
(9-1) Arrays IV – Parallel and
H&K Chapter 7

Instructor - Andrew S. O’Fallon

CptS 121 (October 14, 2024)

Washington State University

C. Hundhausen, A. O’Fallon2

Parallel Arrays (1)

⚫ Often, we'd like to associate the values in

one array with those in another array

– A list of student numbers, together with their

class standings, for example

⚫ We can declare parallel arrays to

accomplish this:
#define NUM_STUDENTS 100

typedef enum {freshman, sophomore, junior,

senior} class_t;

 int id[NUM_STUDENTS];

 class_t class[NUM_STUDENTS];

C. Hundhausen, A. O’Fallon3

Parallel Arrays (2)

⚫ The parallel arrays of student numbers and class

standings might look something like this:

1230 3124 6534 7842 3523 9785

id[0] id[1] id[2] id[3] id[4] id[5]

freshman senior junior
sopho-

more
junior freshman

class[0] class[1] class[2] class[3] class[4] class[5]

C. Hundhausen, A. O’Fallon4

Multidimensional Arrays (1)

⚫ Thus far, we've focused on single dimensional
arrays

– We declare them as follows:
 int my_array[6];

– And we visualize them as follows:

– Essentially, they are a single row of values

⚫ Many applications, however, call for not just a single
row, but a two-dimensional matrix of values

– Examples: A tic-tac-toe board, A table of financial data, a
grid of train connections

– We can use two-dimensional arrays to represent such
objects

10 12 0 89 0 91

C. Hundhausen, A. O’Fallon5

Multidimensional Arrays (2)

⚫ Declaring a multidimensional array

– The following code declares a 3 3 array that could be

used to represent a tic-tac-toe board:

 char tic_tac_toe_board[3][3];

– We'll represent the three possible values on a board as

characters: 'B' = blank, 'X' = x player, and 'O' = o player.

– A sample board:

X B O

B O X

X B B

Row

Column

0

1

2

0 1 2

C. Hundhausen, A. O’Fallon6

Multidimensional Arrays (3)

⚫ Referencing array cells
– We use double bracket notation to reference a cell
– For example, assuming the previous board:

The following are true:

board[0][0] == 'X' board[0][1] == 'B' board[0][2] == 'O'

 board[1][0] == 'B' board[1][1] == 'O' board[1][2] == 'X'
board[2][0] == 'X' board[2][1] == 'B' board[2][2] == 'B'

X B O

B O X

X B B

Row

Column

0

1

2

0 1 2

C. Hundhausen, A. O’Fallon7

Multidimensional Arrays (4)

⚫ Example 2D Array Application: Implementation of

“Game of Life”

– “World” is an n x n grid

– The “game” is to determine who lives and who dies from

generation to generation

– A "live" cell will be alive in the next generation if and only if

2 or 3 of its 8 “neighbors” are living

– A "dead" cell will come to life in the next generation if and

only if exactly 2 of its 8 neighbors are living

– See http://www.math.com/students/wonders/life/life.html for the interesting

history of this application, and a really cool applet

http://www.math.com/students/wonders/life/life.html

C. Hundhausen, A. O’Fallon8

Multidimensional Arrays (5)

⚫ Here are the neighbors of a given cell:

⚫ Problem statement:

 Implement an application that models the Game of
Life by choosing an initial distribution of life and
then carrying out the game from one generation to
the next. Display the generations as they are
produced

C. Hundhausen, A. O’Fallon9

Multidimensional Arrays (6)

⚫ Top-down design:
– Key data structure:

⚫ world – a 2D array of ints (0 == dead, 1 == alive)

– Functions
⚫ get_life_probability – prompts the user for the

probability of life in a given square, and returns that value (an
int between 0 and 100)

⚫ initialize_world – Given the probability of life in a given
square, randomly generates the world by filling the world
array with 1's and 0's

⚫ get_next_generation – Generates the next generation of
life by applying the rules outlined on the previous slide.

⚫ life_is_instinct – determines whether a world is
completely devoid of life

⚫ living_neighbors – Given a cell in the world, determines
how many of the cell's neighbors are alive

⚫ is_alive – Given a cell in the world, determines whether
the cell is alive. Gracefully handles the boundary cases (e.g.,
a neighbor of cell 0,0 is -1,-1)

⚫ display_world – pretty-prints the world to the screen

C. Hundhausen, A. O’Fallon10

Multidimensional Arrays (7)

⚫ Note: Higher dimensional arrays (e.g., 3D)

are possible. However, we won't cover them

in this class

C. Hundhausen, A. O’Fallon11

References

⚫ J.R. Hanly & E.B. Koffman, Problem Solving

and Program Design in C (8th Ed.), Addison-

Wesley, 2016

⚫ P.J. Deitel & H.M. Deitel, C How to Program

(7th Ed.), Pearson Education , Inc., 2013.

C. Hundhausen, A. O’Fallon12

Collaborators

⚫ Chris Hundhausen

http://eecs.wsu.edu/~hundhaus/

	Slide 1: (9-1) Arrays IV – Parallel and H&K Chapter 7
	Slide 2: Parallel Arrays (1)
	Slide 3: Parallel Arrays (2)
	Slide 4: Multidimensional Arrays (1)
	Slide 5: Multidimensional Arrays (2)
	Slide 6: Multidimensional Arrays (3)
	Slide 7: Multidimensional Arrays (4)
	Slide 8: Multidimensional Arrays (5)
	Slide 9: Multidimensional Arrays (6)
	Slide 10: Multidimensional Arrays (7)
	Slide 11: References
	Slide 12: Collaborators

