(1-1) Computer Software & Software
Development
H&K Chapter 1

Instructor - Andrew S. O’Fallon
CptS 121 (January 14, 2026)
Washington State University

WASHINGTON STATE
[JNIVERSITY

Course Collaborators
1

e A lot of material for this course was adapted
from Chris Hundhausen’s course or
developed concurrently with him

2 C. Hundhausen, A. O’Fallon :

http://eecs.wsu.edu/~hundhaus/

What is Expected in this Course?
.

e To learn how to approach and solve
problems differently, including some
Interview like questions

e To build enough programming skills to be
one step closer to landing an internship

e Dedication
e And of course, hard work

e You up for the challenge?

3 C. Hundhausen, A. O’Fallon :

What is Computer Science? (1)
.

e Computer science is the study of computers and
computational systems, with a particular focus on
algorithms

— Intersects theory with practice

-~ Requires thinking in abstract and concrete terms

— Not just about building computers and developing programs

- Involves planning, designing, developing and applying systems
— Applies analysis to algorithm efficiency, and software

performance
e What are areas of study in Computer Science?
— Artificial intelligence - Big data / data analytics
- Machine Learning - Bioinformatics
-~ Networks - Software engineering
— Graphics - Computer systems
- Security - Database systems

- Many others .}t
4 C. Hundhausen, A. O’Fallon

What is Computer Science? (2)
.

e What is an algorithm?
-~ A sequence of instructions that solve a problem
e Why are algorithms so important to computer
science?
- If we can specify an algorithm...
e \We can automate the solution
e \We can also repeat a solution to a problem

5 C. Hundhausen, A. O’Fallon

Activities: Discuss, Write, and

Execute an Algorithm
-

e Activities (in pairs):
— (1) Verbally discuss (only) an algorithm using for drawing a

triangle on the whiteboard with a dry erase marker — walit
until the instructor indicates to move forward

— (2) Write an algorithm using basic English words and
phrases (not programming language statements) for
drawing a triangle on the whiteboard with a dry erase
marker — wait until the instructor indicates to move forward

— (3) Execute the algorithm and draw the triangle described
by the algorithm on a tablet, piece of paper, or the
whiteboard

6 C. Hundhausen, A. O’Fallon t

Class Analysis of Triangle
Drawing Activity? (1)
.

e \Was the triangle drawn as expected?

— If no:

e \Was there any miscommunication between you and
your partner about how to write the algorithm?

e \Was it because the algorithm was incomplete and/or
ambiguous?

e \Was it because the activity statements were incomplete
and/or ambiguous?

— What kinds of clarifying questions could you ask to better
understand the activity statements?

7 C. Hundhausen, A. O’Fallon t

Class Analysis of Triangle
Drawing Activity? (2)
.

e Does your triangle look the same as others In
the class?

- If no, why?

e Could the activity statements have provided more
Information?

e Could you have asked clarifying questions?

8 C. Hundhausen, A. O’Fallon :

Formal Definition of Algorithm
.

e A well-ordered collection. . .

e Of unambiguous and effectively computable
operations. . .

e That produces a result. . .
e And halts in a finite amount of time.

9 C. Hundhausen, A. O’Fallon :

Is this an Algorithm? (4)

10

e Apply small amount of shampoo to hair
e \Work into scalp for about 1 minute

e Rinse thoroughly
e Repeat

No! Why not?
Hint: Is it well ordered? Does it halt?

C. Hundhausen, A. O’Fallon

How are Algorithms Put Together?
.

e Seguenced Instructions
— do them in the order given

e Conditional instructions
-~ do them If a condition is true

e lterative instructions
-~ do them while a condition is true

11 C. Hundhausen, A. O’Fallon :

High-Level Programming
Languages (1)
.

e High-level programming languages
— The continuum of languages:

Machine Assembly Programming languages English, Spanish,
language language such as BASIC, Pascal, C++ Pseudocode Japanese, ...

| | | | |

| I I I 1
Low-level languages —»-1 High-level languages »<4— Natural languages

(not related to

(closely related to
the hardware)

e (more removed from details of the hardware)

- Low-level languages were created from the
perspective of the machine; working with 1’s and
0’s, also known as logic levels

- High-level languages, have natural language like

elements 5
12 C. Hundhausen, A. O’Fallon

High-Level Programming
Languages (2)
.

e Problem: Computers can’t understand high-
level programming languages

e Solution: They must be translated

— Programmer uses a text editor to write a text-
based source file in a programming language

-~ Compiler translates source file

e Checks to make sure that program is syntactically
correct

e If so, the compiler translates the program into an object
file with machine language instructions

13 C. Hundhausen, A. O’Fallon t

High-Level Programming

Languages (3)
c_—

e ODject file translated by compiler will not

execute!
- High-level programs often make use of software
libraries containing predefined pieces of code,

Including
e Math functions
e Input/output functions

- In order to execute, object file must be linked to
object files containing these predefined pieces of

code
— A Linker program performs this operation

— A Loader program loads the linked program into
memory so that it can be executed

14 C. Hundhausen, A. O’Fallon

High-Level Programming
Languages (4)
.

e EXxecuting Programs

— In this class, programs will execute in a text-
based window called a console

- Input data can be entered at command-line
prompts

— Output results will be displayed in the console
window

- In the real world, many programs have a
graphical user interface (GUI)

- GUI programming is, however, beyond the
scope of this course *

15 C. Hundhausen, A. O’Fallon

High-Level Programming
Languages (5)
.

e Integrated Development Environments (IDE)

— Combine compiler, linker, and loader with a source
code editor — we use Microsoft Visual Studio
Community 2026 in this course

e Generally, a single button will start the translation
process

- Provide a variety of tools to assist programmers, for
example:
e Source code syntax highlighting
e Autocompletion lists ("Intellisense")

e A debugger, which allows a programmer to step
through programs, one instruction at a time

16 c Hundn 2 ,tES(;[’IIDa oEramework for developing unit tests -Bt

Software Development Method
.

e Equivalent to the “Scientific Method” in the
sciences, and the “Systems Approach” in
business

e SiX basic steps:
1. Specify problem requirements
2. Analyze the problem
3. Design an algorithm to solve the problem
4. Implement the algorithm
5. Test and verify the completed program

6. Maintain and update the program
17 C. Hundhausen, A. O’Fallon :

Applying the Software Development
Method (1)
c]

e Developing software Is an iterative process, your
first solution is generally not your best!

e Your understanding of software your required to
build evolves as you understand the problem more!

e At this point don’t be afraid to make mistakes!
e Example problem: Compute the volume of a cone

18 C. Hundhausen, A. O’Fallon t

Applying the Software Development
Method (2)
c]

e Data Requirements

- Problem input:
radius (of the base), height (of the cone)

- Problem output:
volume (of the cone)

- Relevant formula:
volume =1/ 3 * pi * radius? * height

19 C. Hundhausen, A. O’Fallon

Applying the Software Development
Method (3)
c]

e Design

— Algorithm
e Get the radius and height for the cone
e Compute the volume of the cone
e Display the resultant volume of the cone

- Refined algorithm

e Get the radius and height for the cone

e Compute the volume of the cone
— volume = 1/ 3 * pi * radius? * height
e Display the resultant volume of the cone

20 C. Hundhausen, A. O’Fallon

Applying the Software Development
Method (4)
c]

e Implementation (in C)

#include <stdio.h> /* Needed for printf (), scanf () */
#define Pl 3.14159 /* Constant macro */

int main (void)

{
int height = 0, radius = 0;
double volume = 0.0;

printf ("Enter height of cone as integer: "); /* Displays prompt message */
scanf ("%d", &height); /* Gets the value from the user/keyboard */
printf ("Enter radius of base of cone as integer: ");

scanf ("%d", &radius);

/* Compute the volume of the given cone */
volume = ((double) 1/ 3) * Pl * radius * radius * height;

/* Display the resultant volume of the given cone */
printf ("Volume of cone with radius %d and height %d is %lf.\n", radius, height, volume);

return O;

21 C. Hundhausen, A. O’Fallon

Applying the Software Development
Method (5)
c]

e Note: At this point, don't worry about
understanding the details of C syntax! We'll
get to that later

e Testing

- We would execute the program, trying several
different input data values and observing the
results
e Debugging is NOT testing! It's a result of testing!

- Each test is defined by a test case

e A test case provides actual inputs, system state or
configuration information, and expected results

- Should always test “boundaries” of inputs and
conditions

22 C. Hundhausen, A. O’Fallon t

Applying the Software

Development Method (6)
c_—

e Maintenance

- Most software requires continual improvements,
adaptations, and corrections; software patches
are a result of maintenance

23 C. Hundhausen, A. O’Fallon :

Next Lecture...
« /7]

e \We've covered the general software
development method

e It's time to start learning the C language!

24 C. Hundhausen, A. O’Fallon

References
7

e J.R. Hanly & E.B. Koffman, Problem Solving
and Program Design in C (8™ Ed.), Pearson
Education, Inc., 2016

25 C. Hundhausen, A. O’Fallon :

	Slide 1: (1 - 1) Computer Software & Software Development H&K Chapter 1
	Slide 2: Course Collaborators
	Slide 3: What is Expected in this Course?
	Slide 4: What is Computer Science? (1)
	Slide 5: What is Computer Science? (2)
	Slide 6: Activities: Discuss, Write, and Execute an Algorithm
	Slide 7: Class Analysis of Triangle Drawing Activity? (1)
	Slide 8: Class Analysis of Triangle Drawing Activity? (2)
	Slide 9: Formal Definition of Algorithm
	Slide 10: Is this an Algorithm? (4)
	Slide 11: How are Algorithms Put Together?
	Slide 12: High-Level Programming Languages (1)
	Slide 13: High-Level Programming Languages (2)
	Slide 14: High-Level Programming Languages (3)
	Slide 15: High-Level Programming Languages (4)
	Slide 16: High-Level Programming Languages (5)
	Slide 17: Software Development Method
	Slide 18: Applying the Software Development Method (1)
	Slide 19: Applying the Software Development Method (2)
	Slide 20: Applying the Software Development Method (3)
	Slide 21: Applying the Software Development Method (4)
	Slide 22: Applying the Software Development Method (5)
	Slide 23: Applying the Software Development Method (6)
	Slide 24: Next Lecture…
	Slide 25: References

