(9-2) Strings |
H&K Chapter 8

Instructor - Andrew S. O’Fallon
CptS 121 (October 16, 2024)
Washington State University

WASHINGTON STATE
[JNIVERSITY

String Fundamentals
-

e A string is a sequence of characters terminated by
the null character (\0’)

— “This is a string” is considered a string literal
- A string may include letters, digits, and special characters

e A string may always be represented by a character
array, but a character array is not always a string

e A string is accessed via a pointer to the first
character in it

e This week, we'll learn more about how to work with
strings in the C Language

2 C. Hundhausen, A. O’Fallon t

String Basics (1)

e Whether you realize it or not, you've been
working with C strings all semester:

string

printf ("CptS %d is fun!\n",121);

e It's just that we haven't ever declared a string

variable. In C, a string Is represented as an
array of characters:

char name [20]; /* declares a variable name that can hold a

string of length 20 */

- Be sure to always account for the \O" in your
array declarations

name[| may have up to 19 characters + 1 for the
null character

3 C. Hundhausen, A. O’Fallon t

String Basics (2)

e As with other data types, we can even initialize a
string when we declare It:

char name[20] = “Bill Gates";
char *name = “Bill Gates";
Char name[] — {\BI, \iI, \lI’ \lI, \ \, \GI, \aI, \tI, \e/’

\SI , \\OI ; }
// These are equivalent string declarations!
e Here's what the memory allocated to name looks like

after either of the above is executed:
null character, (terminates all strings)

name B:RENEEE] G a t e s \0?»

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
C. Hundhausen, A. O’Fallon t

A

String Basics (3)
.

e Notes on the null character

- When a string is initialized on the line it is declared, the
compiler automatically "null terminates" the string

— All of C's string handling functions work only with null-
terminated strings; any characters to the right of the null
character are ignored

— The ASCII value of the null characteris 0

5 C. Hundhausen, A. O’Fallon :

String Basics (4)
o]
e \When a variable of type char* Is initialized
with a string literal, it may be placed in
memory where the string can’t be modified

e If you want to ensure modifiability of a string

store it into a character array when initializing
It

6 C. Hundhausen, A. O’Fallon :

String Basics (5)
.

e Populating a string using scanf ()
char my_string [50];
/I The address of operator (&) is not required because the name of the
/[array is an address
scanf (“%s”, my_string);

® Notes on scanf ():
® Using %s will automatically append a null character to the end of the string
® Reads character-by-character until whitespace is encountered, i.e. if the user enters:
Bill Gates, only “Bill” is read; however, “Gates” is still in the input stream

e Displaying a string using printf ()

printf (“%s\n”, my_string);

® Notes on printf ():

® Using %s will display character-by-character until a null character is encountered; white space
and printable special characters will be displayed

¢ If a null character is missing from the end of the string, all contiguous memory will be printed
until a null character happens to be found in memory

7 C. Hundhausen, A. O’Fallon t

String Basics (6)
c_—

o Arrays of Strings

Suppose we want to store a list of students in a class

-~ We can do this by declaring an array of strings, one row
for each student hame:

#define NUM STUDENTS 5
#define MAX NAME LENGTH 31
char student names[NUM STUDENTS] [MAX NAME LENGTH];

- We can initialize an array of strings "in line":

char student names[NUM STUDENTS] [MAX NAME LENGTH] =
{"John Doe", "Jane Smith", "Sandra Connor", "Damien White",
"Metilda Cougar"};

- In most cases, however, we're %robably gomg to want to
read the names in from the keyboard or a file..

8 C. Hundhausen, A. O’Fallon t

String Basics (7)
.

e Printing Out and Reading In Strings

#include <stdio.h>

#define [NUM STUDENTS] 5

#define [MAX NAME LENGTH] 31

char student names[NUM STUDENTS] [MAX NAME LENGTH];

int 1i;
for (i = 0; i < NUM_STUDENTS; ++1)
{

printf ("Please enter student name: ");
scanf ("%s", student names([i]);

printf ("The name '$s' was just read in.\n",
student names([1]);

}

e |Isthe above code robust? Could it lead to a run-time crash?

9 C. Hundhausen, A. O’Fallon t

String Basics (8)
c_—

- Just as is the case for doubles and ints, we
can specify a field width in a printf statement
Involving a string (%s). By default, the string is
right justified within that field, e.g.,

printf ("string value: %5s\n",my string);

/* string is right justified within field of 5 */

- If we want to left-justify the string, we specify a
negative field width, e.g.,

printf ("string value: %-5s\n",my string);
/* string 1s left justified within field of 5 */

10 C. Hundhausen, A. O’Fallon t

String Basics (9)
c_—

e Reading in multiple data types alongside the string
data type:

1. #include <stdio.h>

2.

3. #define STRING_LEN 10

4,

5. int

6. main(void)

7. {

8. char dept[STRING LEN];

9. int course_ num;

10. char days[STRING LEN];

11. int time;

12.

13. printf("Enter department code, course number, days and ");
14. printf("time like this:\n> COSC 2060 MWF 1410\n> ");

15. scanf("%s%d%¥s%d", dept, &course num, days, &time);

16. printf("%s %d meets %s at %d\n", dept, course num, days, time);
17.

18. return (0);

19. 1}

Enter department code, course number, days and time like this:
> COSC 2060 MWF 1410
> MATH 1270 TR 800

MATH 1270 meets TR at 800
11 C. Hundhausen, A. O’Fallon t

String Basics (10)
.

e \When the previous program is run and the user enters the following
(which is not in the correct format):

MATH, 1270, TR, 1800
The scanf call
scanf ("%s%d%s3sd",dept, &course num,days, &time);

Interprets this all as one string, storing it to dept (bad news!):

dept
[0] [4] [9] space not allocated for dept

M A |T H ’ 1l 2 7 0 r AL R ’ 1 8 0 0 \O

Moral: We need a more robust way to read in multiple data types
(Stay tuned!)

12 C. Hundhausen, A. O’Fallon :

String Basics (11)
.

e Example problem:

- Write a segment of code that prompts the user
for a word of length 24 characters or less, and

prints a statement like this:

fractal starts with the letter £

Have the program process words until it
encounters a "word" beginning with the
character '9".

13 C. Hundhausen, A. O’Fallon

String Basics (12)
.

e Solution:

#include <stdio.h>
#define STRING_LENGTH 25

int main ()
{
char name[STRING_LENGTH];
int done;
do
{
done = 0;
printf ("Enter a name ('9') to quit: ");
scanf ("%s", name) ;
if (name[0] == '9")
done = 1;
else
printf ("%$s starts with the letter %c.\n",
name, name[0]) ;
} while (!done);
return (0);

14 C. Hundhausen, A. O’Fallon

String Basics (13)
.

e Use gets () toread a complete line, including
whitespace, from the keyboard until the <enter> key
IS pressed; the <enter> is not included as part of the
string
- Usage: gets (my array)

- If the user enters “Bill Gates” and presses <enter>, the
entire string will be read intomy array excluding the

<enter> or newline
e Use puts () to display a string followed by a newline
- Usage: puts (my array)

15 C. Hundhausen, A. O’Fallon t

What To Look Forward To...
]

e More on Strings:
- String handling library functions
— Arrays of Pointers
— Character input/output and robust string input
— Character conversion
— String processing example

16 C. Hundhausen, A. O’Fallon :

Refe

rences

o J.R.
and
Wes

o P.J.

Hanly & E.B. Koffman, Problem Solving
Program Design in C (8™ Ed.), Addison-
ey, 2016.

Deitel & H.M. Deitel, C How to Program

(7t Ed.), Pearson Education , Inc., 2013.

17 C. Hundhausen, A. O’Fallon

Collaborators
N

e Chris Hundhausen

18 C. Hundhausen, A. O’Fallon

http://eecs.wsu.edu/~hundhaus/

	Slide 1: (9-2) Strings I H&K Chapter 8
	Slide 2: String Fundamentals
	Slide 3: String Basics (1)
	Slide 4: String Basics (2)
	Slide 5: String Basics (3)
	Slide 6: String Basics (4)
	Slide 7: String Basics (5)
	Slide 8: String Basics (6)
	Slide 9: String Basics (7)
	Slide 10: String Basics (8)
	Slide 11: String Basics (9)
	Slide 12: String Basics (10)
	Slide 13: String Basics (11)
	Slide 14: String Basics (12)
	Slide 15: String Basics (13)
	Slide 16: What To Look Forward To…
	Slide 17: References
	Slide 18: Collaborators

