

Andrew S. O’Fallon 1

CptS 121 - Program Design and Development

Programming Assignment 8: C Interview Questions

Assigned: Wednesday, November 20, 2024
Due: Friday, December 6, 2024

I. Learner Objectives:

At the conclusion of this programming assignment, participants should be able to:

 Apply and implement all your problems solving and C skills developed this
semester!

 Apply and implement pointers in C
 Manipulate and split arrays and strings
 Apply and implement recursive functions

II. Prerequisites:

Before starting this programming assignment, participants should be able to:

 Analyze a basic set of requirements and apply top-down design principles for a
problem

 Apply repetition structures within an algorithm
 Construct while (), for (), or do-while () loops in C
 Compose C programs consisting of sequential, conditional, and iterative

statements
 Eliminate redundancy within a program by applying loops and functions
 Create structure charts for a given problem
 Open and close files
 Read, write to, and update files
 Apply standard library functions: fopen (), fclose (), fscanf (), and fprintf ()
 Compose decision statements ("if" conditional statements)
 Create and utilize compound conditions

III. Overview & Requirements:

For this assignment you will be required to write functions which solve each of the
following problems. You must place all of your functions in one project. If you use any
code that you find online, you must reference it in comments.

1. (10 pts) Write a function called my_str_n_cat() that accepts pointer to a

destination character array, a pointer to a source character array (which is
assumed to be a string), and an integer n and returns the pointer to the
destination character array. This function needs to copy at most n characters,
character by character, from the source character array to the end of the
destination character array. If a null character is encountered before n
characters have been encountered, copying must stop. You may NOT use any

Andrew S. O’Fallon 2

functions found in <string.h> to solve this problem! Note: you MUST use
pointer arithmetic in this function only.

2. (10 pts) Recall Binary Search:

Input: a list of n sorted integer values and a target value
Output: True if target value exists in list and location of target value, false

otherwise
Method:

Set left to 1 and right to n
Set found to false
Set targetindex to -1
While found is false and left is less than or equal to right

Set mid to midpoint between left and right
If target = item at mid then set found to true and set targetindex

to mid
If target < item then set right to mid – 1
If target > item then set to left to mid + 1

Return the targetindex

Write a C function called binary_search().

3. (20 pts) Write a function called bubble_sort() that accepts an array of

pointers to strings and the number of strings as arguments, and returns
nothing. The function sorts the strings according to the following algorithm:

1. set the marker U for the unsorted section at the end of the list (U is an
integer index value)
2. while the unsorted section has more than one element do steps 3 through 7
3. set the current element marker C at the second element of the list (C is
an integer index value)
4. while C has not passed U do steps 5 and 6
5. if the item at position C is less than the item to its left then

exchange these two items
6. move C to the right one position
7. move U left one position
8. stop

Your implementation for this function may NOT use strcpy(). You may only

exchange or swap pointers, but NOT actually make copies of the strings!

4. (15 pts) Write a recursive function called is_palindrome() that accepts a

pointer to a string and its length, and recursively determines if the string is a
palindrome. The function must return 1 for a palindrome, 0 otherwise. A
palindrome is a sequence of symbols that may be interpreted the same forward
and backward. For example, “race car”. Note: whitespace should be ignored in
your solution.

Andrew S. O’Fallon 3

5. (20 pts) Write a recursive function called sum_primes() that accepts an

unsigned integer, n, as an argument, and returns the sum of all primes from 2

to n. You must use recursion to solve this problem!

6. (25 pts) Write a function called maximum_occurences() that accepts a

pointer to a string (consisting of alphanumeric and whitespace characters
only), a pointer to an array of struct occurrences, a pointer to an integer, and
a pointer to a character as arguments. The structure is defined as follows:

typedef struct occurrences
{
 int num_occurrences;
 double frequency;
} Occurrences;

The function determines the frequency of each character found in the array.
The frequency is defined as: number of one character symbol / total number of
characters. The function should use the second array argument (of struct
occurrences) to keep track of the frequency of each character. Also, it must
return, through the pointers, the maximum number of occurrences of any one
character and the corresponding character for which the maximum represents.
Thus, for a string such as “test string”, ‘t’ occurs 3 times, which is the
maximum occurrences for any one character in the string.

7. (BONUS – 10 pts) Write a function called max_consecutive_integers()

that accepts a two-dimensional array of signed integers, the number of rows,
the number of columns as input parameters, and two pointers as output
parameters (one of these pointers is actually a pointer to a pointer, i.e. two
stars!). The function finds the maximum consecutive sequence of one integer.
The first pointer stores the address the start of the maximum consecutive
sequence of the same integer. The second indirectly stores the number the
same consecutive integers in a row. These sequences may wrap from one row
to the next. For example ([$xxxx] denotes address value):

Row/Column 0 1 2 3 4

0 -5
[$1000]

6
[$1004]

0
[$1008]

2
[$1012]

2
[$1016]

1 2
[$1020]

2
[$1024]

2
[$1028]

9
[$1032]

3
[$1036]

2 3
[$1040]

3
[$1044]

2
[$1048]

1
[$1052]

-8
[$1056]

3 7
[$1060]

-2
[$1064]

6
[$1068]

0
[$1072]

4
[$1076]

The function should store the address of row 0, column 3 ($1012) via the first
pointer, and 5 (2, 2, 2, 2, 2) indirectly via the second pointer.

Andrew S. O’Fallon 4

IV. Submitting Assignments:

1. Using Canvas https://canvas.wsu.edu/, please submit your solution to the
correct “Programming Assignments” (PA) folder. Your solution should be zipped
into a .zip file with the name <your last name>_PA8.zip and uploaded.

To upload your solution, please navigate to your correct Canvas lab course
space. Select the “Assignments” link in the main left menu bar. Navigate to the
correct PA submission folder. Click the “Start Assignment” button. Click the
“Upload File” button. Choose the appropriate .zip file with your solution.
Finally, click the “Submit Assignment” button.

2. Your project must contain one header file (a .h file), two C source files (which
must be .c files), and project workspace.

3. Your project must build properly. The most points an assignment can receive if
it does not build properly is 65 out of 100.

V. Grading Guidelines:

This assignment is worth 100 points. Your assignment will be evaluated based on a
successful compilation and adherence to the program requirements. We will grade
according to the following criteria:

 95 pts for adherence to the instructions stated above (see the individual points
above)

 5 pts for appropriate top-down design of functions and good style
 BONUS: Up to 10 pts for question 7

https://canvas.wsu.edu/

