
(9-2) Strings I
H&K Chapter 8

Instructor - Andrew S. O’Fallon

CptS 121 (October 16, 2024)

Washington State University

C. Hundhausen, A. O’Fallon2

String Fundamentals

⚫ A string is a sequence of characters terminated by
the null character (‘\0’)

– “This is a string” is considered a string literal

– A string may include letters, digits, and special characters

⚫ A string may always be represented by a character
array, but a character array is not always a string

⚫ A string is accessed via a pointer to the first
character in it

⚫ This week, we'll learn more about how to work with
strings in the C Language

C. Hundhausen, A. O’Fallon3

String Basics (1)

⚫ Whether you realize it or not, you've been
working with C strings all semester:

 printf("CptS %d is fun!\n",121);

⚫ It's just that we haven't ever declared a string
variable. In C, a string is represented as an
array of characters:

 char name [20]; /* declares a variable name that can hold a
 string of length 20 */

• Be sure to always account for the ‘\0’ in your
array declarations
• name[] may have up to 19 characters + 1 for the

null character

string

C. Hundhausen, A. O’Fallon4

String Basics (2)

⚫ As with other data types, we can even initialize a

string when we declare it:

 char name[20] = “Bill Gates";
 char *name = “Bill Gates";

 char name[] = {‘B’, ‘i’, ‘l’, ‘l’, ‘ ‘, ‘G’, ‘a’, ‘t’, ‘e’,

 ‘s’, ‘\0’;}

 // These are equivalent string declarations!

⚫ Here's what the memory allocated to name looks like

after either of the above is executed:

B i l l G a t e s \0 ? ? ? ? ? ? ?? ?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

name

null character (terminates all strings)

C. Hundhausen, A. O’Fallon5

String Basics (3)

⚫ Notes on the null character

– When a string is initialized on the line it is declared, the

compiler automatically "null terminates" the string

– All of C's string handling functions work only with null-

terminated strings; any characters to the right of the null

character are ignored

– The ASCII value of the null character is 0

C. Hundhausen, A. O’Fallon6

String Basics (4)

⚫ When a variable of type char* is initialized

with a string literal, it may be placed in

memory where the string can’t be modified

⚫ If you want to ensure modifiability of a string

store it into a character array when initializing

it

C. Hundhausen, A. O’Fallon7

String Basics (5)

⚫ Populating a string using scanf ()
 char my_string [50];

 // The address of operator (&) is not required because the name of the

 // array is an address

 scanf (“%s”, my_string);

• Notes on scanf ():
• Using %s will automatically append a null character to the end of the string

• Reads character-by-character until whitespace is encountered, i.e. if the user enters:

 Bill Gates, only “Bill” is read; however, “Gates” is still in the input stream

⚫ Displaying a string using printf ()

 printf (“%s\n”, my_string);

• Notes on printf ():
• Using %s will display character-by-character until a null character is encountered; white space

and printable special characters will be displayed

• If a null character is missing from the end of the string, all contiguous memory will be printed
until a null character happens to be found in memory

C. Hundhausen, A. O’Fallon8

String Basics (6)

⚫ Arrays of Strings
– Suppose we want to store a list of students in a class
– We can do this by declaring an array of strings, one row

for each student name:

#define NUM_STUDENTS 5
#define MAX_NAME_LENGTH 31
char student_names[NUM_STUDENTS][MAX_NAME_LENGTH];

– We can initialize an array of strings "in line":
 char student_names[NUM_STUDENTS][MAX_NAME_LENGTH] =

 {"John Doe", "Jane Smith", "Sandra Connor", "Damien White",

 "Metilda Cougar"};

– In most cases, however, we're probably going to want to
read the names in from the keyboard or a file…

C. Hundhausen, A. O’Fallon9

String Basics (7)

⚫ Printing Out and Reading In Strings

#include <stdio.h>
#define [NUM_STUDENTS] 5
#define [MAX_NAME_LENGTH] 31
char student_names[NUM_STUDENTS][MAX_NAME_LENGTH];

 int i;

 for (i = 0; i < NUM_STUDENTS; ++i)

 {

 printf("Please enter student name: ");
 scanf("%s",student_names[i]);

 printf("The name '%s' was just read in.\n",
 student_names[i]);

 }

⚫ Is the above code robust? Could it lead to a run-time crash?

C. Hundhausen, A. O’Fallon10

String Basics (8)

– Just as is the case for doubles and ints, we

can specify a field width in a printf statement

involving a string (%s). By default, the string is

right justified within that field, e.g.,

 printf("string value: %5s\n",my_string);

 /* string is right justified within field of 5 */

– If we want to left-justify the string, we specify a

negative field width, e.g.,

 printf("string value: %-5s\n",my_string);

 /* string is left justified within field of 5 */

C. Hundhausen, A. O’Fallon11

String Basics (9)

⚫ Reading in multiple data types alongside the string

data type:

C. Hundhausen, A. O’Fallon12

String Basics (10)

⚫ When the previous program is run and the user enters the following
(which is not in the correct format):

MATH,1270,TR,1800

The scanf call

scanf("%s%d%s%d",dept,&course_num,days,&time);

interprets this all as one string, storing it to dept (bad news!):

Moral: We need a more robust way to read in multiple data types
(Stay tuned!)

C. Hundhausen, A. O’Fallon13

String Basics (11)

⚫ Example problem:

– Write a segment of code that prompts the user

for a word of length 24 characters or less, and

prints a statement like this:

fractal starts with the letter f

 Have the program process words until it

encounters a "word" beginning with the
character '9'.

C. Hundhausen, A. O’Fallon14

String Basics (12)

⚫ Solution:
#include <stdio.h>

#define STRING_LENGTH 25

int main()

{

 char name[STRING_LENGTH];

 int done;

 do

 {

 done = 0;

 printf("Enter a name ('9') to quit: ");

 scanf("%s",name);

 if (name[0] == '9')

 done = 1;

 else

 printf("%s starts with the letter %c.\n",

 name,name[0]);

 } while (!done);

 return (0);

}

C. Hundhausen, A. O’Fallon15

String Basics (13)

⚫ Use gets() to read a complete line, including

whitespace, from the keyboard until the <enter> key

is pressed; the <enter> is not included as part of the

string

– Usage: gets(my_array)

– If the user enters “Bill Gates” and presses <enter>, the
entire string will be read into my_array excluding the

<enter> or newline

⚫ Use puts() to display a string followed by a newline

– Usage: puts(my_array)

C. Hundhausen, A. O’Fallon16

What To Look Forward To…

⚫ More on Strings:

– String handling library functions

– Arrays of Pointers

– Character input/output and robust string input

– Character conversion

– String processing example

C. Hundhausen, A. O’Fallon17

References

⚫ J.R. Hanly & E.B. Koffman, Problem Solving

and Program Design in C (8th Ed.), Addison-

Wesley, 2016.

⚫ P.J. Deitel & H.M. Deitel, C How to Program

(7th Ed.), Pearson Education , Inc., 2013.

C. Hundhausen, A. O’Fallon18

Collaborators

⚫ Chris Hundhausen

http://eecs.wsu.edu/~hundhaus/

	Slide 1: (9-2) Strings I H&K Chapter 8
	Slide 2: String Fundamentals
	Slide 3: String Basics (1)
	Slide 4: String Basics (2)
	Slide 5: String Basics (3)
	Slide 6: String Basics (4)
	Slide 7: String Basics (5)
	Slide 8: String Basics (6)
	Slide 9: String Basics (7)
	Slide 10: String Basics (8)
	Slide 11: String Basics (9)
	Slide 12: String Basics (10)
	Slide 13: String Basics (11)
	Slide 14: String Basics (12)
	Slide 15: String Basics (13)
	Slide 16: What To Look Forward To…
	Slide 17: References
	Slide 18: Collaborators

