
CptS 121 – Program Design and Development 
Programming Assignment 6: Basic Game of Battleship 

  
Assigned: Wednesday, October 23, 2024 
Due: Tuesday, November 12, 2024, by midnight (extended due date) 
 
I. Learner Objectives: 
  
At the conclusion of this programming assignment, participants should be able to: 

 Implement and apply 2-dimenional arrays 
 Define and apply structs in C 

  
II. Prerequisites: 
  
Before starting this programming assignment, participants should be able to: 

 Apply and implement pointers in C 
 Pass output parameters to functions 
 Analyze a basic set of requirements and apply top-down design principles for a 

problem 
 Apply repetition structures within an algorithm 
 Construct while (), for (), or do-while () loops in C 
 Compose C programs consisting of sequential, conditional, and iterative 

statements 
 Eliminate redundancy within a program by applying loops and functions 
 Create structure charts for a given problem 
 Open and close files 
 Read, write to, and update files 
 Manipulate file handles 
 Apply standard library functions: fopen (), fclose (), fscanf (), and fprintf () 
 Compose decision statements ("if" conditional statements) 
 Create and utilize compound conditions 
 Summarize topics from Hanly & Koffman Chapter 8 including: 

o What is an array? 
o Distinguishing between single dimensional and 2-dimentional arrays 
o What is an index? 

  
III. Overview & Requirements: 
  
Write a program that simulates the game of Battleship. The game will be completely 
text-based (see Sample Execution). Battleship is a two player Navy game. The 
objective of the game is to sink all ships in your enemy's fleet. The player to sink 
his/her enemy's fleet first wins. Both players' fleets consist of 5 ships that are hidden 
from the enemy. Each ship may be differentiated by its "size" (besides the Cruiser and 
Submarine) or number of cells it expands on the game board. The Carrier has 5 cells, 
Battleship has 4 cells, Cruiser has 3 cells, Submarine has 3 cells, and the Destroyer 
has 2 cells. 



  
The program should be built such that the user is Player1 and the computer is 
Player2. Two boards exist within the game. Hint: each board should be implemented 
as a 2-dimensional array. Each 2-dimensional array should be 10 X 10. One represents 
Player1's board and one represents Player2's board. At the beginning of the game each 
Players' game board should be initialized to all '-' indicating that no ships have been 
placed on either board. Before the game starts, Player1 should have the option to 
either manually place each of the 5 ships in his/her fleet or to have them randomly 
placed on the board. If Player1 decides to place the ships manually, then he/she 
should be prompted to place the Carrier first, Battleship second, Cruiser third, 
Submarine fourth, and the Destroyer last. Note that ships cannot be placed diagonally 
on the board, they can only be placed vertically or horizontally. You program must 
check to see if the user tries to place a ship outside the boundaries of the board or on 
top of a ship that has already been placed. Each cell on the board that contains part 
of the ship must be indicated by 'c' for Carrier, 'b' for Battleship, 'r' for Cruiser, 's' for 
Submarine, or 'd' for Destroyer. For example, if the Carrier was placed then the board 
should contain 5 'c' s for each cell on the board that has a piece of the Carrier, etc. 
Once Player1's ships have been placed, Player2's ships must be randomly placed. Note 
that the placement of Player2's ships must be unknown. Thus, Player2's board will 
only display '-' in each cell after the placement of each ship. The program should 
randomly select Player1 or Player2 to go first. 
  
Once it has been decided on which player goes first, the game starts. Whenever it's 
Player1's turn, a prompt should be displayed asking for a position to target (specifying 
where to "shoot") on the enemy's (Player2's) board (2-dimensional array). The position 
should be specified in terms of a row and a column on the board. The row and column 
should always be displayed along with the board. If the position specified happens to 
hit a ship, then a '*' should replace the '-' on Player2's board. If the positioned 
specified misses any one of the ships in the fleet, then a 'm' should replace the '-' on 
Player2's board. Note that from turn-to-turn each player should NOT be allowed to 
enter the same position. Also, between turns clear the screen (system("cls")). In one 
turn, a player can only take one shot at the enemy's (other player's) fleet. When 
Player2 takes a shot at Player1's board, each hit should be specified with a '*' and each 
miss with a 'm' on Player1's board. The game is over win Player1 or Player2 has sunk 
all of the ships in the fleet of the enemy. 
  
For each move made by Player1 and Player2, the results should be echoed to a file 
called "battleship.log". In this file, you should log the targeted position by each player 
on each move and whether it was a hit on one of the ships in the fleet. Also, if one of 
the ships happens to sink, then note this in the log file. For more information about 
the rules of Battleship visit: Rules of Battleship. 
  
At the end of the game, Player1's and Player2's statistics should be written to 
"battleship.log". The stats include total number of hits, total number of misses, total 
number of shots, hits to misses ratio (as a percentage), and won or lost the game. 
Note that the statistics should be placed into a structure called Stats. You need two 

https://eecs.wsu.edu/~aofallon/cpts121/progassignments/battleship.log
http://www.hasbro.com/common/instruct/battleship.pdf


variables of type Stats, one for Player1 and one for Player2. Once the game has ended 
you should write the contents of each struct variable to the "battleship.log" file. 
  
Functional Decomposition 
  
First step is to draw a structure chart to help you understand the decomposition of 
functions for this program. Remember to start with the overall problem and break it 
down into inputs, computations, and outputs. One possible functional decomposition 
includes the following (Note: you are NOT required to apply these functions in your 
program!): 
  

 Create a function welcome_screen() that displays an initial program 

welcome message along with the rules of Battleship. 
 Create a function initialize_game_board() that sets each cell in a game 

board to '-'. 
 Create a function select_who_starts_first() that determines if Player1 

or Player2 goes first in the game. 
 Create a function manually_place_ships_on_board() that allows the user 

to place each of the 5 types of ships on his/her game board. 
 Create a function randomly_place_ships_on_board() that randomly 

places the 5 types of ships on a given board. 
 Create a function check_shot() that determines if the shot taken was a hit 

or a miss. 
 Create a function is_winner() that determines if a winner exists. 

 Create a function update_board() that updates the board every time a shot 

is taken. '*' indicates a hit and 'm' indicates a miss. 
 Create a function display_board() that displays a board to the screen. Note 

that Player1's board should be displayed differently than Player2's board (see 
above). 
Hint: pass in a flag (int) that stores whether or not you just passed in Player1's 
or Player2's board. Then perform the different logic for Player1's board versus 
Player2's board. 

 Create a function output_current_move() that writes the position of the 

shot taken by the current player to the log file. It also writes whether or not it 
was a hit, miss, and if the ship was sunk. 

 Create a function check_if_sunk_ship() that determines if a ship was 

sunk. 
 Create a function output_stats() that writes the statistics collected on 

each player to the log file. 
 Other functions that you think are necessary! 
 A main function that does the following: 

o Opens an output file battleship.log for writing; 
o Simulates the game of Battleship 
o Outputs data to logfile 
o Outputs stats to logfile 



o Closes logfile 

Sample Execution 

The following sample session demonstrates how your program should work (user 

input is shown in bold).  

***** Welcome to Battleship! ***** 

Rules of the Game: 

1. This is a two player game. 

2. Player1 is you and Player2 is the computer. 

3. Etc. (You need to list the rest of the rules here.) 

Hit enter to start the game! 

Enter 

(clear the screen) 

Please select from the following menu: 

1. Enter positions of ships manually. 

2. Allow the program to randomly select positions of ships. 

1 

Please enter the five cells to place the Carrier across: 

0 2 0 3 0 4 0 5 0 6 

Please enter the four cells to place the Battleship across: 

3 4 4 4 5 4 6 4 

Etc...... 

Player2 (Computer's) board has been generated. 

Player1 has been randomly selected to go first. 

Player1's Board: 



   0 1 2 3 4 5 6 7 8 9 

0   - - c c c c c - - - 

1   d d - - - - - - - - 

2   - - - - - - - - - s 

3   - - - - b - - - - s 

4   - - - - b - - - - s 

5   - - - - b - - - - - 

6   - - - - b - - - - - 

7   - - - r r r - - - - 

8   - - - - - - - - - - 

9   - - - - - - - - - - 

Player2's Board: 

   0 1 2 3 4 5 6 7 8 9 

0  - - - - - - - - - - 

1  - - - - - - - - - - 

2  - - - - - - - - - - 

3  - - - - - - - - - - 

4  - - - - - - - - - - 

5  - - - - - - - - - - 

6  - - - - - - - - - - 

7  - - - - - - - - - - 

8  - - - - - - - - - - 

9  - - - - - - - - - - 



Enter a target: 2 3 

(clear screen) 

2,3 is a hit! 

Player1's Board: 

   0 1 2 3 4 5 6 7 8 9 

0  - - c c c c c - - - 

1  d d - - - - - - - - 

2  - - - - - - - - - s 

3  - - - - b - - - - s 

4  - - - - b - - - - s 

5  - - - - b - - - - - 

6  - - - - b - - - - - 

7  - - - r r r - - - - 

8  - - - - - - - - - - 

9  - - - - - - - - - - 

Player2's Board: 

   0 1 2 3 4 5 6 7 8 9 

0  - - - - - - - - - - 

1  - - - - - - - - - - 

2  - - - * - - - - - - 

3  - - - - - - - - - - 

4  - - - - - - - - - - 

5  - - - - - - - - - - 



6  - - - - - - - - - - 

7  - - - - - - - - - - 

8  - - - - - - - - - - 

9  - - - - - - - - - - 

Player selects: 9 9 

9,9 is a miss! 

Hit enter to continue! 

Enter 

(clear screen) 

Player1's Board: 

   0 1 2 3 4 5 6 7 8 9 

0  - - c c c c c - - - 

1  d d - - - - - - - - 

2  - - - - - - - - - s 

3  - - - - b - - - - s 

4  - - - - b - - - - s 

5  - - - - b - - - - - 

6  - - - - b - - - - - 

7  - - - r r r - - - - 

8  - - - - - - - - - - 

9  - - - - - - - - - m 

Player2's Board: 

   0 1 2 3 4 5 6 7 8 9 



0  - - - - - - - - - - 

1  - - - - - - - - - - 

2  - - - * - - - - - - 

3  - - - - - - - - - - 

4  - - - - - - - - - - 

5  - - - - - - - - - - 

6  - - - - - - - - - - 

7  - - - - - - - - - - 

8  - - - - - - - - - - 

9  - - - - - - - - - - 

Etc... 

Player1 Wins! 

Statistics outputted to logfile successfully! 

IV. Submitting Assignments: 
  

1. Using Canvas https://canvas.wsu.edu/, please submit your solution to the 
correct “Programming Assignments” (PA) folder. Your solution should be zipped 
into a .zip file with the name <your last name>_PA6.zip and uploaded. 

To upload your solution, please navigate to your correct Canvas lab course 
space. Select the “Assignments” link in the main left menu bar. Navigate to the 
correct PA submission folder. Click the “Start Assignment” button. Click the 
“Upload File” button. Choose the appropriate .zip file with your solution. 
Finally, click the “Submit Assignment” button. 

2. Your project must contain one header file (a .h file), two C source files (which 
must be .c files), and project workspace.  

3. Your project must build properly. The most points an assignment can receive if 
it does not build properly is 65 out of 100. 

  
V. Grading Guidelines: 
  
This assignment is worth 100 points. Your assignment will be evaluated based on a 
successful compilation and adherence to the program requirements. We will grade 
according to the following criteria: 

https://canvas.wsu.edu/


  
 92 pts for adherence to the instructions stated above  

o 3 pts - for displaying a welcome screen 
o 6 pts (3 pts/board) - for initializing player 1’s and 2’s boards 
o 2 pts – for alternating players 
o 5 pts – for displaying the game boards accurately  
o 2 pts - for randomly selecting which player goes first 
o 12 pts - for the manual placement of ships on the game board; must not 

allow overlapping of ships 
o 15 pts – for the random placement of ships on the game board; must not 

allow overlapping of ships 
o 3 pts -  for determining if a shot is a hit or miss 
o 5 pts – for determining if a ship is sunk 
o 3 pts -  for updating the board to indicate hits and misses 
o 4 pts – for not allowing the same coordinates for a shot to be used each 

turn 
o 2 pts – for opening the logfile 
o 15 pts – for writing moves by each player to a file; also for writing if a 

ship was hit, missed, and sunk 
o 2 pts - for closing the logfile 
o 8 pts (4 pts/player) – for computing and outputting stats to the logfile 
o 5 pts – for determining the winner 

 8 pts for appropriate top-down design of functions, commenting, and good 
style 

 


