches

 double calculate_bmi (double weight_in_pounds, double height_in_feet) //
evaluates the BMI based on weight in pounds and height in inches, and
returns the BMI – call convert_feet_to_inches ()

Calculate

BMI

Display

BMI

Convert feet to

inches

Compute BMI

Get

Height

Get

Weight

Calculate

BMI

Display

BMI

Convert feet to

inches

(1)

(2)

(3)

(4) (5)

(6)

(7)

 void display_bmi (double bmi) // display the resultant BMI value to the
tenths place

2. For this problem create three files. Two .c files and one .h file. The files should

contain the following:
 .h file – generally should contain standard library includes, #defined

constants, and function prototypes/declarations (we will add more to the
.h file in the future!)

 .c file – contains the definitions for all programmer-defined functions, aside
from main ()

 main.c – contains function main (); recall, we try to design main () to be as
concise as possible

Write a program that computes the duration of a projectile's flight and its height
above the ground when it reaches the target. As part of your solution, write and call a
function that displays instructions to the program user. You will need to use the
following information to solve this problem:

 Problem Constant
 G 32.17 /* gravitational constant */

 Problem Inputs
 double theta /* angle (radians) of elevation */
 double distance /* distance (ft) to target */
 double velocity /* projectile velocity (ft/sec) */

 Problem Outputs
 double time /* time (sec) of flight */
 double height /* height of impact */

 Relevant Formulas
 time = (distance) / (velocity * cos(theta)) /* make sure to include math.h to
use cos () and sin () */
 height = velocity * sin(theta) * time - ((G * time^2) / 2)

Define functions where appropriate. Recall, building a structure chart is a good way of
determining appropriate functions for a problem. Your TA should help guide you with
this!

3. Once again, for this problem create three files. Two .c files and one .h file. Write a
program that first prompts the user for the scores received on two exams, two labs,
and two projects. Note: you should only need to implement one function to get the
scores from the user. However, this function will be called six times (once for each
score needed). The program must then compute separate averages for the exams,
labs, and projects. Note: you should only need to implement one function to compute
the average. However, this function will be called three times (once for exams, once
for labs, and once for projects). Next, your program must weight the averages
according to the following:

a. Each exam is worth 30%
b. Each lab is worth 5%

c. Each project is worth 15%
Display the weighted average (out of 100%) to the screen.

Define functions where appropriate!

IV. Submitting Labs:

 You are not required to submit your lab solutions. However, you should keep them in a
folder that you may continue to access throughout the semester.

V. Grading Guidelines:

 This lab is worth 10 points. Your lab grade is assigned based on completeness and
effort. To receive full credit for the lab you must show up on time, work with a team,
continue to work on the problems until the TA has dismissed you, and complete at
least 2/3 of the problems.

