
CptS 122 – Data Structures

Final Exam Review Guide

This document will serve as a guide to help you prepare for the final written exam in
CptS 122. You will find information about the exam format and topics you are
expected to review within this guide.

What to Bring?

 Your WSU ID

 Two sharp pencils

 Calculators and other notes may not be used during the exam!

Exam Timeframe

The final exam is scheduled for TH, July 25, 2024, 10:00 am – 12:00 pm. It will be
held in our normally scheduled classroom location. Note that, when you hand in your
exam, you will be required to present your WSU ID to the exam proctor.

Exam Format

Expect the final exam to look a lot like the first exam, except that it will be longer,

because you will have a full two hours to take the exam, rather than one hour.
There will be a mix, of true-false, fill-in-the-blank, multiple-choice, and short
answer/code questions that test your knowledge of key concepts. Expect also to
supply short code snippets, and to trace through C/C++ code segments and specify
their output.

Exam Coverage

The exam is comprehensive, covering all the material we have explored in this
course.

Topics that are fair game from exam #1:

 See the midterm #1 exam review for a list of topics that are fair game. In other
words, all of the material covered in the first three weeks of the course is fair
game.

The following is a list of exam topics covered in the final five weeks of the course:

C++ Data Structures
 Define what is a dynamic data structure in C++

 Apply new and delete to dynamic data structures
 Compare and contrast linked lists, stacks, queues, and BSTs
 Compare and contrast container and value classes

https://eecs.wsu.edu/~aofallon/cpts122/lectures/exam1review.pdf

 Design and implement an ordered or non-ordered dynamic linked list using C++
classes including the following methods:

o isEmpty () - returns an integer or bool type; true for an empty list, false
for non-empty list

o insertAtFront () – allocates a node dynamically; initializes it to the data
passed in; inserts the node at the front of the list only; returns true or

false for successful or unsuccessful insertion, respectively
o insertAtEnd () - allocates a node dynamically; initializes it to the data

passed in; inserts the node at the tail or end of the list only; returns true
or false for successful or unsuccessful insertion, respectively

o insertInOrder () - allocates a node dynamically; initializes it to the data
passed in; inserts the node in the list in ascending or descending order
only; returns true or false for successful or unsuccessful insertion,

respectively
o deleteNode () – de-allocates a node dynamically; returns true if node

was de-allocated, false otherwise
o printList () – prints out the data in each node of the list; may be printed

iteratively or recursively
o others?

 Design and implement a dynamic linked stack (LIFO – last-in, first-out) using

C++ classes including the following methods:
o isEmpty () - returns an integer or enumerated bool type; true for an

empty stack, false for non-empty stack
o push () - allocates a node dynamically; initializes it to the data passed

in; inserts the node at the top of the stack only; returns true or false for
successful or unsuccessful insertion, respectively

o pop () - de-allocates a node at the top of the stack dynamically; returns
true if node was de-allocated, false otherwise; NOTE: some variations of
pop () will return the data in the node found at the top of the stack,
instead of true or false

o top () or peek () – returns the data found in the top node of the stack;

nodes are not affected (removed)
o printStack () - prints out the data in each node of the stack; may be

printed iteratively or recursively

 Design and implement a dynamic linked queue (FIFO – first-in, first-out) using
C++ classes including the following methods:

o isEmpty () - returns an integer or enumerated bool type; true for an
empty queue, false for non-empty queue

o enqueue () - allocates a node dynamically; initializes it to the data
passed in; inserts the node at the tail/e of the queue only; returns true
or false for successful or unsuccessful insertion, respectively

o dequeue () - de-allocates a node at the head/front of the queue
dynamically; returns the data in the node found at the head/front of the

queue; NOTE: some implementations may also return true or false for
successful or unsuccessful removal of a node from the head/front

o printQueue () - prints out the data in each node of the queue; may be
printed iteratively or recursively

 Design and implement a dynamic linked binary search tree (BST) using C++

classes including the following methods:
o isEmpty () - returns an integer or enumerated bool type; true for an

empty BST, false for non-empty BST
o insert () – allocates a node dynamically; initializes it to the data passed

in; inserts the node into the left or right subtree; returns true or false
for successful or unsuccessful insertion, respectively

o inOrder () – performs an inorder traversal of a BST and prints out the
data in the nodes accordingly

o preOrder () – performs a preorder traversal of a BST and prints out the

data in the nodes accordingly
o postOrder () - performs a postorder traversal of a BST and prints out the

data in the nodes accordingly
o destroyTree () – removes all nodes in the tree

 Design and implement makeNode () as a separate helper function for each of

the above data structures
o makeNode () – allocates a node dynamically; initializes the node;

returns a pointer to the dynamic node
 How would you make use of private and public member functions for each of

the container classes? Could you design a public preorder () function, which
calls upon a private preorder () helper function? Etc.

 Draw block/memory diagrams to illustrate how links are modified for any of the
particular operations described above

 Design and implement a list, stack, and queue with arrays instead of dynamic
“links”

Chapters 1 - 3: Introduction to Classes and Objects

 Design and implement classes in C++

o What are some advantages to using classes?
 Design and apply data members and member functions for classes
 Define and apply accessor (getter) functions and mutator (setter) functions
 Define access specifier

o These include private, protected, and public
 Apply UML Class Diagrams

 Apply and implement default constructors, copy constructors, and destructors
 How is the size (amount of memory) of an object determined?

o We generally assume an object contains data and
operations…However, each instance of an object uses the same copy
of the member functions, which is separate from the object size

o Sizeof reports only the number of bytes required for a class’s data
members

 What is the rule of three/Law of the Big Three/the Big Three?
o Rule of thumb in C++: should define destructor, copy constructor, and

overloaded copy assignment operator

Chapter 6 & 9: Classes: A Deeper Look

 Compare and contrast procedural programming (C) versus objected-oriented
programming (C++)

 Define the term encapsulation
o Wrapping of attributes and operations into objects

 Define the term information hiding
o Implementation details are hidden within objects

 Define and apply function overloading
o Allows for functions with the same name to be defined. The key is the

functions must have different parameters (number, type, order)
 Define and apply procedural abstraction
 Define and apply data abstraction

 What is a data member (attribute)? What is a member function (operation)?
 Define and apply function templates
 Apply the reference (&) operator in C++, including returning references from

functions
 Define pass-by-reference and pass-by-value
 What is a dangling reference?

 Define, implement, and apply friend functions and classes
o Recall: a friend class has access to private members

 What is the this pointer? When do we need to use it?
 Apply dynamic memory management with new and delete operators
 What is a const object and const member function?
 What is class composition?

o Recall: represents a “has-a” relationship

Chapter 10: Operator Overloading

 List the operators that may not be overloaded (there are four of them…)
o Recall: precedence, associativity, and number of operands (arity) for an

operator may not be changed
 Implement and apply overloaded stream insertion and extraction operators

 Implement and apply overloaded unary operators
 Implement and apply overloaded binary operators (+, -, *, /, etc.)
 Compare and contrast overloaded member operators versus non-member

operators
 Define what is a forward class declaration

Chapter 11: Object-Oriented Programming: Inheritance
 What is inheritance? When should we apply it?

o Recall inheritance applies a “is-a” relationship
 Define, implement, and apply base and derived classes

o Other terms include: subclass, superclass
 Describe when to apply the protected access specifier
 Describe the different inheritance access specifiers of C++ (i.e. public,

protected, and private)
 What is single, multiple, hierarchical, multilevel, and hybrid inheritance?
 Describe the diamond problem

Chapter 12: Polymorphism

 Define the term polymorphism
 What is a virtual function? What is a pure virtual function?
 Provide an example of when/how polymorphism should be applied

 Define abstract class and concrete class
 What is a virtual function table or vtable?
 Implement and apply polymorphism
 How does polymorphism apply to computer game creation?

Chapter 17: Exception Handling

 Define what is an exception
 Implement and apply exception handling to C++ programs
 List and identify standard library exception classes (i.e. logic_error,

runtime_error, etc.)

 Discuss when to apply exception handling

Chapters 18 & 19: Templates
 What is a function template?
 What is a class template?

 Design, implement, and apply templates
 What are advantages and disadvantages of templates?

Chapter 20: Searching and Sorting

 What is Big-O notation?
 What is the meaning of constant, linear, and quadratic runtime?
 Identify the runtimes for linear and binary search, and insertion, selection, and

bubble sorts in the best, average, and worst-case
 Identify the runtimes for operations applied to lists, stacks, queues, and BSTs;

these include both array and linked implementations of these data structures;
what is the runtime for insertFront (), insertEnd (), insertInOrder (),

deleteFront (), deleteEnd (), deleteN (), etc.

Other Material

 What is a function call stack?
 Apply recursion to a given set of problems, including BSTs
 What is a stream? What is a file stream?
 Open, read from/write to, and close files in C++
 What is UML?

 When should we apply UML diagrams?
 Construct and apply UML class diagrams
 What is the Standard Template Library (STL)? (Chapter 15.1 – 15.5)

Recommended Strategy for Preparing for the Exam

I recommend that you use the following activities and materials to prepare for the

exam:

Review quizzes and lab exercises: These may well be your best resource.
An excellent learning activity would be to retake the quizzes and
review the lab exercises.

Lecture slides and example code: Study the lecture slides and example code.
Continue to complete extra coding examples on your own time.

Read the textbook: Read or re-read chapters 1 – 3, 6, 7, 9 - 12, 14, 15, 17 - 19,
and 20 in your textbook. Solve the end-of-chapter exercises.

