

Andrew S. O’Fallon 1

CptS 122 – Data Structures

BONUS Programming Assignment: Data Analysis using Binary Search Trees – Up to

2% Extra Credit

Due: Sunday, July 28, 2024 by midnight

I. Learner Objectives:

At the conclusion of this assignment, participants should be able to:

 Analyze a basic set of requirements for implementing and testing a solution to

a problem
 Design, implement and test classes in C++
 Design and apply inheritance
 Design with polymorphism
 Design and implement a dynamically linked binary search tree

II. Prerequisites:

Before starting this assignment, participants should be able to:

 Analyze a basic set of requirements for a problem
 Compose basic C++ language programs
 Create basic test cases for a program
 Apply arrays, strings, and pointers

 Declare and define constructors
 Declare and define destructors
 Compare and contrast public and private access specifiers in C++
 Describe what is an attribute or data member of a class
 Describe what is a method of a class
 Apply and implement overloaded functions
 Distinguish between pass-by-value and pass-by-reference

 Discuss classes versus objects

III. Overview & Requirements:

Summary:
For this assignment you are implementing a system for detecting trends in consumer

products over a 48-hour period. We are interested in knowing which products are
purchased and sold, the least and most, by various retail stores throughout the United
States. When a product is tagged as purchased it indicates that a certain retail store
bought units of the product from a supplier. When a product is tagged as sold it
indicates that a certain retail store sold that many units of a product. Your system
must read product data from a .csv file, and store the data in a way that inserts data

in better than linear time (O(n)) in most cases. Since, a binary search tree (BST) is a
reasonably efficient data structure for inserting and searching data (O (log n) for
balanced trees), you must create two BSTs; one tree represents the products that
were sold and the other tree represents the products that were bought. The system

Andrew S. O’Fallon 2

must leverage the organization of the trees to display, which products were least
bought and sold, and which were most bought and sold for that 48-hour period. Your
system is only required to output the following to the screen:
- The contents of the two BSTs, which will be printed in order
- The product that type and number of units that sold the most
- The product that type and number of units that sold the least

- The product that type and number of units that were purchased the most
- The product that type and number of units that were purchased the least

Class Design:
For this assignment you are required to implement a dynamically linked binary search

tree. You will first need to start by defining an abstract base class Node, which

encapsulates the following:
 Data members:
 # mData : std::string // # denotes protected
 # mpLeft : Node *

 # mpRight : Node *

 Member functions:
 + virtual destructor // + denotes public
 + constructor which accepts a string to set the data in the node; each pointer
in the node is set to NULL

 + setters – one for each data member (3 total should be defined)
 + getters – one for each data member (3 total should be defined, the 2 defined
to get the pointers should return a reference to the pointer, i.e. Node *&)
 + pure virtual printData () function, which must be overridden in class
TransactionNode

Next define a class TransactionNode, which publically inherits from abstract base

class Node. Class TransactionNode must encapsulate the following:

New Data members:
- mUnits : int // - denotes private

 New Member functions:

 + destructor // + denotes public
 + constructor which accepts a string to set the data and an integer to set the

number of units in the node; should invoke class Node’s constructor

 + setter

 + getter

 + printData (), which overrides the pure virtual function in class Node

Now define a class BST, which encapsulates the following:

Data members:

- mpRoot : Node * // yes, we want a pointer to a Node, not

TransactionNode here!

 Member functions:

Andrew S. O’Fallon 3

 + destructor // calls destroyTree ()
 - destroyTree () // yes, it’s private, and it should visit each node in postOrder
to delete them
 + default constructor
 + setter
 + getter

 + insert () // public used to hide pointer information, i.e. won’t pass in the
root of the tree into this function, only the private insert () function

- insert () // yes, it’s private, and it dynamically allocates a

TransactionNode and inserts recursively in the correct subtree based on

mUnits; should pass in a reference to a pointer (i.e. Node *& pT)
+ inOrderTraversal () // yes, once again it’s private to hide pointer information

 - inOrderTraversal (), which recursively visits and prints the contents (mData
and mUnits) of each node in the tree in order; each node’s printData () should be
called

 contents should be printed on a separate line; must call the printData ()

function associated with the TransactionNode

 + findSmallest (), which returns a reference to a TransactionNode (i.e

TransactionNode &) with the smallest mUnits

 + findLargest (), which returns a reference to a TransactionNode with the

largest mUnits

Lastly, define a class DataAnalysis, which encapsulates the following:

Data members:
 - mTreeSold : BST

 - mTreePurchased : BST
 - mCsvStream : ifstream

Member functions:
- A function that opens

https://eecs.wsu.edu/~aofallon/cpts122/progassignments/data.csv // yes, it’s
private, and must use mCsvStream to open the file

 - A function that reads one line from the file and splits the line into units, type,
and transaction fields
 - A function that loops until all lines are read from the file; calls the function
below, and then displays the current contents of both BSTs; use inOrderTraversal () to
display the trees
 - A function that compares the transaction field and inserts the units and type

into the appropriate tree (mTreeSold or mTreePurchased) // note with the way the
data.csv file is organized the trees will be fairly balanced
 - A function that writes to the screen the trends we see in our tree; the
function must display the type and number of units that are least purchased and sold,
and the most purchased and sold
 + runAnalysis (), which is the only public function in the class, aside from
possibly a constructor and/or destructor; this function calls the other private

functions
What should go in main ()?

https://eecs.wsu.edu/~aofallon/cpts122/progassignments/data.csv

Andrew S. O’Fallon 4

 DataAnalysis obj;
 obj.runAnalysis ();

Questions to Ponder:
Questions for you to consider (you do not need to submit answers to these questions):

- We understand that a BST is most efficient when it is balanced. If the

data.csv file was not already organized to provide a fairly balanced tree,
how would you balance the tree as you insert?

- Do you think there are other data structures that would be better suited for
this type of problem? Why?

- What would happen to our program if we found duplicate products or # of
units sold/purchased in the file? Would we need a data structure to
efficiently combine the products and # of units? Hash table?

IV. Submitting Assignments:

1. Send to aofallon@wsu.edu by Sunday, July 28, 2024. Please delete all debug,
x64, and/or release folders before you send the .zip file.

2. Your project must contain at least one header file (.h files) and two C++ source

files (which must be .cpp files).

V. Grading Guidelines:

This assignment is worth 100 points or up to 2% bonus credit. Your assignment will be
evaluated based on adherence to the requirements. We will grade according to the

following criteria:

 5 pts – Appropriate design, style, and commenting according to class standards
 5 pts – Node class and all functions described above
 10 pts – TransactionNode class, which inherits from the Node class, and all

functions described above
 40 pts – BST class

 5 pts - destroyTree ()

 10 pts – insert () functions: 8 pts private one, 2 points public one

 7 pts – inOrderTraversal () functions: 5 pts private one, 2 points public
one

 7 pts – findSmallest ()

 7 pts – findLargest ()

 4 pts – other functions
 35 Pts – DataAnalysis class

 2 pts - for opening data.csv

 8 pts – for reading a line and splitting it

 10 pts – for reading all lines in the file and inserting into the appropriate
tree (mTreeSold and mTreePurchased)

 10 pts – for determining the trends and displaying them to the screen

 5 pts – other functions
 5 pts – main ()

mailto:aofallon@wsu.edu

