
(1 - 1) Computer Software & Software
Development

H&K Chapter 1

Instructor - Andrew S. O’Fallon

CptS 121 (January 14, 2026)

Washington State University

C. Hundhausen, A. O’Fallon2

Course Collaborators

⚫ A lot of material for this course was adapted

from Chris Hundhausen’s course or

developed concurrently with him

http://eecs.wsu.edu/~hundhaus/

What is Expected in this Course?

⚫ To learn how to approach and solve

problems differently, including some

interview like questions

⚫ To build enough programming skills to be

one step closer to landing an internship

⚫ Dedication

⚫ And of course, hard work

⚫ You up for the challenge?

C. Hundhausen, A. O’Fallon3

C. Hundhausen, A. O’Fallon4

What is Computer Science? (1)

⚫ Computer science is the study of computers and
computational systems, with a particular focus on
algorithms

– Intersects theory with practice

– Requires thinking in abstract and concrete terms

– Not just about building computers and developing programs

– Involves planning, designing, developing and applying systems

– Applies analysis to algorithm efficiency, and software
performance

⚫ What are areas of study in Computer Science?
– Artificial intelligence - Big data / data analytics

- Machine Learning - Bioinformatics

– Networks - Software engineering

– Graphics - Computer systems

– Security - Database systems
 - Many others

What is Computer Science? (2)

⚫ What is an algorithm?
– A sequence of instructions that solve a problem

⚫ Why are algorithms so important to computer
science?

– If we can specify an algorithm…

⚫ We can automate the solution

⚫ We can also repeat a solution to a problem

C. Hundhausen, A. O’Fallon5

Activities: Discuss, Write, and
Execute an Algorithm

⚫ Activities (in pairs):
– (1) Verbally discuss (only) an algorithm using for drawing a

triangle on the whiteboard with a dry erase marker – wait

until the instructor indicates to move forward

– (2) Write an algorithm using basic English words and

phrases (not programming language statements) for

drawing a triangle on the whiteboard with a dry erase

marker – wait until the instructor indicates to move forward

– (3) Execute the algorithm and draw the triangle described

by the algorithm on a tablet, piece of paper, or the

whiteboard

C. Hundhausen, A. O’Fallon6

Class Analysis of Triangle
Drawing Activity? (1)

⚫ Was the triangle drawn as expected?

– If no:

⚫ Was there any miscommunication between you and

your partner about how to write the algorithm?

⚫ Was it because the algorithm was incomplete and/or

ambiguous?

⚫ Was it because the activity statements were incomplete

and/or ambiguous?

– What kinds of clarifying questions could you ask to better

understand the activity statements?

C. Hundhausen, A. O’Fallon7

Class Analysis of Triangle
Drawing Activity? (2)

⚫ Does your triangle look the same as others in

the class?

– If no, why?

⚫ Could the activity statements have provided more

information?

⚫ Could you have asked clarifying questions?

C. Hundhausen, A. O’Fallon8

C. Hundhausen, A. O’Fallon9

Formal Definition of Algorithm

⚫ A well-ordered collection. . .

⚫ Of unambiguous and effectively computable

operations. . .

⚫ That produces a result. . .

⚫ And halts in a finite amount of time.

C. Hundhausen, A. O’Fallon10

Is this an Algorithm? (4)

⚫ Apply small amount of shampoo to hair

⚫ Work into scalp for about 1 minute

⚫ Rinse thoroughly

⚫ Repeat

No! Why not?

 Hint: Is it well ordered? Does it halt?

C. Hundhausen, A. O’Fallon11

How are Algorithms Put Together?

⚫ Sequenced instructions

– do them in the order given

⚫ Conditional instructions

– do them if a condition is true

⚫ Iterative instructions

– do them while a condition is true

C. Hundhausen, A. O’Fallon12

High-Level Programming
Languages (1)

⚫ High-level programming languages
– The continuum of languages:

– Low-level languages were created from the
perspective of the machine; working with 1’s and
0’s, also known as logic levels

– High-level languages, have natural language like
elements

C. Hundhausen, A. O’Fallon13

High-Level Programming
Languages (2)

⚫ Problem: Computers can’t understand high-

level programming languages

⚫ Solution: They must be translated

– Programmer uses a text editor to write a text-

based source file in a programming language

– Compiler translates source file

⚫ Checks to make sure that program is syntactically

correct

⚫ If so, the compiler translates the program into an object

file with machine language instructions

C. Hundhausen, A. O’Fallon14

High-Level Programming
Languages (3)

⚫ Object file translated by compiler will not
execute!
– High-level programs often make use of software

libraries containing predefined pieces of code,
including
⚫ Math functions

⚫ Input/output functions

– In order to execute, object file must be linked to
object files containing these predefined pieces of
code

– A Linker program performs this operation

– A Loader program loads the linked program into
memory so that it can be executed

C. Hundhausen, A. O’Fallon15

High-Level Programming
Languages (4)

⚫ Executing Programs

– In this class, programs will execute in a text-

based window called a console

– Input data can be entered at command-line

prompts

– Output results will be displayed in the console

window

– In the real world, many programs have a

graphical user interface (GUI)

– GUI programming is, however, beyond the

scope of this course

C. Hundhausen, A. O’Fallon16

High-Level Programming
Languages (5)

⚫ Integrated Development Environments (IDE)

– Combine compiler, linker, and loader with a source

code editor – we use Microsoft Visual Studio

Community 2026 in this course

⚫ Generally, a single button will start the translation

process

– Provide a variety of tools to assist programmers, for

example:

⚫ Source code syntax highlighting

⚫ Autocompletion lists ("Intellisense")

⚫ A debugger, which allows a programmer to step

through programs, one instruction at a time

⚫ A testing framework for developing unit tests

C. Hundhausen, A. O’Fallon17

Software Development Method

⚫ Equivalent to the “Scientific Method” in the

sciences, and the “Systems Approach” in

business

⚫ Six basic steps:

1. Specify problem requirements

2. Analyze the problem

3. Design an algorithm to solve the problem

4. Implement the algorithm

5. Test and verify the completed program

6. Maintain and update the program

C. Hundhausen, A. O’Fallon18

Applying the Software Development
Method (1)

⚫ Developing software is an iterative process, your

first solution is generally not your best!

⚫ Your understanding of software your required to

build evolves as you understand the problem more!

⚫ At this point don’t be afraid to make mistakes!

⚫ Example problem: Compute the volume of a cone

C. Hundhausen, A. O’Fallon19

Applying the Software Development
Method (2)

⚫ Data Requirements

– Problem input:

 radius (of the base), height (of the cone)

– Problem output:

 volume (of the cone)

– Relevant formula:

 volume = 1 / 3 * pi * radius2 * height

C. Hundhausen, A. O’Fallon20

Applying the Software Development
Method (3)

⚫ Design

– Algorithm

⚫ Get the radius and height for the cone

⚫ Compute the volume of the cone

⚫ Display the resultant volume of the cone

– Refined algorithm

⚫ Get the radius and height for the cone

⚫ Compute the volume of the cone

– volume = 1 / 3 * pi * radius2 * height

⚫ Display the resultant volume of the cone

C. Hundhausen, A. O’Fallon21

Applying the Software Development
Method (4)

⚫ Implementation (in C)
#include <stdio.h> /* Needed for printf (), scanf () */

#define PI 3.14159 /* Constant macro */

int main (void)

{

 int height = 0, radius = 0;

 double volume = 0.0;

 printf ("Enter height of cone as integer: "); /* Displays prompt message */

 scanf ("%d", &height); /* Gets the value from the user/keyboard */

 printf ("Enter radius of base of cone as integer: ");

 scanf ("%d", &radius);

 /* Compute the volume of the given cone */

 volume = ((double) 1 / 3) * PI * radius * radius * height;

 /* Display the resultant volume of the given cone */

 printf ("Volume of cone with radius %d and height %d is %lf.\n", radius, height, volume);

 return 0;

}

C. Hundhausen, A. O’Fallon22

Applying the Software Development
Method (5)

⚫ Note: At this point, don't worry about
understanding the details of C syntax! We'll
get to that later

⚫ Testing
– We would execute the program, trying several

different input data values and observing the
results
⚫ Debugging is NOT testing! It’s a result of testing!

– Each test is defined by a test case
⚫ A test case provides actual inputs, system state or

configuration information, and expected results

– Should always test “boundaries” of inputs and
conditions

Applying the Software
Development Method (6)

⚫ Maintenance
– Most software requires continual improvements,

adaptations, and corrections; software patches
are a result of maintenance

C. Hundhausen, A. O’Fallon23

C. Hundhausen, A. O’Fallon24

Next Lecture…

⚫ We've covered the general software

development method

⚫ It's time to start learning the C language!

C. Hundhausen, A. O’Fallon25

References

⚫ J.R. Hanly & E.B. Koffman, Problem Solving

and Program Design in C (8th Ed.), Pearson

Education, Inc., 2016

	Slide 1: (1 - 1) Computer Software & Software Development H&K Chapter 1
	Slide 2: Course Collaborators
	Slide 3: What is Expected in this Course?
	Slide 4: What is Computer Science? (1)
	Slide 5: What is Computer Science? (2)
	Slide 6: Activities: Discuss, Write, and Execute an Algorithm
	Slide 7: Class Analysis of Triangle Drawing Activity? (1)
	Slide 8: Class Analysis of Triangle Drawing Activity? (2)
	Slide 9: Formal Definition of Algorithm
	Slide 10: Is this an Algorithm? (4)
	Slide 11: How are Algorithms Put Together?
	Slide 12: High-Level Programming Languages (1)
	Slide 13: High-Level Programming Languages (2)
	Slide 14: High-Level Programming Languages (3)
	Slide 15: High-Level Programming Languages (4)
	Slide 16: High-Level Programming Languages (5)
	Slide 17: Software Development Method
	Slide 18: Applying the Software Development Method (1)
	Slide 19: Applying the Software Development Method (2)
	Slide 20: Applying the Software Development Method (3)
	Slide 21: Applying the Software Development Method (4)
	Slide 22: Applying the Software Development Method (5)
	Slide 23: Applying the Software Development Method (6)
	Slide 24: Next Lecture…
	Slide 25: References

