

Andrew S. O’Fallon 1

CptS 121 - Program Design and Development

Programming Assignment 2: A Modular Approach to the Equation
Evaluator

Assigned: Friday, September 6, 2024
Due: Friday, September 13, 2024 by midnight

I. Learner Objectives:

At the conclusion of this programming assignment, participants should be able to:

 Analyze a basic set of requirements and apply top-down design principles for a
problem

 Customize and define C functions
 Apply the 3 file format: 1 header file and 2 source files
 Document and comment a modular C program according to class standards
 Implement guard code in a header file

II. Prerequisites:

Before starting this programming assignment, participants should be able to:

 Access Microsoft Visual Studio 2022 Integrated Development Environment (IDE)
 Analyze a basic set of requirements for a problem
 Declare variables
 Apply C data types and associated mathematical operators
 Comment a program according to class standards
 Logically order sequential C statements to solve small problems
 Compose a small C language program
 Compile a C program using Microsoft Visual Studio 2022
 Execute a program
 Create basic test cases for a program

 Summarize topics from Hanly & Koffman Chapter 3 including:
 The 3 components to applying and defining a function include: function

prototype, function definition, and function call
 What is a structure chart

 Top-down design principles
 What is an actual argument and formal parameter
 Differences between local and global variables and scope

III. Overview & Requirements:

For this C program you will build a modular equation evaluator (you may want to start
from your solution to programming assignment 1). Once again, you will write a C
program that evaluates the equations provided below. The program must prompt the
user for inputs to each equation and evaluate them based on the inputs. All equations
should be placed into a single .c file. All variables on the right hand sides of the
equations must be inputted by the user. All variables, except for the

Andrew S. O’Fallon 2

plaintext_character, encoded_character, offset, and variable a are floating-point
values. The plaintext_character and encoded_character variables are characters, and
the offset and a variable are integers. PI, G must be defined as a constant macros
(#defined constants). Error checking is NOT required for your program. You do NOT
need to check for faulty user input or dividing by zero.

1. Newton’s Second Law of Motion: force = mass * acceleration
2. Volume of a cylinder: volume_cylinder = PI * radius2 * height
3. Character encoding: encoded_character = offset + (plaintext_character - 'a') +

'A' (note: what happens if plaintext_character is lowercase?)
4. Gravity: force = G * mass1 * mass2 / distance2, where G is the gravitational

constant with value 6.67 * 10-11
5. Fahrenheit to Celsius conversion: celsius = (fahrenheit – 32) / (9 / 5) (note: the

9 and 5 constants in the equation should be left as integers initially, but
explicitly type-casted as floating-point values)

6. Distance between two points: distance = square root of ((x1 - x2)2 + (y1 - y2)2)
(note: you will need to use sqrt () out of <math.h>)

7. General equation: y = (89 / 27) - z * x + a / (a % 2) (recall: a is an integer; the
89 and 27 constants in the equation should be left as integers initially, but
explicitly type-casted as floating-point values)

For this assignment you are required to define, at a minimum, the functions provided
below (note: these are your required prototypes!):

 double calculate_newtons_2nd_law (double mass, double acceleration)
 double calculate_volume_cylinder (double radius, double height)

 char perform_character_encoding (char plaintext_character, int offset)
 A function for calculating the force (you must decide on a function name,

return type, and parameter list!)
 A function for converting Fahrenheit to Celsius (you must decide on a function

name, return type, and parameter list!)

 A function for calculating the distance between two points (you must decide on
a function name, return type, and parameter list!)

 A function for evaluating the general equation (you must decide on a function
name, return type, and parameter list!)

A function must be defined for each of the above function signatures. The task that is
performed by each function corresponds directly to the equations defined under the
Equations section. For example, the newtons_2nd_law () function should evaluate
the equation defined as force = mass * acceleration and return the resultant force,
etc. You must print the results to the hundredths place. Also, the functions should
not prompt the user for inputs. Prompts should be performed in main () directly.

For this assignment you will need to define three different files. One file, called a
header file (.h) needs to be defined which will store all #includes, #defines, and
function prototypes. Name the header file for this assignment equations.h. The
second file that needs to be defined is just a C source file. This file should be named
equations.c and include all function definitions for the above functions. The last file

Andrew S. O’Fallon 3

that should be defined is the main.c source file. This file will contain the main ()
function or driver for the program.

IV. Expected Results:

The following console window illustrates inputs and outputs that are appropriate for
your program. Your program must display the results in a similar form as shown in the
window. The window shows possible results, for the given input tests, for the first two
equations. Note: all results must be displayed to the hundredths place.

This console window shows only a partial view of the results, you will need to display
the results for all of the equations!

V. Submitting Assignments:

1. Using Canvas https://canvas.wsu.edu/, please submit your solution to the
correct “Programming Assignments” (PA) folder. Your solution should be zipped
into a .zip file with the name <your last name>_PA2.zip and uploaded.

To upload your solution, please navigate to your correct Canvas lab course
space. Select the “Assignments” link in the main left menu bar. Navigate to the
correct PA submission folder. Click the “Start Assignment” button. Click the
“Upload File” button. Choose the appropriate .zip file with your solution.
Finally, click the “Submit Assignment” button.

2. Your project should contain one header file (a .h file), two C source files
(which must be .c files), and project workspace.

3. Your project must build properly. The most points an assignment can receive if
it does not build properly is 65 out of 100.

VI. Grading Guidelines:

This assignment is worth 100 points. Your assignment will be evaluated based on a
successful compilation and adherence to the program requirements. We will grade

according to the following criteria:

 3 pts for correct declaration of constant macro(s)
 14 pts for proper prompts and handling of input (2 pts/equation)
 35 pts for correct calculation of results based on given inputs (5 pts/equation)
 21 pts for appropriate functional decomposition or top-down design (3

pts/function)

https://canvas.wsu.edu/

Andrew S. O’Fallon 4

 15 pts for applying 3-file format (i.e. 1 .h and 2 .c files) (5 pts/file)
 12 pts for adherence to proper programming style and comments (must have a

comment block at the top of each file, a comment block above each function
definition, and some inline comments) established for the class

